高二下冊(cè)數(shù)學(xué)必修二知識(shí)點(diǎn)整理

字號(hào):

在學(xué)習(xí)新知識(shí)的同時(shí)還要復(fù)習(xí)以前的舊知識(shí),肯定會(huì)累,所以要注意勞逸結(jié)合。只有充沛的精力才能迎接新的挑戰(zhàn),才會(huì)有事半功倍的學(xué)習(xí)。高二頻道為你整理了《高二下冊(cè)數(shù)學(xué)必修二知識(shí)點(diǎn)整理》希望對(duì)你的學(xué)習(xí)有所幫助!
    1.高二下冊(cè)數(shù)學(xué)必修二知識(shí)點(diǎn)整理
    一、定義
    1.對(duì)數(shù):一般地,如果a(a大于0,且a不等于1)的b次冪等于N,那么數(shù)b叫做以a為底N的對(duì)數(shù),記作logaN=b,讀作以a為底N的對(duì)數(shù),其中a叫做對(duì)數(shù)的底數(shù),N叫做真數(shù)。
    2.對(duì)數(shù)函數(shù):一般地,函數(shù)y=log(a)X,(其中a是常數(shù),a>0且a不等于1)叫做對(duì)數(shù)函數(shù),它實(shí)際上就是指數(shù)函數(shù)的反函數(shù),因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。
    二、方法點(diǎn)撥
    在解決函數(shù)的綜合性問題時(shí),要根據(jù)題目的具體情況把問題分解為若干小問題一次解決,然后再整合解決的結(jié)果,這也是分類與整合思想的一個(gè)重要方面。
    2.高二下冊(cè)數(shù)學(xué)必修二知識(shí)點(diǎn)整理
    一、簡(jiǎn)單隨機(jī)抽樣
    1.簡(jiǎn)單隨機(jī)抽樣的概念:
    設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機(jī)抽樣.
    2.最常用的簡(jiǎn)單隨機(jī)抽樣方法有兩種——抽簽法和隨機(jī)數(shù)法.
    二、系統(tǒng)抽樣的步驟
    假設(shè)要從容量為N的總體中抽取容量為n的樣本:
    (1)先將總體的N個(gè)個(gè)體編號(hào);
    (2)確定分段間隔k,對(duì)編號(hào)進(jìn)行分段,當(dāng)是整數(shù)時(shí),取k=;
    (3)在第1段用簡(jiǎn)單隨機(jī)抽樣確定第一個(gè)個(gè)體編號(hào)l(l≤k);
    (4)按照一定的規(guī)則抽取樣本.通常是將l加上間隔k得到第2個(gè)個(gè)體編號(hào)l+k,再加k得到第3個(gè)個(gè)體編號(hào)l+2k,依次進(jìn)行下去,直到獲取整個(gè)樣本.
    三、分層抽樣
    1.分層抽樣的概念:
    在抽樣時(shí),將總體分成互不交叉的層,然后按照一定的比例,從各層獨(dú)立地抽取一定數(shù)量的個(gè)體,將各層取出的個(gè)體合在一起作為樣本,這種抽樣方法是分層抽樣.
    2.當(dāng)總體是由差異明顯的幾個(gè)部分組成時(shí),往往選用分層抽樣的方法.
    3.分層抽樣時(shí),每個(gè)個(gè)體被抽到的機(jī)會(huì)是均等的.
    3.高二下冊(cè)數(shù)學(xué)必修二知識(shí)點(diǎn)整理
    算法案例
    1.輾轉(zhuǎn)相除法是用于求公約數(shù)的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法.
    2.所謂輾轉(zhuǎn)相法,就是對(duì)于給定的兩個(gè)數(shù),用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,則將較小的數(shù)和余數(shù)構(gòu)成新的一對(duì)數(shù),繼續(xù)上面的除法,直到大數(shù)被小數(shù)除盡,則這時(shí)的除數(shù)就是原來兩個(gè)數(shù)的公約數(shù).
