高二年級(jí)數(shù)學(xué)必修一重要知識(shí)點(diǎn)

字號(hào):

因?yàn)楦叨_始努力,所以前面的知識(shí)肯定有一定的欠缺,這就要求自己要制定一定的計(jì)劃,更要比別人付出更多的努力,相信付出的汗水不會(huì)白白流淌的,收獲總是自己的。高二頻道為你整理了《高二年級(jí)數(shù)學(xué)必修一重要知識(shí)點(diǎn)》,助你金榜題名!
    1.高二年級(jí)數(shù)學(xué)必修一重要知識(shí)點(diǎn)
    第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。
    主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問題,這是第一個(gè)板塊。
    第二:平面向量和三角函數(shù)。
    重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來(lái)解三角形。難度比較小。
    第三:數(shù)列。
    數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。
    第四:空間向量和立體幾何。
    在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。
    第五:概率和統(tǒng)計(jì)。
    這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面,第一……等可能的概率,第二………事件,第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。
    第六:解析幾何。
    這是我們比較頭疼的問題,是整個(gè)試卷里難度比較大,計(jì)算量的題,當(dāng)然這一類題,我總結(jié)下面五類??嫉念}型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容??忌鷳?yīng)該掌握它的通法,第二類我們所講的動(dòng)點(diǎn)問題,第三類是弦長(zhǎng)問題,第四類是對(duì)稱問題,這也是2008年高考已經(jīng)考過的一點(diǎn),第五類重點(diǎn)問題,這類題時(shí)往往覺得有思路,但是沒有答案,當(dāng)然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的原因,往往有這個(gè)原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來(lái)提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。
    第七:押軸題。
    考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。
    2.高二年級(jí)數(shù)學(xué)必修一重要知識(shí)點(diǎn)
    1.計(jì)數(shù)原理知識(shí)點(diǎn)
    ①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)
    2.排列(有序)與組合(無(wú)序)
    Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!
    Cnm=n!/(n-m)!m!
    Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!
    3.排列組合混合題的解題原則:先選后排,先分再排
    排列組合題的主要解題方法:優(yōu)先法:以元素為主,應(yīng)先滿足特殊元素的要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.
    XX法(集團(tuán)元素法,把某些必須在一起的元素視為一個(gè)整體考慮)
    插空法(解決相間問題)間接法和去雜法等等
    在求解排列與組合應(yīng)用問題時(shí),應(yīng)注意:
    (1)把具體問題轉(zhuǎn)化或歸結(jié)為排列或組合問題;
    (2)通過分析確定運(yùn)用分類計(jì)數(shù)原理還是分步計(jì)數(shù)原理;
    (3)分析題目條件,避免“選取”時(shí)重復(fù)和遺漏;
    (4)列出式子計(jì)算和作答.
    經(jīng)常運(yùn)用的數(shù)學(xué)思想是:
    ①分類討論思想;②轉(zhuǎn)化思想;③對(duì)稱思想.
    4.二項(xiàng)式定理知識(shí)點(diǎn):
    ①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
    特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
    ②主要性質(zhì)和主要結(jié)論:對(duì)稱性Cnm=Cnn-m
    二項(xiàng)式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項(xiàng)還是中間兩項(xiàng))
    所有二項(xiàng)式系數(shù)的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
    奇數(shù)項(xiàng)二項(xiàng)式系數(shù)的和=偶數(shù)項(xiàng)而是系數(shù)的和
    Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1
    ③通項(xiàng)為第r+1項(xiàng):Tr+1=Cnran-rbr作用:處理與指定項(xiàng)、特定項(xiàng)、常數(shù)項(xiàng)、有理項(xiàng)等有關(guān)問題。
    5.二項(xiàng)式定理的應(yīng)用:解決有關(guān)近似計(jì)算、整除問題,運(yùn)用二項(xiàng)展開式定理并且結(jié)合放縮法證明與指數(shù)有關(guān)的不等式。
    6.注意二項(xiàng)式系數(shù)與項(xiàng)的系數(shù)(字母項(xiàng)的系數(shù),指定項(xiàng)的系數(shù)等,指運(yùn)算結(jié)果的系數(shù))的區(qū)別,在求某幾項(xiàng)的系數(shù)的和時(shí)注意賦值法的應(yīng)用。