高二數(shù)學知識點整理總結(jié)

字號:

因為高二開始努力,所以前面的知識肯定有一定的欠缺,這就要求自己要制定一定的計劃,更要比別人付出更多的努力,相信付出的汗水不會白白流淌的,收獲總是自己的。高二頻道為你整理了《高二數(shù)學知識點整理總結(jié)》,助你金榜題名!
    【篇一】高二數(shù)學知識點整理總結(jié)
    極值的定義:
    (1)極大值:一般地,設(shè)函數(shù)f(x)在點x0附近有定義,如果對x0附近的所有的點,都有f(x)
    (2)極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對x0附近的所有的點,都有f(x)>f(x0),就說f(x0)是函數(shù)f(x)的一個極小值,記作y極小值=f(x0),x0是極小值點。
    極值的性質(zhì):
    (1)極值是一個局部概念,由定義知道,極值只是某個點的函數(shù)值與它附近點的函數(shù)值比較是大或小,并不意味著它在函數(shù)的整個的定義域內(nèi)大或小;
    (2)函數(shù)的極值不是的,即一個函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個;
    (3)極大值與極小值之間無確定的大小關(guān)系,即一個函數(shù)的極大值未必大于極小值;
    (4)函數(shù)的極值點一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點不能成為極值點,而使函數(shù)取得大值、小值的點可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點。
    求函數(shù)f(x)的極值的步驟:
    (1)確定函數(shù)的定義區(qū)間,求導數(shù)f′(x);
    (2)求方程f′(x)=0的根;
    (3)用函數(shù)的導數(shù)為0的點,順次將函數(shù)的定義區(qū)間分成若干小開區(qū)間,并列成表格,檢查f′(x)在方程根左右的值的符號,如果左正右負,那么f(x)在這個根處取得極大值;如果左負右正,那么f(x)在這個根處取得極小值;如果左右不改變符號即都為正或都為負,則f(x)在這個根處無極值。
    【篇二】高二數(shù)學知識點整理總結(jié)
    一、事件
    1.在條件SS的必然事件.
    2.在條件S下,一定不會發(fā)生的事件,叫做相對于條件S的不可能事件.
    3.在條件SS的隨機事件.
    二、概率和頻率
    1.用概率度量隨機事件發(fā)生的可能性大小能為我們決策提供關(guān)鍵性依據(jù).
    2.在相同條件S下重復n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA
    nA為事件A出現(xiàn)的頻數(shù),稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的頻率.
    3.對于給定的隨機事件A,由于事件A發(fā)生的頻率fn(A)P(A),P(A).
    三、事件的關(guān)系與運算
    四、概率的幾個基本性質(zhì)
    1.概率的取值范圍:
    2.必然事件的概率P(E)=3.不可能事件的概率P(F)=
    4.概率的加法公式:
    如果事件A與事件B互斥,則P(AB)=P(A)+P(B).
    5.對立事件的概率:
    若事件A與事件B互為對立事件,則AB為必然事件.P(AB)=1,P(A)=1-P(B).
    【篇三】高二數(shù)學知識點整理總結(jié)
    一、集合、簡易邏輯(14課時,8個)
    1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。
    二、函數(shù)(30課時,12個)
    1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴充;7.有理指數(shù)冪的運算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。
    三、數(shù)列(12課時,5個)
    1.數(shù)列;2.等差數(shù)列及其通項公式;3.等差數(shù)列前n項和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項和公式。
    四、三角函數(shù)(46課時,17個)
    1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。
    五、平面向量(12課時,8個)
    1.向量;2.向量的加法與減法;3.實數(shù)與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數(shù)量積;7.平面兩點間的距離;8.平移。
    六、不等式(22課時,5個)
    1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。
    七、直線和圓的方程(22課時,12個)
    1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標準方程和一般方程;12.圓的參數(shù)方程。
    八、圓錐曲線(18課時,7個)
    1.橢圓及其標準方程;2.橢圓的簡單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標準方程;5.雙曲線的簡單幾何性質(zhì);6.拋物線及其標準方程;7.拋物線的簡單幾何性質(zhì)。
    九、直線、平面、簡單何體(36課時,28個)
    1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5.直線和平面垂直的判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。
    十、排列、組合、二項式定理(18課時,8個)
    1.分類計數(shù)原理與分步計數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個性質(zhì);7.二項式定理;8.二項展開式的性質(zhì)。
    十一、概率(12課時,5個)
    1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個發(fā)生的概率;4.相互獨立事件同時發(fā)生的概率;5.獨立重復試驗。
    選修Ⅱ(24個)
    十二、概率與統(tǒng)計(14課時,6個)
    1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態(tài)分布;6.線性回歸。
    十三、極限(12課時,6個)
    1.數(shù)學歸納法;2.數(shù)學歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運算;6.函數(shù)的連續(xù)性。
    十四、導數(shù)(18課時,8個)
    1.導數(shù)的概念;2.導數(shù)的幾何意義;3.幾種常見函數(shù)的導數(shù);4.兩個函數(shù)的和、差、積、商的導數(shù);5.復合函數(shù)的導數(shù);6.基本導數(shù)公式;7.利用導數(shù)研究函數(shù)的單調(diào)性和極值;8.函數(shù)的大值和小值。
    十五、復數(shù)(4課時,4個)
    1.復數(shù)的概念;2.復數(shù)的加法和減法;3.復數(shù)的乘法和除法;4.復數(shù)的一元二次方程和二項方程的解法。