2018高一年級(jí)數(shù)學(xué)必修一知識(shí)點(diǎn)歸納

字號(hào):

人生要敢于理解挑戰(zhàn),經(jīng)受得起挑戰(zhàn)的人才能夠領(lǐng)悟人生非凡的真諦,才能夠?qū)崿F(xiàn)自我無(wú)限的超越,才能夠創(chuàng)造魅力永恒的價(jià)值。以下是高一頻道為你整理的《2018高一年級(jí)數(shù)學(xué)必修一知識(shí)點(diǎn)歸納》,希望你不負(fù)時(shí)光,努力向前,加油!
    【第一章:集合與函數(shù)概念】
    一、集合有關(guān)概念
    1.集合的含義
    2.集合的中元素的三個(gè)特性:
    (1)元素的確定性如:世界上的山
    (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
    (3)元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
    3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
    (1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
    (2)集合的表示方法:列舉法與描述法。
    注意:常用數(shù)集及其記法:XKb1.Com
    非負(fù)整數(shù)集(即自然數(shù)集)記作:N
    正整數(shù)集:N*或N+
    整數(shù)集:Z
    有理數(shù)集:Q
    實(shí)數(shù)集:R
    1)列舉法:{a,b,c……}
    2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合{xÎR|x-3>2},{x|x-3>2}
    3)語(yǔ)言描述法:例:{不是直角三角形的三角形}
    4)Venn圖:
    4、集合的分類:
    (1)有限集含有有限個(gè)元素的集合
    (2)無(wú)限集含有無(wú)限個(gè)元素的集合
    (3)空集不含任何元素的集合例:{x|x2=-5}
    二、集合間的基本關(guān)系
    1.“包含”關(guān)系—子集
    注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
    反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
    2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
    實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
    即:①任何一個(gè)集合是它本身的子集。AíA
    ②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
    ③如果AíB,BíC,那么AíC
    ④如果AíB同時(shí)BíA那么A=B
    3.不含任何元素的集合叫做空集,記為Φ
    規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
    4.子集個(gè)數(shù):
    有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集
    三、集合的運(yùn)算
    運(yùn)算類型交集并集補(bǔ)集
    定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
    由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).
    【第二章:基本初等函數(shù)】
    一、指數(shù)函數(shù)
    (一)指數(shù)與指數(shù)冪的運(yùn)算
    1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.
    當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).
    當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。
    注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),
    2.分?jǐn)?shù)指數(shù)冪
    正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
    0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義
    指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.
    3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)
    (二)指數(shù)函數(shù)及其性質(zhì)
    1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.
    注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.
    2、指數(shù)函數(shù)的圖象和性質(zhì)
    【第三章:第三章函數(shù)的應(yīng)用】
    1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
    2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:
    方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).
    3、函數(shù)零點(diǎn)的求法:
    求函數(shù)的零點(diǎn):
    1(代數(shù)法)求方程的實(shí)數(shù)根;
    2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).
    4、二次函數(shù)的零點(diǎn):
    二次函數(shù).
    1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).
    2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).
    3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).