高二下冊數(shù)學重點知識點歸納

字號:

因為高二開始努力,所以前面的知識肯定有一定的欠缺,這就要求自己要制定一定的計劃,更要比別人付出更多的努力,相信付出的汗水不會白白流淌的,收獲總是自己的。高二頻道為你整理了《高二下冊數(shù)學重點知識點歸納》,助你金榜題名!
    1.高二下冊數(shù)學重點知識點歸納
    1、直線的傾斜角的范圍是
    在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉到和直線重合時所轉的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規(guī)定傾斜角為0;
    2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.
    過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。
    3、直線方程:
    ⑴點斜式:直線過點斜率為,則直線方程為,
    ⑵斜截式:直線在軸上的截距為和斜率,則直線方程為
    4、直線與直線的位置關系:
    (1)平行A1/A2=B1/B2注意檢驗
    (2)垂直A1A2+B1B2=0
    5、點到直線的距離公式;
    兩條平行線與的距離是
    6、圓的標準方程:.⑵圓的一般方程:
    注意能將標準方程化為一般方程
    7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.
    8、直線與圓的位置關系,通常轉化為圓心距與半徑的關系,或者利用垂徑定理,構造直角三角形解決弦長問題.
    ①相離
    ②相切
    ③相交
    9、解決直線與圓的關系問題時,要充分發(fā)揮圓的平面幾何性質的作用(如半徑、半弦長、弦心距構成直角三角形)直線與圓相交所得弦長
    2.高二下冊數(shù)學重點知識點歸納
    1.任意角
    (1)角的分類:
    ①按旋轉方向不同分為正角、負角、零角.
    ②按終邊位置不同分為象限角和軸線角.
    (2)終邊相同的角:
    終邊與角相同的角可寫成+k360(kZ).
    (3)弧度制:
    ①1弧度的角:把長度等于半徑長的弧所對的圓心角叫做1弧度的角.
    ②規(guī)定:正角的弧度數(shù)為正數(shù),負角的弧度數(shù)為負數(shù),零角的弧度數(shù)為零,||=,l是以角作為圓心角時所對圓弧的長,r為半徑.
    ③用弧度做單位來度量角的制度叫做弧度制.比值與所取的r的大小無關,僅與角的大小有關.
    ④弧度與角度的換算:360弧度;180弧度.
    ⑤弧長公式:l=||r,扇形面積公式:S扇形=lr=||r2.
    2.任意角的三角函數(shù)
    (1)任意角的三角函數(shù)定義:
    設是一個任意角,角的終邊與單位圓交于點P(x,y),那么角的'正弦、余弦、正切分別是:sin=y,cos=x,tan=,它們都是以角為自變量,以單位圓上點的坐標或坐標的比值為函數(shù)值的函數(shù).
    (2)三角函數(shù)在各象限內的符號口訣是:一全正、二正弦、三正切、四余弦.
    3.三角函數(shù)線
    設角的頂點在坐標原點,始邊與x軸非負半軸重合,終邊與單位圓相交于點P,過P作PM垂直于x軸于M.由三角函數(shù)的定義知,點P的坐標為(cos_,sin_),即P(cos_,sin_),其中cos=OM,sin=MP,單位圓與x軸的正半軸交于點A,單位圓在A點的切線與的終邊或其反向延長線相交于點T,則tan=AT.我們把有向線段OM、MP、AT叫做的余弦線、正弦線、正切線.
    3.高二下冊數(shù)學重點知識點歸納
    1、向量的加法
    向量的加法滿足平行四邊形法則和三角形法則。
    AB+BC=AC。
    a+b=(x+x',y+y')。
    a+0=0+a=a。
    向量加法的運算律:
    交換律:a+b=b+a;
    結合律:(a+b)+c=a+(b+c)。
    2、向量的減法
    如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0.0的反向量為0
    AB-AC=CB.即“共同起點,指向被減”
    a=(x,y)b=(x',y')則a-b=(x-x',y-y').
    3、數(shù)乘向量
    實數(shù)λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
    當λ>0時,λa與a同方向;
    當λ<0時,λa與a反方向;
    當λ=0時,λa=0,方向任意。
    當a=0時,對于任意實數(shù)λ,都有λa=0。
    注:按定義知,如果λa=0,那么λ=0或a=0。
    實數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
    當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
    當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
    數(shù)與向量的乘法滿足下面的運算律
    結合律:(λa)·b=λ(a·b)=(a·λb)。
    向量對于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.
