高二數(shù)學必修四知識點梳理

字號:

在學習新知識的同時還要復習以前的舊知識,肯定會累,所以要注意勞逸結合。只有充沛的精力才能迎接新的挑戰(zhàn),才會有事半功倍的學習。高二頻道為你整理了《高二數(shù)學必修四知識點梳理》希望對你的學習有所幫助!
    1.高二數(shù)學必修四知識點梳理
    1.定義:
    用符號〉,=,〈號連接的式子叫不等式。
    2.性質:
    ①不等式的兩邊都加上或減去同一個整式,不等號方向不變。
    ②不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。
    ③不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。
    3.分類:
    ①一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。
    ②一元一次不等式組:
    a.關于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
    b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
    4.考點:
    ①解一元一次不等式(組)
    ②根據(jù)具體問題中的數(shù)量關系列不等式(組)并解決簡單實際問題
    ③用數(shù)軸表示一元一次不等式(組)的解集
    2.高二數(shù)學必修四知識點梳理
    一、求動點的軌跡方程的基本步驟
    1.建立適當?shù)淖鴺讼担O出動點M的坐標;
    2.寫出點M的集合;
    3.列出方程=0;
    4.化簡方程為最簡形式;
    5.檢驗。
    二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數(shù)法和交軌法等。
    1.直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
    2.定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
    3.相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。
    4.參數(shù)法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數(shù)t的關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
    5.交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
    直譯法:求動點軌跡方程的一般步驟
    ①建系——建立適當?shù)淖鴺讼?
    ②設點——設軌跡上的任一點P(x,y);
    ③列式——列出動點p所滿足的關系式;
    ④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;
    ⑤證明——證明所求方程即為符合條件的動點軌跡方程。
    3.高二數(shù)學必修四知識點梳理
    向量的向量積
    定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。
    向量的向量積性質:
    ∣a×b∣是以a和b為邊的平行四邊形面積。
    a×a=0。
    a‖b〈=〉a×b=0。
    向量的向量積運算律
    a×b=-b×a;
    (λa)×b=λ(a×b)=a×(λb);
    (a+b)×c=a×c+b×c.
    注:向量沒有除法,“向量AB/向量CD”是沒有意義的。
    4.高二數(shù)學必修四知識點梳理
    1、函數(shù)的值域取決于定義域和對應法則,不論采用何種方法求函數(shù)值域都應先考慮其定義域,求函數(shù)值域常用方法如下:
    (1)直接法:亦稱觀察法,對于結構較為簡單的函數(shù),可由函數(shù)的解析式應用不等式的性質,直接觀察得出函數(shù)的值域.
    (2)換元法:運用代數(shù)式或三角換元將所給的復雜函數(shù)轉化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當根式里一次式時用代數(shù)換元,當根式里是二次式時,用三角換元.
    (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.
    (4)配方法:對于二次函數(shù)或二次函數(shù)有關的函數(shù)的值域問題可考慮用配方法.
    (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧.
    (6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.
    (7)利用函數(shù)的單調性求值域:當能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調性,可采用單調性法求出函數(shù)的值域.
    (8)數(shù)形結合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結合求函數(shù)的值域.
    2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系
    求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異.
    如函數(shù)的值域是(0,16],值是16,無最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無值和最小值,只有在改變函數(shù)定義域后,如x>0時,函數(shù)的最小值為2.可見定義域對函數(shù)的值域或最值的影響.
    3、函數(shù)的最值在實際問題中的應用
    函數(shù)的最值的應用主要體現(xiàn)在用函數(shù)知識求解實際問題上,從文字表述上常常表現(xiàn)為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現(xiàn)實問題上,求解時要特別關注實際意義對自變量的制約,以便能正確求得最值.
    5.高二數(shù)學必修四知識點梳理
    1.向量可以形象化地表示為帶箭頭的線段。箭頭所指:代表向量的方向;線段長度:代表向量的大小。
    2.規(guī)定若線段AB的端點A為起點,B為終點,則線段就具有了從起點A到終點B的方向和長度。具有方向和長度的線段叫做有向線段。
    3.向量的模:向量的大小,也就是向量的長度(或稱模)。向量a的模記作|a|。
    注:向量的模是非負實數(shù),是可以比較大小的。因為方向不能比較大小,所以向量也就不能比較大小。對于向量來說“大于”和“小于”的概念是沒有意義的。
    4.單位向量:長度為一個單位(即模為1)的向量,叫做單位向量.與向量a同向,且長度為單位1的向量,叫做a方向上的單位向量,記作a0。
    5.長度為0的向量叫做零向量,記作0。零向量的始點和終點重合,所以零向量沒有確定的方向,或說零向量的方向是任意的。
    向量的計算
    1.加法
    交換律:a+b=b+a;
    結合律:(a+b)+c=a+(b+c)。
    2.減法
    如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0.0的反向量為0
    加減變換律:a+(-b)=a-b
    3.數(shù)量積
    定義:已知兩個非零向量a,b。作OA=a,OB=b,則∠AOB稱作向量a和向量b的夾角,記作θ并規(guī)定0≤θ≤π
    向量的數(shù)量積的運算律
    a·b=b·a(交換律)
    (λa)·b=λ(a·b)(關于數(shù)乘法的結合律)
    (a+b)·c=a·c+b·c(分配律)
    向量的數(shù)量積的性質
    a·a=|a|的平方。
    a⊥b〈=〉a·b=0。
    |a·b|≤|a|·|b|。(該公式證明如下:|a·b|=|a|·|b|·|cosα|因為0≤|cosα|≤1,所以|a·b|≤|a|·|b|)