高二年級數(shù)學(xué)必修二復(fù)習(xí)知識點(diǎn)

字號:

從現(xiàn)在開始,我們要努力學(xué)習(xí),就必須要樹立遠(yuǎn)大的理想和堅定的信念,從點(diǎn)點(diǎn)滴滴做起。為各位同學(xué)整理了《高二年級數(shù)學(xué)必修二復(fù)習(xí)知識點(diǎn)》,希望對你的學(xué)習(xí)有所幫助!
    1.高二年級數(shù)學(xué)必修二復(fù)習(xí)知識點(diǎn) 篇一
    1.定義法:
    判斷B是A的條件,實(shí)際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可。
    2.轉(zhuǎn)換法:
    當(dāng)所給命題的充要條件不易判斷時,可對命題進(jìn)行等價裝換,例如改用其逆否命題進(jìn)行判斷。
    3.集合法
    在命題的條件和結(jié)論間的關(guān)系判斷有困難時,可從集合的角度考慮,記條件p、q對應(yīng)的集合分別為A、B,則:
    若A⊆B,則p是q的充分條件。
    若A⊇B,則p是q的必要條件。
    若A=B,則p是q的充要條件。
    若A⊈B,且B⊉A,則p是q的既不充分也不必要條件。
    2.高二年級數(shù)學(xué)必修二復(fù)習(xí)知識點(diǎn) 篇二
    成數(shù)概念
    一數(shù)為另一數(shù)的幾成,泛指比率:應(yīng)在生產(chǎn)組內(nèi)找標(biāo)準(zhǔn)勞動力,互相比較,評成數(shù)。
    表示一個數(shù)是另一個數(shù)的十分之幾的數(shù),叫做成數(shù)。
    通常用在工農(nóng)業(yè)生產(chǎn)中表示生產(chǎn)的增長狀況。幾成就是十分之幾。
    例如,糧食產(chǎn)量增產(chǎn)“二成”。
    “二成”即是十分之二,也就是糧食產(chǎn)量增加了20%。
    在計算成數(shù)時,設(shè)有甲、乙兩數(shù),求乙數(shù)對于甲數(shù)的比,并把比值化成純小數(shù),那么所得的純小數(shù)叫做乙數(shù)對于甲數(shù)的成數(shù)。其中小數(shù)第一位叫做“成”或“分”,第二位叫做“厘”。
    例如,計劃糧食產(chǎn)量為5萬斤,實(shí)際多產(chǎn)了1萬斤,那么糧食增產(chǎn)的成數(shù)是1÷5=0.2,即糧食增產(chǎn)了二成。
    成數(shù)與其他數(shù)的互化
    方法:分?jǐn)?shù)X10=成數(shù)成數(shù)/10=小數(shù)(成數(shù)除以10等于小數(shù))成數(shù)X10=百分?jǐn)?shù)
    3.高二年級數(shù)學(xué)必修二復(fù)習(xí)知識點(diǎn) 篇三
    圓的性質(zhì)有哪些
    1、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
    2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
    3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
    4、同圓或等圓的半徑相等。
    圓是一種幾何圖形,指的是平面中到一個定點(diǎn)距離為定值的所有點(diǎn)的集合。這個給定的點(diǎn)稱為圓的圓心。作為定值的距離稱為圓的半徑。當(dāng)一條線段繞著它的一個端點(diǎn)在平面內(nèi)旋轉(zhuǎn)一周時,它的另一個端點(diǎn)的軌跡就是一個圓。圓的直徑有無數(shù)條;圓的對稱軸有無數(shù)條。圓的直徑是半徑的2倍,圓的半徑是直徑的一半。
    用圓規(guī)畫圓時,針尖所在的點(diǎn)叫做圓心,一般用字母O表示。連接圓心和圓上任意一點(diǎn)的線段叫做半徑,一般用字母r表示,半徑的長度就是圓規(guī)兩個角之間的距離。通過圓心并且兩端都在圓上的線段叫做直徑,一般用字母d表示。
    4.高二年級數(shù)學(xué)必修二復(fù)習(xí)知識點(diǎn) 篇四
    直線與平面有幾種位置關(guān)系
    直線與平面的關(guān)系有3種:直線在平面上,直線與平面相交,直線與平面平行。其中直線與平面相交,又分為直線與平面斜交和直線與平面垂直兩個子類。
    直線在平面內(nèi)——有無數(shù)個公共點(diǎn);直線與平面相交——有且只有一個公共點(diǎn);直線與平面平行——沒有公共點(diǎn)。直線與平面相交和平行統(tǒng)稱為直線在平面外。
    直線與平面垂直的判定:如果直線L與平面α內(nèi)的任意一直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。
    線面平行:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。平面外一條直線與此平面的垂線垂直,則這條直線與此平面平行。
    直線與平面的夾角范圍
    [0,90°]或者說是[0,π/2]這個范圍。
    當(dāng)兩條直線非垂直的相交的時候,形成了4個角,這4個角分成兩組對頂角。兩個銳角,兩個鈍角。按照規(guī)定,選擇銳角的那一對對頂角作為直線和直線的夾角。
    直線的方向向量m=(2,0,1),平面的法向量為n=(-1,1,2),m,n夾角為θ,cosθ=(m_n)/|m||n|,結(jié)果等于0.也就是說,l和平面法向量垂直,那么l平行于平面。l和平面夾角就為0°
    5.高二年級數(shù)學(xué)必修二復(fù)習(xí)知識點(diǎn) 篇五
    概率性質(zhì)與公式
    (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);
    (2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);
    (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨(dú)立,則P(AB)=P(A)P(B);
    (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果
    貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
    如果一個事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.
    (5)二項(xiàng)概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當(dāng)一個問題可以看成n重貝努力試驗(yàn)(三個條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗(yàn)結(jié)果相互獨(dú)立)時,要考慮二項(xiàng)概率公式.
    6.高二年級數(shù)學(xué)必修二復(fù)習(xí)知識點(diǎn) 篇六
    空間兩條直線只有三種位置關(guān)系:平行、相交、異面
    1、按是否共面可分為兩類:
    (1)共面:平行、相交
    (2)異面:
    異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。
    異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。
    兩異面直線所成的角:范圍為(0°,90°)
    兩異面直線間距離:公垂線段(有且只有一條)
    2、若從有無公共點(diǎn)的角度看可分為兩類:
    (1)有且僅有一個公共點(diǎn)——相交直線;
    (2)沒有公共點(diǎn)——平行或異面
    直線和平面的位置關(guān)系:
    直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
    ①直線在平面內(nèi)——有無數(shù)個公共點(diǎn)
    ②直線和平面相交——有且只有一個公共點(diǎn)
    直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。