高三年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)

字號(hào):

高三學(xué)生很快就會(huì)面臨繼續(xù)學(xué)業(yè)或事業(yè)的選擇。面對(duì)重要的人生選擇,是否考慮清楚了?這對(duì)于沒有社會(huì)經(jīng)驗(yàn)的學(xué)生來說,無疑是個(gè)困難的選擇。如何度過這重要又緊張的一年,我們可以從提高學(xué)習(xí)效率來著手!高三頻道為各位同學(xué)整理了《高三年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)》,希望你努力學(xué)習(xí),圓金色六月夢(mèng)!
    1.高三年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)
    (1)不等關(guān)系
    感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。
    (2)一元二次不等式
    ①經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過程。
    ②通過函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。
    ③會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,嘗試設(shè)計(jì)求解的程序框圖。
    (3)二元一次不等式組與簡(jiǎn)單線性規(guī)劃問題
    ①從實(shí)際情境中抽象出二元一次不等式組。
    ②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見例2)。
    ③從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問題,并能加以解決(參見例3)。
    (4)基本不等式:
    ①探索并了解基本不等式的證明過程。
    ②會(huì)用基本不等式解決簡(jiǎn)單的(小)值問題。
    2.高三年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)
    1、圓柱體:
    表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
    2、圓錐體:
    表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
    3、正方體
    a—邊長(zhǎng),S=6a2,V=a3
    4、長(zhǎng)方體
    a—長(zhǎng),b—寬,c—高S=2(ab+ac+bc)V=abc
    5、棱柱
    S—底面積h—高V=Sh
    6、棱錐
    S—底面積h—高V=Sh/3
    7、棱臺(tái)
    S1和S2—上、下底面積h—高V=h[S1+S2+(S1S2)^1/2]/3
    8、擬柱體
    S1—上底面積,S2—下底面積,S0—中截面積
    h—高,V=h(S1+S2+4S0)/6
    9、圓柱
    r—底半徑,h—高,C—底面周長(zhǎng)
    S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr
    S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
    10、空心圓柱
    R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)
    11、直圓錐
    r—底半徑h—高V=πr^2h/3
    12、圓臺(tái)
    r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/3
    13、球
    r—半徑d—直徑V=4/3πr^3=πd^3/6
    14、球缺
    h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3
    15、球臺(tái)
    r1和r2—球臺(tái)上、下底半徑h—高V=πh[3(r12+r22)+h2]/6
    16、圓環(huán)體
    R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑
    V=2π2Rr2=π2Dd2/4
    17、桶狀體
    D—桶腹直徑d—桶底直徑h—桶高
    V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)
    V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
    3.高三年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)
    定義:
    形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量?jī)鐬橐蜃兞浚笖?shù)為常量的函數(shù)稱為冪函數(shù)。
    定義域和值域:
    當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
    性質(zhì):
    對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
    首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:
    排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);
    排除了為0這種可能,即對(duì)于x
    排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
    4.高三年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)
    1.滿足二元一次不等式(組)的x和y的取值構(gòu)成有序數(shù)對(duì)(x,y),稱為二元一次不等式(組)的一個(gè)解,所有這樣的有序數(shù)對(duì)(x,y)構(gòu)成的集合稱為二元一次不等式(組)的解集。
    2.二元一次不等式(組)的每一個(gè)解(x,y)作為點(diǎn)的坐標(biāo)對(duì)應(yīng)平面上的一個(gè)點(diǎn),二元一次不等式(組)的解集對(duì)應(yīng)平面直角坐標(biāo)系中的一個(gè)半平面(平面區(qū)域)。
    3.直線l:Ax+By+C=0(A、B不全為零)把坐標(biāo)平面劃分成兩部分,其中一部分(半個(gè)平面)對(duì)應(yīng)二元一次不等式Ax+By+C>0(或≥0),另一部分對(duì)應(yīng)二元一次不等式Ax+By+C<0(或≤0)。
    4.已知平面區(qū)域,用不等式(組)表示它,其方法是:在所有直線外任取一點(diǎn)(如本題的原點(diǎn)(0,0)),將其坐標(biāo)代入Ax+By+C,判斷正負(fù)就可以確定相應(yīng)不等式。
    5.一個(gè)二元一次不等式表示的平面區(qū)域是相應(yīng)直線劃分開的半個(gè)平面,一般用特殊點(diǎn)代入二元一次不等式檢驗(yàn)就可以判定,當(dāng)直線不過原點(diǎn)時(shí)常選原點(diǎn)檢驗(yàn),當(dāng)直線過原點(diǎn)時(shí),常選(1,0)或(0,1)代入檢驗(yàn),二元一次不等式組表示的平面區(qū)域是它的各個(gè)不等式所表示的平面區(qū)域的公共部分,注意邊界是實(shí)線還是虛線的含義?!熬€定界,點(diǎn)定域”。
    6.滿足二元一次不等式(組)的整數(shù)x和y的取值構(gòu)成的有序數(shù)對(duì)(x,y),稱為這個(gè)二元一次不等式(組)的一個(gè)解。所有整數(shù)解對(duì)應(yīng)的點(diǎn)稱為整點(diǎn)(也叫格點(diǎn)),它們都在這個(gè)二元一次不等式(組)表示的平面區(qū)域內(nèi)。
    7.畫二元一次不等式Ax+By+C≥0所表示的平面區(qū)域時(shí),應(yīng)把邊界畫成實(shí)線,畫二元一次不等式Ax+By+C>0所表示的平面區(qū)域時(shí),應(yīng)把邊界畫成虛線。
    8.若點(diǎn)P(x0,y0)與點(diǎn)P1(x1,y1)在直線l:Ax+By+C=0的同側(cè),則Ax0+By0+C與Ax1+Byl+C符號(hào)相同;若點(diǎn)P(x0,y0)與點(diǎn)P1(x1,y1)在直線l:Ax+By+C=0的兩側(cè),則Ax0+By0+C與Ax1+Byl+C符號(hào)相反。
    9.從實(shí)際問題中抽象出二元一次不等式(組)的步驟是:
    (1)根據(jù)題意,設(shè)出變量;
    (2)分析問題中的變量,并根據(jù)各個(gè)不等關(guān)系列出常量與變量x,y之間的不等式;
    (3)把各個(gè)不等式連同變量x,y有意義的實(shí)際范圍合在一起,組成不等式組。
    5.高三年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)
    1.定義:
    用符號(hào)〉,=,〈號(hào)連接的式子叫不等式。
    2.性質(zhì):
    ①不等式的兩邊都加上或減去同一個(gè)整式,不等號(hào)方向不變。
    ②不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號(hào)方向不變。
    ③不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號(hào)方向相反。
    3.分類:
    ①一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。
    ②一元一次不等式組:
    a.關(guān)于同一個(gè)未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
    b.一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
    4.考點(diǎn):
    ①解一元一次不等式(組)
    ②根據(jù)具體問題中的數(shù)量關(guān)系列不等式(組)并解決簡(jiǎn)單實(shí)際問題
    ③用數(shù)軸表示一元一次不等式(組)的解集