與高一高二不同之處在于,此時(shí)復(fù)習(xí)力學(xué)部分知識(shí)是為了更好的與高考考綱相結(jié)合,尤其水平中等或中等偏下的學(xué)生,此時(shí)需要進(jìn)行查漏補(bǔ)缺,但也需要同時(shí)提升能力,填補(bǔ)知識(shí)、技能的空白。高三頻道為你精心準(zhǔn)備了《高三數(shù)學(xué)下冊(cè)必修二知識(shí)點(diǎn)》助你金榜題名!
1.高三數(shù)學(xué)下冊(cè)必修二知識(shí)點(diǎn)
1.有關(guān)平行與垂直(線線、線面及面面)的問(wèn)題,是在解決立體幾何問(wèn)題的過(guò)程中,大量的、反復(fù)遇到的,而且是以各種各樣的問(wèn)題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問(wèn)題著手,通過(guò)較為基本問(wèn)題,熟悉公理、定理的內(nèi)容和功能,通過(guò)對(duì)問(wèn)題的分析與概括,掌握立體幾何中解決問(wèn)題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
2.判定兩個(gè)平面平行的方法:
(1)根據(jù)定義--證明兩平面沒(méi)有公共點(diǎn);
(2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;
(3)證明兩平面同垂直于一條直線。
3.兩個(gè)平面平行的主要性質(zhì):
(1)由定義知:“兩平行平面沒(méi)有公共點(diǎn)”;
(2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面”;
(3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行”;
(4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面;
(5)夾在兩個(gè)平行平面間的平行線段相等;
(6)經(jīng)過(guò)平面外一點(diǎn)只有一個(gè)平面和已知平面平行。
2.高三數(shù)學(xué)下冊(cè)必修二知識(shí)點(diǎn)
(一)導(dǎo)數(shù)第一定義
設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x0+△x也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱(chēng)函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱(chēng)這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第一定義
(二)導(dǎo)數(shù)第二定義
設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化△x(x-x0也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)變化△y=f(x)-f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱(chēng)函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱(chēng)這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第二定義
(三)導(dǎo)函數(shù)與導(dǎo)數(shù)
如果函數(shù)y=f(x)在開(kāi)區(qū)間I內(nèi)每一點(diǎn)都可導(dǎo),就稱(chēng)函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時(shí)函數(shù)y=f(x)對(duì)于區(qū)間I內(nèi)的每一個(gè)確定的x值,都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱(chēng)這個(gè)函數(shù)為原來(lái)函數(shù)y=f(x)的導(dǎo)函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡(jiǎn)稱(chēng)導(dǎo)數(shù)。
(四)單調(diào)性及其應(yīng)用
1.利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟
(1)求f¢(x)
(2)確定f¢(x)在(a,b)內(nèi)符號(hào)
(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
2.用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟
(1)求f¢(x)
(2)f¢(x)>0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為減區(qū)間
3.高三數(shù)學(xué)下冊(cè)必修二知識(shí)點(diǎn)
定義:
形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞?,指?shù)為常量的函數(shù)稱(chēng)為冪函數(shù)。
定義域和值域:
當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
性質(zhì):
對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對(duì)于x
排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
4.高三數(shù)學(xué)下冊(cè)必修二知識(shí)點(diǎn)
第一章:三角函數(shù)??荚嚤乜碱}。誘導(dǎo)公式和基本三角函數(shù)圖像的一些性質(zhì)只要記住會(huì)畫(huà)圖就行,難度在于三角函數(shù)形函數(shù)的振幅、頻率、周期、相位、初相,及根據(jù)最值計(jì)算A、B的值和周期,及恒等變化時(shí)圖像及性質(zhì)的變化,這一知識(shí)點(diǎn)內(nèi)容較多,需要多花時(shí)間,首先要記憶,其次要多做題強(qiáng)化練習(xí),只要能踏踏實(shí)實(shí)去做,也不難掌握,畢竟不存在理解上的難度。
第二章:平面向量。個(gè)人覺(jué)得這一章難度較大,這也是我掌握最差的一章。向量的運(yùn)算性質(zhì)及三角形法則平行四邊形法則難度都不大,只要在計(jì)算的時(shí)候記住要同起點(diǎn)的向量。向量共線和垂直的數(shù)學(xué)表達(dá),這是計(jì)算當(dāng)中經(jīng)常要用的公式。向量的共線定理、基本定理、數(shù)量積公式。難點(diǎn)在于分點(diǎn)坐標(biāo)公式,首先要準(zhǔn)確記憶。向量在考試過(guò)程一般不會(huì)單獨(dú)出現(xiàn),常常是作為解題要用的工具出現(xiàn),用向量時(shí)要首先找出合適的向量,個(gè)人認(rèn)為這個(gè)比較難,常常找不對(duì)。有同樣情況的同學(xué)建議多看有關(guān)題的圖形。
