高二年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)

字號(hào):


    因?yàn)楦叨_(kāi)始努力,所以前面的知識(shí)肯定有一定的欠缺,這就要求自己要制定一定的計(jì)劃,更要比別人付出更多的努力,相信付出的汗水不會(huì)白白流淌的,收獲總是自己的。高二頻道為你整理了《高二年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)》,助你金榜題名!
    1.高二年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)
    (1)總體和樣本:
    ①在統(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體.
    ②把每個(gè)研究對(duì)象叫做個(gè)體.
    ③把總體中個(gè)體的總數(shù)叫做總體容量.
    ④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,_研究,我們稱它為樣本.其中個(gè)體的個(gè)數(shù)稱為樣本容量.
    (2)簡(jiǎn)單隨機(jī)抽樣,也叫純隨機(jī)抽樣。
    就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。
    (3)簡(jiǎn)單隨機(jī)抽樣常用的方法:
    ①抽簽法
    ②隨機(jī)數(shù)表法
    ③計(jì)算機(jī)模擬法
    在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:
    ①總體變異情況;
    ②允許誤差范圍;
    ③概率保證程度。
    (4)抽簽法:
    ①給調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);
    ②準(zhǔn)備抽簽的工具,實(shí)施抽簽;
    ③對(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查
    2.高二年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)
    一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機(jī)抽樣。
    簡(jiǎn)單隨機(jī)抽樣的特點(diǎn):
    (1)用簡(jiǎn)單隨機(jī)抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為;在整個(gè)抽樣過(guò)程中各個(gè)個(gè)體被抽到的概率為
    (2)簡(jiǎn)單隨機(jī)抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等;
    (3)簡(jiǎn)單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ).
    (4)簡(jiǎn)單隨機(jī)抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽取;它是一種等概率抽樣
    簡(jiǎn)單抽樣常用方法:
    (1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(hào)(號(hào)碼可從1到N),并把號(hào)碼寫(xiě)在形狀、大小相同的號(hào)簽上(號(hào)簽可用小球、卡片、紙條等制作),然后將這些號(hào)簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數(shù)不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當(dāng)總體的個(gè)體數(shù)不太多時(shí)適宜采用抽簽法.
    (2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:
    第一步,將總體中的個(gè)體編號(hào);
    第二步,選定開(kāi)始的數(shù)字;
    第三步,獲取樣本號(hào)碼概率:
    3.高二年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)
    一、導(dǎo)數(shù)的應(yīng)用
    1、用導(dǎo)數(shù)研究函數(shù)的最值
    確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開(kāi)區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。
    學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來(lái)檢驗(yàn)下學(xué)習(xí)成果。
    2、生活中常見(jiàn)的函數(shù)優(yōu)化問(wèn)題
    1)費(fèi)用、成本最省問(wèn)題
    2)利潤(rùn)、收益問(wèn)題
    3)面積、體積最(大)問(wèn)題
    二、推理與證明
    1、歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對(duì)象的相似特征,由其中一類對(duì)象的特征得出另一類對(duì)象的特征,的方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類對(duì)象之間的關(guān)系,通過(guò)兩類對(duì)象已知的相似特征得出所需要的相似特征。
    2、類比推理:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理,簡(jiǎn)而言之,類比推理是由特殊到特殊的推理。
    三、不等式
    對(duì)于含有參數(shù)的一元二次不等式解的討論
    1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。
    2)不等式對(duì)應(yīng)方程的根:如果一元二次不等式對(duì)應(yīng)的方程的根能夠通過(guò)因式分解的方法求出來(lái),則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對(duì)應(yīng)的方程根不能通過(guò)因式分解的方法求出來(lái),則根據(jù)方程的判別式進(jìn)行分類討論。
    通過(guò)不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過(guò)程中總結(jié)出來(lái)。
    四、坐標(biāo)平面上的直線
    1、內(nèi)容要目:直線的點(diǎn)方向式方程、直線的點(diǎn)法向式方程、點(diǎn)斜式方程、直線方程的一般式、直線的傾斜角和斜率等。點(diǎn)到直線的距離,兩直線的夾角以及兩平行線之間的距離。
    2、基本要求:掌握求直線的方法,熟練轉(zhuǎn)化確定直線方向的不同條件(例如:直線方向向量、法向量、斜率、傾斜角等)。熟練判斷點(diǎn)與直線、直線與直線的不同位置,能正確求點(diǎn)到直線的距離、兩直線的交點(diǎn)坐標(biāo)及兩直線的夾角大小。
    3、重難點(diǎn):初步建立代數(shù)方法解決幾何問(wèn)題的觀念,正確將幾何條件與代數(shù)表示進(jìn)行轉(zhuǎn)化,定量地研究點(diǎn)與直線、直線與直線的位置關(guān)系。根據(jù)兩個(gè)獨(dú)立條件求出直線方程。熟練運(yùn)用待定系數(shù)法。
    五、圓錐曲線
    1、內(nèi)容要目:直角坐標(biāo)系中,曲線C是方程F(x,y)=0的曲線及方程F(x,y)=0是曲線C的方程,圓的標(biāo)準(zhǔn)方程及圓的一般方程。橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程及它們的性質(zhì)。
    2、基本要求:理解曲線的方程與方程的曲線的意義,利用代數(shù)方法判斷定點(diǎn)是否在曲線
    上及求曲線的交點(diǎn)。掌握?qǐng)A、橢圓、雙曲線、拋物線的定義和求這些曲線方程的基本方法。求曲線的交點(diǎn)之間的距離及交點(diǎn)的中點(diǎn)坐標(biāo)。利用直線和圓、圓和圓的位置關(guān)系的幾何判定,確定它們的位置關(guān)系并利用解析法解決相應(yīng)的幾何問(wèn)題。
    3、重難點(diǎn):建立數(shù)形結(jié)合的概念,理解曲線與方程的對(duì)應(yīng)關(guān)系,掌握代數(shù)研究幾何的方法,掌握把已知條件轉(zhuǎn)化為等價(jià)的代數(shù)表示,通過(guò)代數(shù)方法解決幾何問(wèn)題。
    4.高二年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)
    函數(shù)的性質(zhì)
    函數(shù)的單調(diào)性、奇偶性、周期性
    單調(diào)性:定義:注意定義是相對(duì)與某個(gè)具體的區(qū)間而言。
    判定方法有:定義法(作差比較和作商比較)
    導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))
    復(fù)合函數(shù)法和圖像法。
    應(yīng)用:比較大小,證明不等式,解不等式。
    奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
    判別方法:定義法,圖像法,復(fù)合函數(shù)法
    應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。
    周期性:定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
    其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
    應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。
    5.高二年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)
    (1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;
    (2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;
    (3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;
    (4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;
    (5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。
    (6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率。