    3.更相減損術(shù)是一種求兩數(shù)公約數(shù)的方法.其基本過程是:對(duì)于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個(gè)操作,直到所得的數(shù)相等為止,則這個(gè)數(shù)就是所求的公約數(shù).
    4.秦九韶算法是一種用于計(jì)算一元二次多項(xiàng)式的值的方法.
    5.常用的排序方法是直接插入排序和冒泡排序.
    6.進(jìn)位制是人們?yōu)榱擞?jì)數(shù)和運(yùn)算方便而約定的記數(shù)系統(tǒng).“滿進(jìn)一”,就是k進(jìn)制,進(jìn)制的基數(shù)是k.
    7.將進(jìn)制的數(shù)化為十進(jìn)制數(shù)的方法是:先將進(jìn)制數(shù)寫成用各位上的數(shù)字與k的冪的乘積之和的形式,再按照十進(jìn)制數(shù)的運(yùn)算規(guī)則計(jì)算出結(jié)果.
    8.將十進(jìn)制數(shù)化為進(jìn)制數(shù)的方法是:除k取余法.即用k連續(xù)去除該十進(jìn)制數(shù)或所得的商,直到商為零為止,然后把每次所得的余數(shù)倒著排成一個(gè)數(shù)就是相應(yīng)的進(jìn)制數(shù).
    重難點(diǎn)突破
    1.重點(diǎn):理解輾轉(zhuǎn)相除法與更相減損術(shù)的原理,會(huì)求兩個(gè)數(shù)的公約數(shù);理解秦九韶算法原理,會(huì)求一元多項(xiàng)式的值;會(huì)對(duì)一組數(shù)據(jù)按照一定的規(guī)則進(jìn)行排序;理解進(jìn)位制,能進(jìn)行各種進(jìn)位制之間的轉(zhuǎn)化.
    2.難點(diǎn):秦九韶算法求一元多項(xiàng)式的值及各種進(jìn)位制之間的轉(zhuǎn)化.
    3.重難點(diǎn):理解輾轉(zhuǎn)相除法與更相減損術(shù)、秦九韶算法原理、排序方法、進(jìn)位制之間的轉(zhuǎn)化方法.
    4.高二下冊(cè)數(shù)學(xué)必修二知識(shí)點(diǎn)整理
    等差數(shù)列
    對(duì)于一個(gè)數(shù)列{an},如果任意相鄰兩項(xiàng)之差為一個(gè)常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為d;從第一項(xiàng)a1到第n項(xiàng)an的總和,記為Sn。
    那么,通項(xiàng)公式為,其求法很重要,利用了“疊加原理”的思想:
    將以上n-1個(gè)式子相加,便會(huì)接連消去很多相關(guān)的項(xiàng),最終等式左邊余下an,而右邊則余下a1和n-1個(gè)d,如此便得到上述通項(xiàng)公式。
    此外,數(shù)列前n項(xiàng)的和,其具體推導(dǎo)方式較簡(jiǎn)單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再?gòu)?fù)述。
    等比數(shù)列
    對(duì)于一個(gè)數(shù)列{an},如果任意相鄰兩項(xiàng)之商(即二者的比)為一個(gè)常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比q;從第一項(xiàng)a1到第n項(xiàng)an的總和,記為Tn。
    那么,通項(xiàng)公式為(即a1乘以q的(n-1)次方,其推導(dǎo)為“連乘原理”的思想:
    a2=a1*q,
    a3=a2*q,
    a4=a3*q,
    ......
    an=an-1*q,
    將以上(n-1)項(xiàng)相乘,左右消去相應(yīng)項(xiàng)后,左邊余下an,右邊余下a1和(n-1)個(gè)q的乘積,也即得到了所述通項(xiàng)公式。
    此外,當(dāng)q=1時(shí)該數(shù)列的前n項(xiàng)和Tn=a1*n
    當(dāng)q≠1時(shí)該數(shù)列前n項(xiàng)的和Tn=a1*(1-q^(n))/(1-q).