第三章:三角恒等變換。這一章公式特別多。和差倍半角公式都是會(huì)用到的公式,所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫(xiě)之后貼在桌子上,天天都要看。而且三角函數(shù)變換都有一定的規(guī)律,記憶的時(shí)候可以結(jié)合起來(lái)去記。除此之外,就是多練習(xí)。要從多練習(xí)中找到變換的規(guī)律,比如一般都要化簡(jiǎn)等等。這一章也是考試必考,所以一定要重點(diǎn)掌握。
5.高三數(shù)學(xué)下冊(cè)必修二知識(shí)點(diǎn)
函數(shù)的周期性
(1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱(chēng),則f(x)是周期為2︱a︱的周期函數(shù);
(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱(chēng),則f(x)是周期為4︱a︱的周期函數(shù);
(4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱(chēng),則f(x)是周期為2的周期函數(shù);
(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱(chēng),則函數(shù)y=f(x)是周期為2的周期函數(shù);
(6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);
5.方程k=f(x)有解k∈D(D為f(x)的值域);
6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符號(hào)由口訣“同正異負(fù)”記憶;(4)alogaN=N(a>0,a≠1,N>0);
8.判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):(1)A中元素必須都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。
10.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:
(1)定義域上的單調(diào)函數(shù)必有反函數(shù);
(2)奇函數(shù)的反函數(shù)也是奇函數(shù);
(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);
(4)周期函數(shù)不存在反函數(shù);互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;
(5)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
11.處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對(duì)稱(chēng)軸與所給區(qū)間的相對(duì)位置關(guān)系;
12.依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類(lèi)參數(shù)的范圍問(wèn)題
13.恒成立問(wèn)題的處理方法:
(1)分離參數(shù)法;
(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;
1.高三數(shù)學(xué)下冊(cè)必修二知識(shí)點(diǎn)
1.有關(guān)平行與垂直(線線、線面及面面)的問(wèn)題,是在解決立體幾何問(wèn)題的過(guò)程中,大量的、反復(fù)遇到的,而且是以各種各樣的問(wèn)題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問(wèn)題著手,通過(guò)較為基本問(wèn)題,熟悉公理、定理的內(nèi)容和功能,通過(guò)對(duì)問(wèn)題的分析與概括,掌握立體幾何中解決問(wèn)題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
2.判定兩個(gè)平面平行的方法:
(1)根據(jù)定義--證明兩平面沒(méi)有公共點(diǎn);
(2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;
(3)證明兩平面同垂直于一條直線。
3.兩個(gè)平面平行的主要性質(zhì):
(1)由定義知:“兩平行平面沒(méi)有公共點(diǎn)”;
(2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面”;
(3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行”;
(4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面;
(5)夾在兩個(gè)平行平面間的平行線段相等;
(6)經(jīng)過(guò)平面外一點(diǎn)只有一個(gè)平面和已知平面平行。
2.高三數(shù)學(xué)下冊(cè)必修二知識(shí)點(diǎn)
(一)導(dǎo)數(shù)第一定義
設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x0+△x也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱(chēng)函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱(chēng)這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第一定義
(二)導(dǎo)數(shù)第二定義
設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化△x(x-x0也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)變化△y=f(x)-f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱(chēng)函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱(chēng)這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第二定義
(三)導(dǎo)函數(shù)與導(dǎo)數(shù)
