高三年級(jí)數(shù)學(xué)必修四知識(shí)點(diǎn)整理

字號(hào):

復(fù)習(xí)是為了更好的與高考考綱相結(jié)合,尤其水平中等或中等偏下的學(xué)生,此時(shí)需要進(jìn)行查漏補(bǔ)缺,但也需要同時(shí)提升能力,填補(bǔ)知識(shí)、技能的空白。高三頻道為你整理了《高三年級(jí)數(shù)學(xué)必修四知識(shí)點(diǎn)整理》助你金榜題名!
    1.高三年級(jí)數(shù)學(xué)必修四知識(shí)點(diǎn)整理
    一、求動(dòng)點(diǎn)的軌跡方程的基本步驟。
    1、建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
    2、寫出點(diǎn)M的集合;
    3、列出方程=0;
    4、化簡(jiǎn)方程為最簡(jiǎn)形式;
    5、檢驗(yàn)。
    二、求動(dòng)點(diǎn)的軌跡方程的常用方法:
    求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
    1、直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
    2、定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
    3、相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
    4、參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
    5、交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
    求動(dòng)點(diǎn)軌跡方程的一般步驟:
    ①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
    ②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
    ③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;
    ④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);
    ⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
    2.高三年級(jí)數(shù)學(xué)必修四知識(shí)點(diǎn)整理
    簡(jiǎn)單隨機(jī)抽樣
    (1)總體和樣本
    ①在統(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體。
    ②把每個(gè)研究對(duì)象叫做個(gè)體。
    ③把總體中個(gè)體的總數(shù)叫做總體容量。
    ④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,…,xx的研究,我們稱它為樣本。其中個(gè)體的個(gè)數(shù)稱為樣本容量。
    (2)簡(jiǎn)單隨機(jī)抽樣
    簡(jiǎn)單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨機(jī)地抽取調(diào)查單位。
    特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。
    (3)簡(jiǎn)單隨機(jī)抽樣常用的方法:
    ①抽簽法;
    ②隨機(jī)數(shù)表法;
    ③計(jì)算機(jī)模擬法;
    ③使用統(tǒng)計(jì)軟件直接抽取。
    在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:
    ①總體變異情況;
    ②允許誤差范圍;
    ③概率保證程度。
    (4)抽簽法:
    ①給調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);
    ②準(zhǔn)備抽簽的工具,實(shí)施抽簽;
    ③對(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查。
    3.高三年級(jí)數(shù)學(xué)必修四知識(shí)點(diǎn)整理
    圓及圓的相關(guān)量的定義
    1、平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,定長(zhǎng)稱為半徑。
    2、圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過(guò)圓心的弦叫做直徑。
    3、頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。
    4、過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個(gè)三角形的內(nèi)切圓,其圓心稱為內(nèi)心。
    5、直線與圓有3種位置關(guān)系:無(wú)公共點(diǎn)為相離;有2個(gè)公共點(diǎn)為相交;圓與直線有公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)的公共點(diǎn)叫做切點(diǎn)。
    6、兩圓之間有5種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有2個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。
    7、在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個(gè)扇形。這個(gè)扇形的半徑成為圓錐的母線。
    4.高三年級(jí)數(shù)學(xué)必修四知識(shí)點(diǎn)整理
    一、自變量x和因變量y有如下關(guān)系:
    y=kx+b
    則此時(shí)稱y是x的一次函數(shù)。
    特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。
    即:y=kx(k為常數(shù),k≠0)
    二、一次函數(shù)的性質(zhì):
    1、y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k
    即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))
    2、當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。
    三、一次函數(shù)的圖像及性質(zhì):
    1、作法與圖形:通過(guò)如下3個(gè)步驟
    (1)列表;
    (2)描點(diǎn);
    (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))
    2、性質(zhì):
    (1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。
    (2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。
    3、k,b與函數(shù)圖像所在象限:
    當(dāng)k>0時(shí),直線必通過(guò)一、三象限,y隨x的增大而增大;
    當(dāng)k<0時(shí),直線必通過(guò)二、四象限,y隨x的增大而減小。
    當(dāng)b>0時(shí),直線必通過(guò)一、二象限;
    當(dāng)b=0時(shí),直線通過(guò)原點(diǎn);
    當(dāng)b<0時(shí),直線必通過(guò)三、四象限。
    特別地,當(dāng)b=O時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。
    這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k<0時(shí),直線只通過(guò)二、四象限。
    5.高三年級(jí)數(shù)學(xué)必修四知識(shí)點(diǎn)整理
    空間幾何體表面積體積公式:
    1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
    2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
    3、a-邊長(zhǎng),S=6a2,V=a3
    4、長(zhǎng)方體a-長(zhǎng),b-寬,c-高S=2(ab+ac+bc)V=abc
    5、棱柱S-h-高V=Sh
    6、棱錐S-h-高V=Sh/3
    7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
    8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
    9、圓柱r-底半徑,h-高,C—底面周長(zhǎng)S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
    10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
    11、r-底半徑h-高V=πr^2h/3
    12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
    14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
    15、球臺(tái)r1和r2-球臺(tái)上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
    16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
    17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)