高三數(shù)學(xué)上冊(cè)必修一知識(shí)點(diǎn)整理

字號(hào):

高三學(xué)生很快就會(huì)面臨繼續(xù)學(xué)業(yè)或事業(yè)的選擇。面對(duì)重要的人生選擇,是否考慮清楚了?這對(duì)于沒有社會(huì)經(jīng)驗(yàn)的學(xué)生來說,無疑是個(gè)困難的想選擇。如何度過這重要又緊張的一年,我們可以從提高學(xué)習(xí)效率來著手!高三頻道為各位同學(xué)整理了《高三數(shù)學(xué)上冊(cè)必修一知識(shí)點(diǎn)整理》,希望你努力學(xué)習(xí),圓金色六月夢(mèng)!
    1.高三數(shù)學(xué)上冊(cè)必修一知識(shí)點(diǎn)整理
    正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
    余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
    圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)
    圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
    拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2pxx2=2pyx2=-2py
    直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c'*h
    正棱錐側(cè)面積S=1/2c*h'正棱臺(tái)側(cè)面積S=1/2(c+c')h'
    圓臺(tái)側(cè)面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2
    圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l
    弧長(zhǎng)公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
    錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h
    斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側(cè)棱長(zhǎng)
    柱體體積公式V=s*h圓柱體V=p*r2h
    乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
    三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
    |a-b|≥|a|-|b|-|a|≤a≤|a|
    一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
    根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理
    判別式
    b2-4ac=0注:方程有兩個(gè)相等的實(shí)根
    b2-4ac>0注:方程有兩個(gè)不等的實(shí)根
    b2-4ac<0注:方程沒有實(shí)根,有共軛復(fù)數(shù)根
    2.高三數(shù)學(xué)上冊(cè)必修一知識(shí)點(diǎn)整理
    1、等比數(shù)列的通項(xiàng)公式是:An=A1*q^(n-1)
    2、前n項(xiàng)和公式是:Sn=[A1(1-q^n)]/(1-q)且任意兩項(xiàng)am,an的關(guān)系為an=am·q^(n-m)
    3、從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、若m,n,p,q∈N*,則有:ap·aq=am·an,等比中項(xiàng):aq·ap=2arar則為ap,aq等比中項(xiàng).記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底數(shù)數(shù)后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列.
    在這個(gè)意義下,我們說:一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的.性質(zhì):
    ①若m、n、p、q∈N,且m+n=p+q,則am·an=ap*aq;
    ②在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列.“G是a、b的等比中項(xiàng)”“G^2=ab(G≠0)”.在等比數(shù)列中,首項(xiàng)A1與公比q都不為零.
    拋物線
    1、拋物線:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。a>0時(shí),拋物線開口向上;a<0時(shí)拋物線開口向下;c=0時(shí)拋物線經(jīng)過原點(diǎn);b=0時(shí)拋物線對(duì)稱軸為y軸。
    2、頂點(diǎn)式y(tǒng)=a(x+h)*+k就是y等于a乘以(x+h)的平方+k,-h是頂點(diǎn)坐標(biāo)的x,k是頂點(diǎn)坐標(biāo)的y,一般用于求值與最小值。
    3、拋物線標(biāo)準(zhǔn)方程:y^2=2px它表示拋物線的焦點(diǎn)在x的正半軸上,焦點(diǎn)坐標(biāo)為(p/2,0)。
    4、準(zhǔn)線方程為x=-p/2由于拋物線的焦點(diǎn)可在任意半軸,故共有標(biāo)準(zhǔn)方程:y^2=2pxy^2=-2pxx^2=2pyx^2=-2py。
    3.高三數(shù)學(xué)上冊(cè)必修一知識(shí)點(diǎn)整理
    一、排列組合定義
    從n個(gè)不同元素中,任取m(m≤n,m與n均為自然數(shù))個(gè)不同的元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),用符號(hào)A(n,m)表示。
    二、排列組合公式
    A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!
