高三數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)

字號(hào):

高三學(xué)生很快就會(huì)面臨繼續(xù)學(xué)業(yè)或事業(yè)的選擇。面對(duì)重要的人生選擇,是否考慮清楚了?這對(duì)于沒有社會(huì)經(jīng)驗(yàn)的學(xué)生來說,無疑是個(gè)困難的選擇。如何度過這重要又緊張的一年,我們可以從提高學(xué)習(xí)效率來著手!高三頻道為各位同學(xué)整理了《高三數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)》,希望你努力學(xué)習(xí),圓金色六月夢!
    1.高三數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)
    (1)不等關(guān)系
    感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。
    (2)一元二次不等式
    ①經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過程。
    ②通過函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。
    ③會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,嘗試設(shè)計(jì)求解的程序框圖。
    (3)二元一次不等式組與簡單線性規(guī)劃問題
    ①從實(shí)際情境中抽象出二元一次不等式組。
    ②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見例2)。
    ③從實(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。
    (4)基本不等式
    ①探索并了解基本不等式的證明過程。
    ②會(huì)用基本不等式解決簡單的(小)值問題。
    2.高三數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)
    (一)導(dǎo)數(shù)第一定義
    設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x0+△x也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第一定義
    (二)導(dǎo)數(shù)第二定義
    設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化△x(x-x0也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)變化△y=f(x)-f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第二定義
    (三)導(dǎo)函數(shù)與導(dǎo)數(shù)
    如果函數(shù)y=f(x)在開區(qū)間I內(nèi)每一點(diǎn)都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時(shí)函數(shù)y=f(x)對(duì)于區(qū)間I內(nèi)的每一個(gè)確定的x值,都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱這個(gè)函數(shù)為原來函數(shù)y=f(x)的導(dǎo)函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。
    (四)單調(diào)性及其應(yīng)用
    1.利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟
    (1)求f¢(x)
    (2)確定f¢(x)在(a,b)內(nèi)符號(hào)(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
    2.用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟
    (1)求f¢(x)
    (2)f¢(x)>0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對(duì)應(yīng)區(qū)間為減區(qū)間
    3.高三數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)
    1.定義:
    用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。
    2.性質(zhì):
    ①不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)方向不變。
    ②不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。
    ③不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。
    3.分類:
    ①一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。
    ②一元一次不等式組:
    a.關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
    b.一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
    4.考點(diǎn):
    ①解一元一次不等式(組)
    ②根據(jù)具體問題中的數(shù)量關(guān)系列不等式(組)并解決簡單實(shí)際問題
    ③用數(shù)軸表示一元一次不等式(組)的解集
    4.高三數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)
    1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對(duì)問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
    2.判定兩個(gè)平面平行的方法:
    (1)根據(jù)定義--證明兩平面沒有公共點(diǎn);
    (2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;
    (3)證明兩平面同垂直于一條直線。
    3.兩個(gè)平面平行的主要性質(zhì):
    (1)由定義知:“兩平行平面沒有公共點(diǎn)”;
    (2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面”;
    (3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行”;
    (4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面;
    (5)夾在兩個(gè)平行平面間的平行線段相等;
    (6)經(jīng)過平面外一點(diǎn)只有一個(gè)平面和已知平面平行。
    5.高三數(shù)學(xué)上學(xué)期知識(shí)點(diǎn)
    1.對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么f(x)為奇函數(shù);
    2.對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么f(x)為偶函數(shù);
    3.一般地,對(duì)于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x,都有f(a+x)=2b-f(a-x),則y=f(x)的圖象關(guān)于點(diǎn)(a,b)成中心對(duì)稱;
    4.一般地,對(duì)于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x都有f(a+x)=f(a-x),則它的圖象關(guān)于x=a成軸對(duì)稱。
    5.函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);
    6.由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱).