高二年級(jí)數(shù)學(xué)必修四教案

字號(hào):

著眼于眼前,不要沉迷于玩樂,不要沉迷于學(xué)習(xí)進(jìn)步?jīng)]有別*的痛苦中,進(jìn)步是一個(gè)由量變到質(zhì)變的過程,只有足夠的量變才會(huì)有質(zhì)變,沉迷于痛苦不會(huì)改變什么。高二頻道為你整理了《高二年級(jí)數(shù)學(xué)必修四教案》,希望對(duì)你有所幫助!
    【教案一】
    教學(xué)準(zhǔn)備
    教學(xué)目標(biāo)
    一、知識(shí)與技能
    (1)理解并掌握弧度制的定義;(2)領(lǐng)會(huì)弧度制定義的合理性;(3)掌握并運(yùn)用弧度制表示的弧長(zhǎng)公式、扇形面積公式;(4)熟練地進(jìn)行角度制與弧度制的換算;(5)角的集合與實(shí)數(shù)集之間建立的一一對(duì)應(yīng)關(guān)系.(6)使學(xué)生通過弧度制的學(xué)習(xí),理解并認(rèn)識(shí)到角度制與弧度制都是對(duì)角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系.
    二、過程與方法
    創(chuàng)設(shè)情境,引入弧度制度量角的大小,通過探究理解并掌握弧度制的定義,領(lǐng)會(huì)定義的合理性.根據(jù)弧度制的定義推導(dǎo)并運(yùn)用弧長(zhǎng)公式和扇形面積公式.以具體的實(shí)例學(xué)習(xí)角度制與弧度制的互化,能正確使用計(jì)算器.
    三、情態(tài)與價(jià)值
    通過本節(jié)的學(xué)習(xí),使同學(xué)們掌握另一種度量角的單位制---弧度制,理解并認(rèn)識(shí)到角度制與弧度制都是對(duì)角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系.角的概念推廣以后,在弧度制下,角的集合與實(shí)數(shù)集之間建立了一一對(duì)應(yīng)關(guān)系:即每一個(gè)角都有的一個(gè)實(shí)數(shù)(即這個(gè)角的弧度數(shù))與它對(duì)應(yīng);反過來,每一個(gè)實(shí)數(shù)也都有的一個(gè)角(即弧度數(shù)等于這個(gè)實(shí)數(shù)的角)與它對(duì)應(yīng),為下一節(jié)學(xué)習(xí)三角函數(shù)做好準(zhǔn)備.
    教學(xué)重難點(diǎn)
    重點(diǎn):理解并掌握弧度制定義;熟練地進(jìn)行角度制與弧度制地互化換算;弧度制的運(yùn)用.
    難點(diǎn):理解弧度制定義,弧度制的運(yùn)用.
    教學(xué)工具
    投影儀等
    教學(xué)過程
    一、創(chuàng)設(shè)情境,引入新課
    師:有人問:??诘饺齺営卸噙h(yuǎn)時(shí),有人回答約250公里,但也有人回答約160英里,請(qǐng)問那一種回答是正確的?(已知1英里=1.6公里)
    顯然,兩種回答都是正確的,但為什么會(huì)有不同的數(shù)值呢?那是因?yàn)樗捎玫亩攘恐撇煌粋€(gè)是公里制,一個(gè)是英里制.他們的長(zhǎng)度單位是不同的,但是,他們之間可以換算:1英里=1.6公里.
    在角度的度量里面,也有類似的情況,一個(gè)是角度制,我們已經(jīng)不再陌生,另外一個(gè)就是我們這節(jié)課要研究的角的另外一種度量制---弧度制.
    二、講解新課
    1.角度制規(guī)定:將一個(gè)圓周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.
    弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制與角度制之間如何換算?請(qǐng)看課本,自行解決上述問題.
    2.弧度制的定義
    長(zhǎng)度等于半徑長(zhǎng)的圓弧所對(duì)的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫).
    (師生共同活動(dòng))探究:如圖,半徑為的圓的圓心與原點(diǎn)重合,角的終邊與軸的正半軸重合,交圓于點(diǎn),終邊與圓交于點(diǎn).請(qǐng)完成表格.
    我們知道,角有正負(fù)零角之分,它的弧度數(shù)也應(yīng)該有正負(fù)零之分,如-π,-2π等等,一般地,正角的弧度數(shù)是一個(gè)正數(shù),負(fù)角的弧度數(shù)是一個(gè)負(fù)數(shù),零角的弧度數(shù)是0,角的正負(fù)主要由角的旋轉(zhuǎn)方向來決定.
    角的概念推廣以后,在弧度制下,角的集合與實(shí)數(shù)集R之間建立了一一對(duì)應(yīng)關(guān)系:即每一個(gè)角都有的一個(gè)實(shí)數(shù)(即這個(gè)角的弧度數(shù))與它對(duì)應(yīng);反過來,每一個(gè)實(shí)數(shù)也都有的一個(gè)角(即弧度數(shù)等于這個(gè)實(shí)數(shù)的角)與它對(duì)應(yīng).
