高一數(shù)學(xué)必修一第一章知識點

字號:

生命,需要我們?nèi)ヅ?。年輕時,我們要努力鍛煉自己的能力,掌握知識、掌握技能、掌握必要的社會經(jīng)驗。機(jī)會,需要我們?nèi)ふ?。讓我們鼓起勇氣,運(yùn)用智慧,把握我們生命的每一分鐘,創(chuàng)造出一個更加精彩的人生。高一頻道為你整理了《高一數(shù)學(xué)必修一第一章知識點》,希望可以幫到你!
    1.高一數(shù)學(xué)必修一第一章知識點
    第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。
    主要是考函數(shù)和導(dǎo)數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。
    第二:平面向量和三角函數(shù)。
    重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。
    第三:數(shù)列。
    數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。
    第四:空間向量和立體幾何。
    在里面重點考察兩個方面:一個是證明;一個是計算。
    2.高一數(shù)學(xué)必修一第一章知識點
    指數(shù)函數(shù)
    (一)指數(shù)與指數(shù)冪的運(yùn)算
    1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.
    當(dāng)是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負(fù)數(shù)的次方根是一個負(fù)數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).
    當(dāng)是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。
    注意:當(dāng)是奇數(shù)時,當(dāng)是偶數(shù)時,
    2.分?jǐn)?shù)指數(shù)冪
    正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
    0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義
    指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.
    3.實數(shù)指數(shù)冪的運(yùn)算性質(zhì)
    (二)指數(shù)函數(shù)及其性質(zhì)
    1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.
    注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.
    2、指數(shù)函數(shù)的圖象和性質(zhì)
    3.高一數(shù)學(xué)必修一第一章知識點
    一、集合有關(guān)概念
    1.集合的含義
    2.集合的中元素的三個特性:
    (1)元素的確定性如:世界上的山
    (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
    (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
    3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
    (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
    (2)集合的表示方法:列舉法與描述法。
    注意:常用數(shù)集及其記法:
    非負(fù)整數(shù)集(即自然數(shù)集)記作:N
    正整數(shù)集:N*或N+
    整數(shù)集:Z
    有理數(shù)集:Q
    實數(shù)集:R
    1)列舉法:{a,b,c……}
    2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{xÎR|x-3>2},{x|x-3>2}
    3)語言描述法:例:{不是直角三角形的三角形}
    4)Venn圖:
    4、集合的分類:
    (1)有限集含有有限個元素的集合
    (2)無限集含有無限個元素的集合
    (3)空集不含任何元素的集合例:{x|x2=-5}
    二、集合間的基本關(guān)系
    1.“包含”關(guān)系—子集
    注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
    反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
    2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
    實例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
    即:①任何一個集合是它本身的子集。AíA
    ②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
    ③如果AíB,BíC,那么AíC
    ④如果AíB同時BíA那么A=B
    3.不含任何元素的集合叫做空集,記為Φ
    規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
    4.子集個數(shù):
    有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集
    三、集合的運(yùn)算
    運(yùn)算類型交集并集補(bǔ)集
    定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
    由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).