高一數(shù)學必修三知識點總結(jié)

字號:

進入高中后,很多新生有這樣的心理落差,比自己成績優(yōu)秀的大有人在,很少有人注意到自己的存在,心理因此失衡,這是正常心理,但是應盡快進入學習狀態(tài)。高一頻道為正在努力學習的你整理了《高一數(shù)學必修三知識點總結(jié)》,希望對你有幫助!
    【篇一】高一數(shù)學必修三知識點總結(jié)
    1.一些基本概念:
    (1)向量:既有大小,又有方向的量.
    (2)數(shù)量:只有大小,沒有方向的量.
    (3)有向線段的三要素:起點、方向、長度.
    (4)零向量:長度為0的向量.
    (5)單位向量:長度等于1個單位的向量.
    (6)平行向量(共線向量):方向相同或相反的非零向量.
    ※零向量與任一向量平行.
    (7)相等向量:長度相等且方向相同的向量.
    2.向量加法運算:
    ⑴三角形法則的特點:首尾相連.
    ⑵平行四邊形法則的特點:共起點
    【篇二】高一數(shù)學必修三知識點總結(jié)
    一、集合有關(guān)概念
    1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
    2、集合的中元素的三個特性:
    1.元素的確定性;
    2.元素的互異性;
    3.元素的無序性
    說明:
    (1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
    (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
    (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
    (4)集合元素的三個特性使集合本身具有了確定性和整體性。
    3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
    1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
    2.集合的表示方法:列舉法與描述法。
    注意?。撼S脭?shù)集及其記法:
    非負整數(shù)集(即自然數(shù)集)記作:N
    正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R
    關(guān)于“屬于”的概念
    集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
    列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。
    描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。
    ①語言描述法:例:{不是直角三角形的三角形}
    ②數(shù)學式子描述法:例:不等式x-3>2的'解集是{x?Rx-3>2}或{xx-3>2}
    4、集合的分類:
    1.有限集含有有限個元素的集合
    2.無限集含有無限個元素的集合
    3.空集不含任何元素的集合例:{xx2=-5}
    二、集合間的基本關(guān)系
    1.“包含”關(guān)系—子集
    注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
    反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
    2.“相等”關(guān)系(5≥5,且5≤5,則5=5)
    實例:設A={xx2-1=0}B={-1,1}“元素相同”
    結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
    ①任何一個集合是它本身的子集。AíA
    ②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
    ③如果AíB,BíC,那么AíC
    ④如果AíB同時BíA那么A=B
    3.不含任何元素的集合叫做空集,記為Φ
    規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集
    【篇三】高一數(shù)學必修三知識點總結(jié)
    一、高中數(shù)學函數(shù)的有關(guān)概念
    1.高中數(shù)學函數(shù)函數(shù)的概念:設A、B是非空的數(shù)集,如果按照某個確定的對應關(guān)系f,使對于函數(shù)A中的任意一個數(shù)x,在函數(shù)B中都有確定的數(shù)f(x)和它對應,那么就稱f:A→B為從函數(shù)A到函數(shù)B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應的y值叫做函數(shù)值,函數(shù)值的函數(shù){f(x)|x∈A}叫做函數(shù)的值域.
    注意:
    函數(shù)定義域:能使函數(shù)式有意義的實數(shù)x的函數(shù)稱為函數(shù)的定義域。
    求函數(shù)的定義域時列不等式組的主要依據(jù)是:
    (1)分式的分母不等于零;
    (2)偶次方根的被開方數(shù)不小于零;
    (3)對數(shù)式的真數(shù)必須大于零;
    (4)指數(shù)、對數(shù)式的底必須大于零且不等于1.
    (5)如果函數(shù)是由一些基本函數(shù)通過四則運算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的函數(shù).
    (6)指數(shù)為零底不可以等于零,
    (7)實際問題中的函數(shù)的定義域還要保證實際問題有意義.
    相同函數(shù)的判斷方法:①表達式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致(兩點必須同時具備)
    2.高中數(shù)學函數(shù)值域:先考慮其定義域
    (1)觀察法
    (2)配方法
    (3)代換法
    3.函數(shù)圖象知識歸納
    (1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標的點(x,y),均在C上.
    (2)畫法
    A、描點法:
    B、圖象變換法
    常用變換方法有三種
    1)平移變換
    2)伸縮變換
    3)對稱變換
    4.高中數(shù)學函數(shù)區(qū)間的概念
    (1)函數(shù)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間
    (2)無窮區(qū)間
    5.映射
    一般地,設A、B是兩個非空的函數(shù),如果按某一個確定的對應法則f,使對于函數(shù)A中的任意一個元素x,在函數(shù)B中都有確定的元素y與之對應,那么就稱對應f:AB為從函數(shù)A到函數(shù)B的一個映射。記作“f(對應關(guān)系):A(原象)B(象)”
    對于映射f:A→B來說,則應滿足:
    (1)函數(shù)A中的每一個元素,在函數(shù)B中都有象,并且象是的;
    (2)函數(shù)A中不同的元素,在函數(shù)B中對應的象可以是同一個;
    (3)不要求函數(shù)B中的每一個元素在函數(shù)A中都有原象。
    6.高中數(shù)學函數(shù)之分段函數(shù)
    (1)在定義域的不同部分上有不同的解析表達式的函數(shù)。
    (2)各部分的自變量的取值情況.
    (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.
    補充:復合函數(shù)
    如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數(shù)。