    四、課堂小結(jié)
    度數(shù)與弧度數(shù)的換算也可借助“計(jì)算器”《中學(xué)數(shù)學(xué)用表》進(jìn)行;在具體運(yùn)算時(shí),“弧度”二字和單位符號(hào)“rad”可以省略如:3表示3radsinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無(wú)論用角度制還是弧度制都能在角的集合與實(shí)數(shù)的集合之間建立一種一一對(duì)應(yīng)的關(guān)系。
    五、作業(yè)布置
    作業(yè):習(xí)題1.1A組第7,8,9題.
    課后小結(jié)
    度數(shù)與弧度數(shù)的換算也可借助“計(jì)算器”《中學(xué)數(shù)學(xué)用表》進(jìn)行;在具體運(yùn)算時(shí),“弧度”二字和單位符號(hào)“rad”可以省略如:3表示3radsinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無(wú)論用角度制還是弧度制都能在角的集合與實(shí)數(shù)的集合之間建立一種一一對(duì)應(yīng)的關(guān)系。
    課后習(xí)題
    作業(yè):習(xí)題1.1A組第7,8,9題.
    板書
    【教案二】
    教學(xué)準(zhǔn)備
    教學(xué)目標(biāo)
    熟練掌握三角函數(shù)式的求值
    教學(xué)重難點(diǎn)
    熟練掌握三角函數(shù)式的求值
    教學(xué)過程
    【知識(shí)點(diǎn)精講】
    三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形
    三角函數(shù)式的求值的類型一般可分為:
    (1)“給角求值”:給出非特殊角求式子的值。仔細(xì)觀察非特殊角的特點(diǎn),找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角
    (2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解
    (3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
    (4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進(jìn)行化簡(jiǎn),再求之
    三角函數(shù)式常用化簡(jiǎn)方法:切割化弦、高次化低次
    注意點(diǎn):靈活角的變形和公式的變形
    重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論
    【例題選講】
    課堂小結(jié)】
    三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形
    三角函數(shù)式的求值的類型一般可分為:
    (1)“給角求值”:給出非特殊角求式子的值。仔細(xì)觀察非特殊角的特點(diǎn),找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角
    (2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解
    (3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
    (4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進(jìn)行化簡(jiǎn),再求之
    三角函數(shù)式常用化簡(jiǎn)方法:切割化弦、高次化低次
    注意點(diǎn):靈活角的變形和公式的變形
    重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論
    【教案三】
    教學(xué)準(zhǔn)備
    教學(xué)目標(biāo)
    1、知識(shí)與技能
    (1)了解周期現(xiàn)象在現(xiàn)實(shí)中廣泛存在;(2)感受周期現(xiàn)象對(duì)實(shí)際工作的意義;(3)理解周期函數(shù)的概念;(4)能熟練地判斷簡(jiǎn)單的實(shí)際問題的周期;(5)能利用周期函數(shù)定義進(jìn)行簡(jiǎn)單運(yùn)用。
    2、過程與方法
    通過創(chuàng)設(shè)情境:?jiǎn)螖[運(yùn)動(dòng)、時(shí)鐘的圓周運(yùn)動(dòng)、潮汐、波浪、四季變化等,讓學(xué)生感知周期現(xiàn)象;從數(shù)學(xué)的角度分析這種現(xiàn)象,就可以得到周期函數(shù)的定義;根據(jù)周期性的定義,再在實(shí)踐中加以應(yīng)用。
    3、情感態(tài)度與價(jià)值觀
    通過本節(jié)的學(xué)習(xí),使同學(xué)們對(duì)周期現(xiàn)象有一個(gè)初步的認(rèn)識(shí),感受生活中處處有數(shù)學(xué),從而激發(fā)學(xué)生的學(xué)習(xí)積極性,培養(yǎng)學(xué)生學(xué)好數(shù)學(xué)的信心,學(xué)會(huì)運(yùn)用聯(lián)系的觀點(diǎn)認(rèn)識(shí)事物。
    教學(xué)重難點(diǎn)
    重點(diǎn):感受周期現(xiàn)象的存在,會(huì)判斷是否為周期現(xiàn)象。
    難點(diǎn):周期函數(shù)概念的理解,以及簡(jiǎn)單的應(yīng)用。
    教學(xué)工具
    投影儀
    教學(xué)過程
    【創(chuàng)設(shè)情境,揭示課題】
    同學(xué)們:我們生活在海南島非常幸福,可以經(jīng)??吹酱蠛?,陶冶我們的情操。眾所周知,海水會(huì)發(fā)生潮汐現(xiàn)象,大約在每一晝夜的時(shí)間里,潮水會(huì)漲落兩次,這種現(xiàn)象就是我們今天要學(xué)到的周期現(xiàn)象。再比如,[取出一個(gè)鐘表,實(shí)際操作]我們發(fā)現(xiàn)鐘表上的時(shí)針、分針和秒針每經(jīng)過一周就會(huì)重復(fù),這也是一種周期現(xiàn)象。所以,我們這節(jié)課要研究的主要內(nèi)容就是周期現(xiàn)象與周期函數(shù)。(板書課題)
    【探究新知】
    1.我們已經(jīng)知道,潮汐、鐘表都是一種周期現(xiàn)象,請(qǐng)同學(xué)們觀察錢塘江潮的圖片(投影圖片),注意波浪是怎樣變化的?可見,波浪每隔一段時(shí)間會(huì)重復(fù)出現(xiàn),這也是一種周期現(xiàn)象。請(qǐng)你舉出生活中存在周期現(xiàn)象的例子。(單擺運(yùn)動(dòng)、四季變化等)
    (板書:一、我們生活中的周期現(xiàn)象)
    2.那么我們?cè)鯓訌臄?shù)學(xué)的角度研究周期現(xiàn)象呢?教師引導(dǎo)學(xué)生自主學(xué)習(xí)課本P3——P4的相關(guān)內(nèi)容,并思考回答下列問題:
    ①如何理解“散點(diǎn)圖”?
