高一數(shù)學(xué)必修四知識點歸納

字號:


    高一階段,是打基礎(chǔ)階段,是將來決戰(zhàn)高考取勝的關(guān)鍵階段,今早進(jìn)入角色,安排好自己學(xué)習(xí)和生活,會起到事半功倍的效果。以下是為你整理的《高一數(shù)學(xué)必修四知識點歸納》,學(xué)習(xí)路上,為你加油!
    1.高一數(shù)學(xué)必修四知識點歸納
    (1)直線的傾斜角
    定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
    (2)直線的斜率
    ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
    ②過兩點的直線的斜率公式:
    注意下面四點:
    (1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
    (2)k與P1、P2的順序無關(guān);
    (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;
    (4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到。
    2.高一數(shù)學(xué)必修四知識點歸納
    【公式一】
    設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
    sin(2kπ+α)=sinα(k∈Z)
    cos(2kπ+α)=cosα(k∈Z)
    tan(2kπ+α)=tanα(k∈Z)
    cot(2kπ+α)=cotα(k∈Z)
    【公式二】
    設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
    sin(π+α)=-sinα
    cos(π+α)=-cosα
    tan(π+α)=tanα
    cot(π+α)=cotα
    【公式三】
    任意角α與-α的三角函數(shù)值之間的關(guān)系:
    sin(-α)=-sinα
    cos(-α)=cosα
    tan(-α)=-tanα
    cot(-α)=-cotα
    【公式四】
    利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
    sin(π-α)=sinα
    cos(π-α)=-cosα
    tan(π-α)=-tanα
    cot(π-α)=-cotα
    【公式五】
    利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
    sin(2π-α)=-sinα
    cos(2π-α)=cosα
    tan(2π-α)=-tanα
    cot(2π-α)=-cotα
    【公式六】
    π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
    sin(π/2+α)=cosα
    cos(π/2+α)=-sinα
    tan(π/2+α)=-cotα
    cot(π/2+α)=-tanα
    sin(π/2-α)=cosα
    cos(π/2-α)=sinα
    tan(π/2-α)=cotα
    cot(π/2-α)=tanα
    sin(3π/2+α)=-cosα
    cos(3π/2+α)=sinα
    tan(3π/2+α)=-cotα
    cot(3π/2+α)=-tanα
    sin(3π/2-α)=-cosα
    cos(3π/2-α)=-sinα
    tan(3π/2-α)=cotα
    cot(3π/2-α)=tanα
    (以上k∈Z)
    3.高一數(shù)學(xué)必修四知識點歸納
    直角三角形的面積求法
    直角三角形面積常用公式S=1/2ab(公式中a,b分別為直角三角形的兩直角邊長)。直角三角形是一個幾何圖形,是有一個角為直角的三角形,有普通的直角三角形和等腰直角三角形兩種。其符合勾股定理,具有一些特殊性質(zhì)和判定方法。
    三角形面積公式是指使用算式計算出三角形的面積,同一平面內(nèi),且不在同一直線的三條線段首尾順次相接所組成的封閉圖形叫做三角形,符號為△。它除了具有一般三角形的性質(zhì)外,具有一些特殊的性質(zhì):
    1、直角三角形兩直角邊的平方和等于斜邊的平方?!螧AC=90°,則AB2+AC2=BC2(勾股定理)
    2、在直角三角形中,兩個銳角互余。若∠BAC=90°,則∠B+∠C=90°
    3、直角三角形中,斜邊上的中線等于斜邊的一半(即直角三角形的外心位于斜邊的中點,外接圓半徑R=C/2)。該性質(zhì)稱為直角三角形斜邊中線定理。
    4、直角三角形的兩直角邊的乘積等于斜邊與斜邊上高的乘積。
    5、Rt△ABC中,∠BAC=90°,AD是斜邊BC上的高,則有射影定理如下:
    (1)(AD)2=BD·DC。
    (2)(AB)2=BD·BC。
    (3)(AC)2=CD·BC。
    4.高一數(shù)學(xué)必修四知識點歸納
    復(fù)數(shù)定義
    我們把形如a+bi(a,b均為實數(shù))的數(shù)稱為復(fù)數(shù),其中a稱為實部,b稱為虛部,i稱為虛數(shù)單位。當(dāng)虛部等于零時,這個復(fù)數(shù)可以視為實數(shù);當(dāng)z的虛部不等于零時,實部等于零時,常稱z為純虛數(shù)。復(fù)數(shù)域是實數(shù)域的代數(shù)閉包,也即任何復(fù)系數(shù)多項式在復(fù)數(shù)域中總有根。
    復(fù)數(shù)表達(dá)式
    虛數(shù)是與任何事物沒有聯(lián)系的,是絕對的,所以符合的表達(dá)式為:
    a=a+ia為實部,i為虛部
    復(fù)數(shù)運算法則
    加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;
    減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;
    乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
    除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.
    例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結(jié)果還是0,也就在數(shù)字中沒有復(fù)數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個函數(shù)。
    復(fù)數(shù)與幾何
    ①幾何形式
    復(fù)數(shù)z=a+bi被復(fù)平面上的點z(a,b)確定。這種形式使復(fù)數(shù)的問題可以借助圖形來研究。也可反過來用復(fù)數(shù)的理論解決一些幾何問題。
    ②向量形式
    復(fù)數(shù)z=a+bi用一個以原點O(0,0)為起點,點Z(a,b)為終點的向量OZ表示。這種形式使復(fù)數(shù)四則運算得到恰當(dāng)?shù)膸缀谓忉尅?BR>    ③三角形式
    復(fù)數(shù)z=a+bi化為三角形式
    5.高一數(shù)學(xué)必修四知識點歸納
    向量的向量積
    定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按這個次序構(gòu)成右手系。若a、b共線,則a×b=0。
    向量的向量積性質(zhì):
    ∣a×b∣是以a和b為邊的平行四邊形面積。
    a×a=0。
    a‖b〈=〉a×b=0。
    向量的向量積運算律
    a×b=-b×a;
    (λa)×b=λ(a×b)=a×(λb);
    (a+b)×c=a×c+b×c.
    注:向量沒有除法,“向量AB/向量CD”是沒有意義的。