    數(shù)對于向量的分配律(第二分配律):λ(a+b)=λa+λb.
    數(shù)乘向量的消去律:①如果實數(shù)λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。
    4、向量的的數(shù)量積
    定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。
    定義:兩個向量的數(shù)量積(內積、點積)是一個數(shù)量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。
    向量的數(shù)量積的坐標表示:a·b=x·x'+y·y'。
    向量的數(shù)量積的運算率
    a·b=b·a(交換率);
    (a+b)·c=a·c+b·c(分配率);
    向量的數(shù)量積的性質
    a·a=|a|的平方。
    a⊥b〈=〉a·b=0。
    |a·b|≤|a|·|b|。
    4.高二下冊數(shù)學重點知識點歸納
    一、導數(shù)的應用
    1.用導數(shù)研究函數(shù)的最值
    確定函數(shù)在其確定的定義域內可導(通常為開區(qū)間),求出導函數(shù)在定義域內的零點,研究在零點左、右的函數(shù)的單調性,若左增,右減,則在該零點處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點處函數(shù)取極小值。學習了如何用導數(shù)研究函數(shù)的最值之后,可以做一個有關導數(shù)和函數(shù)的綜合題來檢驗下學習成果。
    2.生活中常見的函數(shù)優(yōu)化問題
    1)費用、成本最省問題
    2)利潤、收益問題
    3)面積、體積最(大)問題
    二、推理與證明
    1.歸納推理:歸納推理是高二數(shù)學的一個重點內容,其難點就是有部分結論得到一般結論,*的方法是充分考慮部分結論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點是發(fā)現(xiàn)兩類對象的相似特征,由其中一類對象的特征得出另一類對象的特征,*的方法是利用已經(jīng)掌握的數(shù)學知識,分析兩類對象之間的關系,通過兩類對象已知的相似特征得出所需要的相似特征。
    2.類比推理:由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理,簡而言之,類比推理是由特殊到特殊的推理。
    三、不等式
    對于含有參數(shù)的一元二次不等式解的討論
    1)二次項系數(shù):如果二次項系數(shù)含有字母,要分二次項系數(shù)是正數(shù)、零和負數(shù)三種情況進行討論。
    2)不等式對應方程的根:如果一元二次不等式對應的方程的根能夠通過因式分解的方法求出來,則根據(jù)這兩個根的大小進行分類討論,這時,兩個根的大小關系就是分類標準,如果一元二次不等式對應的方程根不能通過因式分解的方法求出來,則根據(jù)方程的判別式進行分類討論。通過不等式練習題能夠幫助你更加熟練的運用不等式的知識點,例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結出來。
    5.高二下冊數(shù)學重點知識點歸納
    第一章:集合和函數(shù)的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就是五分沒了。次一級的知識點就是集合的韋恩圖,會畫圖,集合的“并、補、交、非”也就解決了,還有函數(shù)的定義域和函數(shù)的單調性、增減性的概念,這些都是函數(shù)的基礎而且不難理解。在第一輪復習中一定要反復去記這些概念,的方法是寫在筆記本上,每天至少看上一遍。
    第二章:基本初等函數(shù):指數(shù)、對數(shù)、冪函數(shù)三大函數(shù)的運算性質及圖像。函數(shù)的幾大要素和相關考點基本都在函數(shù)圖像上有所體現(xiàn),單調性、增減性、極值、零點等等。關于這三大函數(shù)的運算公式,多記多用,多做一點練習基本就沒多大問題。函數(shù)圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數(shù)圖像,定義域、值域、零點等等。對于冪函數(shù)還要搞清楚當指數(shù)冪大于一和小于一時圖像的不同及函數(shù)值的大小關系,這也是常考常錯點。另外指數(shù)函數(shù)和對數(shù)函數(shù)的對立關系及其相互之間要怎樣轉化問題也要了解清楚。
    第三章:函數(shù)的應用。主要就是函數(shù)與方程的結合。其實就是的實根,即函數(shù)的零點,也就是函數(shù)圖像與X軸的交點。這三者之間的轉化關系是這一章的重點,要學會在這三者之間的靈活轉化,以求能最簡單的解決問題。關于證明零點的方法,直接計算加得必有零點,連續(xù)函數(shù)在x軸上方下方有定義則有零點等等,這是這一章的難點,這幾種證明方法都要記得,多練習強化。這二次函數(shù)的零點的Δ判別法,這個倒不算難。