    ②圖1-1中橫坐標(biāo)和縱坐標(biāo)分別表示什么?
    ③如何理解圖1-1中的“H/m”和“t/h”?
    ④對(duì)于周期函數(shù)的定義,你的理解是怎樣?
    以上問題都由學(xué)生來回答,教師加以點(diǎn)撥并總結(jié):周期函數(shù)定義的理解要掌握三個(gè)條件,即存在不為0的常數(shù)T;x必須是定義域內(nèi)的任意值;f(x+T)=f(x)。
    (板書:二、周期函數(shù)的概念)
    3.[展示投影]練習(xí):
    (1)已知函數(shù)f(x)滿足對(duì)定義域內(nèi)的任意x,均存在非零常數(shù)T,使得f(x+T)=f(x)。
    求f(x+2T),f(x+3T)
    略解:f(x+2T)=f[(x+T)+T]=f(x+T)=f(x)
    f(x+3T)=f[(x+2T)+T]=f(x+2T)=f(x)
    本題小結(jié),由學(xué)生完成,總結(jié)出“周期函數(shù)的周期有無(wú)數(shù)個(gè)”,教師指出一般情況下,為避免引起混淆,特指小正周期。
    (2)已知函數(shù)f(x)是R上的周期為5的周期函數(shù),且f(1)=2005,求f(11)
    略解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2005
    (3)已知奇函數(shù)f(x)是R上的函數(shù),且f(1)=2,f(x+3)=f(x),求f(8)
    略解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2
    【鞏固深化,發(fā)展思維】
    1.請(qǐng)同學(xué)們先自主學(xué)習(xí)課本P4倒數(shù)第五行——P5倒數(shù)第四行,然后各個(gè)學(xué)習(xí)小組之間展開合作交流。
    2.例題講評(píng)
    例1.地球圍繞著太陽(yáng)轉(zhuǎn),地球到太陽(yáng)的距離y是時(shí)間t的函數(shù)嗎?如果是,這個(gè)函數(shù)
    y=f(t)是不是周期函數(shù)?
    例2.圖1-4(見課本)是鐘擺的示意圖,擺心A到鉛垂線MN的距離y是時(shí)間t的函數(shù),y=g(t)。根據(jù)鐘擺的知識(shí),容易說明g(t+T)=g(t),其中T為鐘擺擺動(dòng)一周(往返)所需的時(shí)間,函數(shù)y=g(t)是周期函數(shù)。若以鐘擺偏離鉛垂線MN的角θ的度數(shù)為變量,根據(jù)物理知識(shí),擺心A到鉛垂線MN的距離y也是θ的周期函數(shù)。
    例3.圖1-5(見課本)是水車的示意圖,水車上A點(diǎn)到水面的距離y是時(shí)間t的函數(shù)。假設(shè)水車5min轉(zhuǎn)一圈,那么y的值每經(jīng)過5min就會(huì)重復(fù)出現(xiàn),因此,該函數(shù)是周期函數(shù)。
    3.小組課堂作業(yè)
    (1)課本P6的思考與交流
    (2)(回答)今天是星期三那么7k(k∈Z)天后的那一天是星期幾?7k(k∈Z)天前的那一天是星期幾?100天后的那一天是星期幾?
    五、歸納整理,整體認(rèn)識(shí)
    (1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過的知識(shí)內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?
    (2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請(qǐng)向老師提出。
    (3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?
    六、布置作業(yè)
    1.作業(yè):習(xí)題1.1第1,2,3題.
    2.多觀察一些日常生活中的周期現(xiàn)象的例子,進(jìn)一步理解它的特點(diǎn).
    課后小結(jié)
    歸納整理,整體認(rèn)識(shí)
    (1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過的知識(shí)內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?
    (2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請(qǐng)向老師提出。
    (3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?
    課后習(xí)題
    作業(yè)
    1.作業(yè):習(xí)題1.1第1,2,3題.
    2.多觀察一些日常生活中的周期現(xiàn)象的例子,進(jìn)一步理解它的特點(diǎn).
    板書
    略