    5.高二下冊(cè)數(shù)學(xué)必修二知識(shí)點(diǎn)整理
    一般地,如果一個(gè)數(shù)列[1]從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)非零常數(shù),這個(gè)數(shù)列就叫做等比數(shù)列(GeometricSequences)。這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0)。在運(yùn)用等比數(shù)列[2]的前n和時(shí),一定要注意XX公比q是否為1。
    另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底數(shù)后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個(gè)意義下,一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。
    等比中項(xiàng)定義:從第二項(xiàng)起,每一項(xiàng)(有窮數(shù)列的末項(xiàng)除外)都是它的前一項(xiàng)與后一項(xiàng)的等比中項(xiàng)。
    (1)無窮遞縮等比數(shù)列各項(xiàng)和公式:
    無窮遞縮等比數(shù)列各項(xiàng)和公式:公比的絕對(duì)值小于1的無窮等比數(shù)列,當(dāng)n無限增大時(shí)的極限叫做這個(gè)無窮等比數(shù)列各項(xiàng)的和。
    (2)由等比數(shù)列組成的新的等比數(shù)列的公比:
    {an}是公比為q的等比數(shù)列
    1、若A=a1+a2+……+an
    等比數(shù)列公式
    B=an+1+……+a2n
    C=a2n+1+……a3n
    則,A、B、C構(gòu)成新的等比數(shù)列,公比Q=q^n
    2、若A=a1+a4+a7+……+a3n-2
    B=a2+a5+a8+……+a3n-1
    C=a3+a6+a9+……+a3n
    則,A、B、C構(gòu)成新的等比數(shù)列,公比Q=q
    2公式性質(zhì)
    (1)若m、n、p、q∈N*,且m+n=p+q,則am*an=ap*aq;
    (2)在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。
    (3)“G是a、b的等比中項(xiàng)”“G^2=ab(G≠0)”.
    (4)若{an}是等比數(shù)列,公比為q1,{bn}也是等比數(shù)列,公比是q2,則{a2n},{a3n}…是等比數(shù)列,公比為q1^2,q1^3…{can},c是常數(shù),{an*bn},{an/bn}是等比數(shù)列,公比為q1,q1q2,q1/q2。
    (5)等比數(shù)列中,連續(xù)的,等長(zhǎng)的,間隔相等的片段和為等比。
    (6)若(an)為等比數(shù)列且各項(xiàng)為正,公比為q,則(log以a為底an的對(duì)數(shù))成等差,公差為log以a為底q的對(duì)數(shù)。
    (7)等比數(shù)列前n項(xiàng)之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)在等比數(shù)列中,首項(xiàng)A1與公比q都不為零。
    注意:上述公式中A^n表示A的n次方。
    (8)由于首項(xiàng)為a1,公比為q的等比數(shù)列的通項(xiàng)公式可以寫成an=(a1/q)*q^n,它的指數(shù)函數(shù)y=a^x有著密切的聯(lián)系,從而可以利用指數(shù)函數(shù)的性質(zhì)來研究等比數(shù)列。
    3求通項(xiàng)法
    1、待定系數(shù)法:已知a(n+1)=2an+3,a1=1,求an構(gòu)造等比數(shù)列a(n+1)+x=2(an+x)
    a(n+1)=2an+x,∵a(n+1)=2an+3∴x=3
    所以(a(n+1)+3)/(an+3)=2
    ∴{an+3}為首項(xiàng)為4,公比為2的等比數(shù)列,所以an+3=a1*q^(n-1)=4*2^(n-1),an=2^(n+1)-3
    2、定義法:已知Sn=a·2^n+b,,求an的通項(xiàng)公式。
    ∵Sn=a·2^n+b∴Sn-1=a·2^n-1+b
    ∴an=Sn-Sn-1=a·2^n-1