    C-Combination組合數(shù)
    A-Arrangement排列數(shù)
    n-元素的總個(gè)數(shù)
    m-參與選擇的元素個(gè)數(shù)
    !-階乘
    三、排列組合基本計(jì)數(shù)原理
    加法原理與分布計(jì)數(shù)法
    1、加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法,那么完成這件事共有N=m1+m2+m3+…+mn種不同方法。
    2、第一類辦法的方法屬于集合A1,第二類辦法的方法屬于集合A2,……,第n類辦法的方法屬于集合An,那么完成這件事的方法屬于集合A1UA2U…UAn。
    3、分類的要求:每一類中的每一種方法都可以獨(dú)立地完成此任務(wù);兩類不同辦法中的具體方法,互不相同(即分類不重);完成此任務(wù)的任何一種方法,都屬于某一類(即分類不漏)。
    乘法原理與分布計(jì)數(shù)法
    1、乘法原理:做一件事,完成它需要分成n個(gè)步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法,那么完成這件事共有N=m1×m2×m3×…×mn種不同的方法。
    2、合理分步的要求:任何一步的一種方法都不能完成此任務(wù),必須且只須連續(xù)完成這n步才能完成此任務(wù);各步計(jì)數(shù)相互獨(dú)立;只要有一步中所采取的方法不同,則對(duì)應(yīng)的完成此事的方法也不同。
    4.高三數(shù)學(xué)上冊(cè)必修一知識(shí)點(diǎn)整理
    1.函數(shù)的奇偶性
    (1)若f(x)是偶函數(shù),那么f(x)=f(-x);
    (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
    (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);
    (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;
    (5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的.單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
    2.復(fù)合函數(shù)的有關(guān)問題
    (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
    (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
    3.函數(shù)圖像(或方程曲線的對(duì)稱性)
    (1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;
    (2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;
    (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
    (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;
    (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱;
    (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱;
    4.函數(shù)的周期性
    (1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
    (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);
    (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);
    (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);
    (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);
    (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);
    5.方程
    (1)方程k=f(x)有解k∈D(D為f(x)的值域);
    (2)a≥f(x)恒成立a≥[f(x)]max,;
    a≤f(x)恒成立a≤[f(x)]min;
    (3)(a>0,a≠1,b>0,n∈R+);
    logaN=(a>0,a≠1,b>0,b≠1);
    (4)logab的符號(hào)由口訣“同正異負(fù)”記憶;
    alogaN=N(a>0,a≠1,N>0);
    6.映射
    判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn):
    (1)A中元素必須都有象且;
    (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
    7.函數(shù)單調(diào)性
    (1)能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性;
    (2)依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問題
    8.反函數(shù)
    對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論:
    (1)定義域上的單調(diào)函數(shù)必有反函數(shù);
    (2)奇函數(shù)的反函數(shù)也是奇函數(shù);
    (3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);
    (4)周期函數(shù)不存在反函數(shù);(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;
    (5)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域?yàn)锳,值域?yàn)锽,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
    9.數(shù)形結(jié)合
    處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系.
    10.恒成立問題
    恒成立問題的處理方法:
    (1)分離參數(shù)法;
    (2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;
    5.高三數(shù)學(xué)上冊(cè)必修一知識(shí)點(diǎn)整理
    1.不等式的定義
    在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.
    2.比較兩個(gè)實(shí)數(shù)的大小
    兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來定義的,
    有a-b>0?;a-b=0?;a-b<0?.
    另外,若b>0,則有>1?;=1?;<1?.
    概括為:作差法,作商法,中間量法等.
    3.不等式的性質(zhì)
    (1)對(duì)稱性:a>b?;
    (2)傳遞性:a>b,b>c?;
    (3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;
    (4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;
    (5)可乘方:a>b>0?(n∈N,n≥2);
    (6)可開方:a>b>0?(n∈N,n≥2).