如果函數(shù)y=f(x)在開(kāi)區(qū)間I內(nèi)每一點(diǎn)都可導(dǎo),就稱(chēng)函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時(shí)函數(shù)y=f(x)對(duì)于區(qū)間I內(nèi)的每一個(gè)確定的x值,都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱(chēng)這個(gè)函數(shù)為原來(lái)函數(shù)y=f(x)的導(dǎo)函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡(jiǎn)稱(chēng)導(dǎo)數(shù)。
(四)單調(diào)性及其應(yīng)用
1.利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟
(1)求f¢(x)
(2)確定f¢(x)在(a,b)內(nèi)符號(hào)
(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
2.用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟
(1)求f¢(x)
(2)f¢(x)>0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為減區(qū)間
3.高三數(shù)學(xué)下冊(cè)必修二知識(shí)點(diǎn)
定義:
形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞?,指?shù)為常量的函數(shù)稱(chēng)為冪函數(shù)。
定義域和值域:
當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
性質(zhì):
對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對(duì)于x
排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
4.高三數(shù)學(xué)下冊(cè)必修二知識(shí)點(diǎn)
第一章:三角函數(shù)??荚嚤乜碱}。誘導(dǎo)公式和基本三角函數(shù)圖像的一些性質(zhì)只要記住會(huì)畫(huà)圖就行,難度在于三角函數(shù)形函數(shù)的振幅、頻率、周期、相位、初相,及根據(jù)最值計(jì)算A、B的值和周期,及恒等變化時(shí)圖像及性質(zhì)的變化,這一知識(shí)點(diǎn)內(nèi)容較多,需要多花時(shí)間,首先要記憶,其次要多做題強(qiáng)化練習(xí),只要能踏踏實(shí)實(shí)去做,也不難掌握,畢竟不存在理解上的難度。
第二章:平面向量。個(gè)人覺(jué)得這一章難度較大,這也是我掌握最差的一章。向量的運(yùn)算性質(zhì)及三角形法則平行四邊形法則難度都不大,只要在計(jì)算的時(shí)候記住要同起點(diǎn)的向量。向量共線和垂直的數(shù)學(xué)表達(dá),這是計(jì)算當(dāng)中經(jīng)常要用的公式。向量的共線定理、基本定理、數(shù)量積公式。難點(diǎn)在于分點(diǎn)坐標(biāo)公式,首先要準(zhǔn)確記憶。向量在考試過(guò)程一般不會(huì)單獨(dú)出現(xiàn),常常是作為解題要用的工具出現(xiàn),用向量時(shí)要首先找出合適的向量,個(gè)人認(rèn)為這個(gè)比較難,常常找不對(duì)。有同樣情況的同學(xué)建議多看有關(guān)題的圖形。
第三章:三角恒等變換。這一章公式特別多。和差倍半角公式都是會(huì)用到的公式,所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫(xiě)之后貼在桌子上,天天都要看。而且三角函數(shù)變換都有一定的規(guī)律,記憶的時(shí)候可以結(jié)合起來(lái)去記。除此之外,就是多練習(xí)。要從多練習(xí)中找到變換的規(guī)律,比如一般都要化簡(jiǎn)等等。這一章也是考試必考,所以一定要重點(diǎn)掌握。
5.高三數(shù)學(xué)下冊(cè)必修二知識(shí)點(diǎn)
函數(shù)的周期性
(1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱(chēng),則f(x)是周期為2︱a︱的周期函數(shù);
(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱(chēng),則f(x)是周期為4︱a︱的周期函數(shù);
(4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱(chēng),則f(x)是周期為2的周期函數(shù);
(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱(chēng),則函數(shù)y=f(x)是周期為2的周期函數(shù);
(6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);
5.方程k=f(x)有解k∈D(D為f(x)的值域);
6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符號(hào)由口訣“同正異負(fù)”記憶;(4)alogaN=N(a>0,a≠1,N>0);
8.判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):(1)A中元素必須都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。
10.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:
(1)定義域上的單調(diào)函數(shù)必有反函數(shù);
(2)奇函數(shù)的反函數(shù)也是奇函數(shù);
(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);
(4)周期函數(shù)不存在反函數(shù);互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;
(5)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
11.處理二次函數(shù)的問(wèn)題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對(duì)稱(chēng)軸與所給區(qū)間的相對(duì)位置關(guān)系;
12.依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類(lèi)參數(shù)的范圍問(wèn)題
13.恒成立問(wèn)題的處理方法:
(1)分離參數(shù)法;
(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;