經(jīng)典的初中奧數(shù)應(yīng)用題(含解析)

字號(hào):

奧數(shù)能夠有效地培養(yǎng)學(xué)生用數(shù)學(xué)觀點(diǎn)看待和處理實(shí)際問題的能力,提高學(xué)生用數(shù)學(xué)語(yǔ)言和模型解決實(shí)際問題的意識(shí)和能力,提高學(xué)生揭示實(shí)際問題中隱含的數(shù)學(xué)概念及其關(guān)系的能力等等。使學(xué)生能夠在創(chuàng)造性思維過程中,看到數(shù)學(xué)的實(shí)際作用,感受到數(shù)學(xué)的魅力,增強(qiáng)學(xué)生對(duì)數(shù)學(xué)美的感受力。以下是為您整理的相關(guān)資料,希望對(duì)您有所幫助。
    1.小明從家里到學(xué)校,如果每分走50米,則正好到上課時(shí)間;如果每分走60米,則離上課時(shí)間還有2分。問小明從家里到學(xué)校有多遠(yuǎn)?
    解題思路:
    在每分走50米的到校時(shí)間內(nèi)按兩種速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,這就可求出小明按每分50米的到校時(shí)間。
    答題:
    解:60×2÷(60-50)=12(分)
    50×12=600(米)
    答:小明從家里到學(xué)校是600米。
    2.有一周長(zhǎng)600米的環(huán)形跑道,甲、乙二人同時(shí)、同地、同向而行,甲每分鐘跑300米,乙每分鐘跑400米,經(jīng)過幾分鐘二人第相遇?
    解題思路:
    由已知條件可知,二人第相遇時(shí),乙比甲多跑一周,即600米,又知乙每分鐘比甲多跑(400-300)米,即可求第相遇時(shí)經(jīng)過的時(shí)間。
    答題:
    解:600÷(400-300)=600÷100=6(分)
    答:經(jīng)過6分鐘兩人第相遇
    3.有一個(gè)長(zhǎng)方形紙板,如果只把長(zhǎng)增加2厘米,面積就增加8平方米;如果只把寬增加2厘米,面積就增加12平方厘米。這個(gè)長(zhǎng)方形紙板原來(lái)的面積是多少?
    解題思路:
    由“只把寬增加2厘米,面積就增加12平方厘米”,可求出原來(lái)的長(zhǎng)是:(12÷2)厘米,同理原來(lái)的寬就是(8÷2)厘米,求出長(zhǎng)和寬,就能求出原來(lái)的面積。
    答題:
    解:(12÷2)×(8÷2)=24(平方厘米)
    答:這個(gè)長(zhǎng)方形紙板原來(lái)的面積是24平方厘米。
    4.媽媽買蘋果和梨各3千克,付出20元找回7.4元。每千克蘋果2.4元,每千克梨多少元?
    解題思路:
    用去的錢數(shù)除以3就是1千克蘋果和1千克梨的總錢數(shù)。從這個(gè)總錢數(shù)里去掉1千克蘋果的錢數(shù),就是每千克梨的錢數(shù)。
    答題:
    解:(20-7.4)÷3-2.4=12.6÷3-2.4=4.2-2.4=1.8(元)
    答:每千克梨1.8元。
    5.甲乙兩人同時(shí)從相距135千米的兩地相對(duì)而行,經(jīng)過3小時(shí)相遇。甲的速度是乙的2倍,甲乙兩人每小時(shí)各行多少千米?
    解題思路:
    由題意知,甲乙速度和是(135÷3)千米,這個(gè)速度和是乙的速度的(2+1)倍。
    答題:
    解:135÷3÷(2+1)=15(千米)
    15×2=30(千米)
    答:甲乙每小時(shí)分別行30千米、15千米。
    6.盒子里有同樣數(shù)目的黑球和白球。每次取出8個(gè)黑球和5個(gè)白球,取出幾次以后,黑球沒有了,白球還剩12個(gè)。一共取了幾次?盒子里共有多少個(gè)球?
    解題思路:
    兩種球的數(shù)目相等,黑球取完時(shí),白球還剩12個(gè),說明黑球多取了12個(gè),而每次多?。?-5)個(gè),可求出一共取了幾次。
    答題:
    解:12÷(8-5)=4(次)
    8×4+5×4+12=64(個(gè))
    或8×4×2=64(個(gè))
    答:一共取了4次,盒子里共有64個(gè)球。
    7.上午6時(shí)從汽車站同時(shí)發(fā)出1路和2路公共汽車,1路車每隔12分鐘發(fā),2路車每隔18分鐘發(fā),求下次同時(shí)發(fā)車時(shí)間。
    解題思路:
    1路和2路下次同時(shí)發(fā)車時(shí),所經(jīng)過的時(shí)間必須既是12分的倍數(shù),又是18分的倍數(shù)。也就是它們的小公倍數(shù)。
    答題:
    解:12和18的小公倍數(shù)是36
    6時(shí)+36分=6時(shí)36分
    答:下次同時(shí)發(fā)車時(shí)間是上午6時(shí)36分。
    8.父親今年45歲,兒子今年15歲,多少年前父親的年齡是兒子年齡的11倍?
    解題思路:
    父、子年齡的差是(45-15)歲,當(dāng)父親的年齡是兒子年齡的11倍時(shí),這個(gè)差正好是兒子年齡的11倍,由此可求出兒子多少歲時(shí),父親是兒子年齡的11倍。又知今年兒子15歲,兩個(gè)歲數(shù)的差就是所求的問題。
    答題:
    解:(45-15)÷(11-1)=3(歲)
    15-3=12(年)
    答:12年前父親的年齡是兒子年齡的11倍。
    9.王老師有一盒鉛筆,如平均分給2名同學(xué)余1支,平均分給3名同學(xué)余2支,平均分給4名同學(xué)余3支,平均分給5名同學(xué)余4支。問這盒鉛筆少有多少支?
    解題思路:
    根據(jù)題意,可以將題中的條件轉(zhuǎn)化為:平均分給2名同學(xué)、3名同學(xué)、4名同學(xué)、5名同學(xué)都少一支,因此,求出2、3、4、5的小公倍數(shù)再減去1就是要求的問題。
    答題:
    解:2、3、4、5的小公倍數(shù)是60
    60-1=59(支)
    答:這盒鉛筆少有59支。
    10.一塊平行四邊形地,如果只把底增加8米,或只把高增加5米,它的面積都增加40平方米。求這塊平行四邊形地原來(lái)的面積?
    解題思路:
    根據(jù)只把底增加8米,面積就增加40平方米,?可求出原來(lái)平行四邊形的高。根據(jù)只把高增加5米,面積就增加40平方米,可求出原來(lái)平行四邊形的底。再用原來(lái)的底乘以原來(lái)的高就是要求的面積。
    答題:
    解:(40÷5)×(40÷8)=40(平方米)
    答:平行四邊形地原來(lái)的面積是40平方米。