高一下期數(shù)學(xué)知識(shí)點(diǎn)歸納

字號(hào):

高一數(shù)學(xué)必修一的學(xué)習(xí),需要同學(xué)們對(duì)知識(shí)點(diǎn)進(jìn)行總結(jié),這樣會(huì)很快提高成績(jī)。為各位同學(xué)整理了《高一下期數(shù)學(xué)知識(shí)點(diǎn)歸納》,希望對(duì)你的學(xué)習(xí)有所幫助!
    1.高一下期數(shù)學(xué)知識(shí)點(diǎn)歸納 篇一
    1、拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線
    x=—b/2a。
    對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。
    特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
    2、拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為
    P(—b/2a,(4ac—b’2)/4a)
    當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)Δ=b’2—4ac=0時(shí),P在x軸上。
    3、二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
    當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。
    |a|越大,則拋物線的開口越小。
    4、一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
    當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;
    當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。
    5、常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
    拋物線與y軸交于(0,c)
    6、拋物線與x軸交點(diǎn)個(gè)數(shù)
    Δ=b’2—4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
    Δ=b’2—4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
    Δ=b’2—4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=—b±√b’2—4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
    2.高一下期數(shù)學(xué)知識(shí)點(diǎn)歸納 篇二
    【公式一】
    設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
    sin(2kπ+α)=sinα(k∈Z)
    cos(2kπ+α)=cosα(k∈Z)
    tan(2kπ+α)=tanα(k∈Z)
    cot(2kπ+α)=cotα(k∈Z)
    【公式二】
    設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
    sin(π+α)=-sinα
    cos(π+α)=-cosα
    tan(π+α)=tanα
    cot(π+α)=cotα
    【公式三】
    任意角α與-α的三角函數(shù)值之間的關(guān)系:
    sin(-α)=-sinα
    cos(-α)=cosα
    tan(-α)=-tanα
    cot(-α)=-cotα
    【公式四】
    利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
    sin(π-α)=sinα
    cos(π-α)=-cosα
    tan(π-α)=-tanα
    cot(π-α)=-cotα
    【公式五】
    利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
    sin(2π-α)=-sinα
    cos(2π-α)=cosα
    tan(2π-α)=-tanα
    cot(2π-α)=-cotα
    【公式六】
    π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
    sin(π/2+α)=cosα
    cos(π/2+α)=-sinα
    tan(π/2+α)=-cotα
    cot(π/2+α)=-tanα
    sin(π/2-α)=cosα
    cos(π/2-α)=sinα
    tan(π/2-α)=cotα
    cot(π/2-α)=tanα
    sin(3π/2+α)=-cosα
    cos(3π/2+α)=sinα
    tan(3π/2+α)=-cotα
    cot(3π/2+α)=-tanα
    sin(3π/2-α)=-cosα
    cos(3π/2-α)=-sinα
    tan(3π/2-α)=cotα
    cot(3π/2-α)=tanα
    (以上k∈Z)
    3.高一下期數(shù)學(xué)知識(shí)點(diǎn)歸納 篇三
    空間幾何體表面積體積公式:
    1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
    2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
    3、a-邊長(zhǎng),S=6a2,V=a3
    4、長(zhǎng)方體a-長(zhǎng),b-寬,c-高S=2(ab+ac+bc)V=abc
    5、棱柱S-h-高V=Sh
    6、棱錐S-h-高V=Sh/3
    7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
    8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
    9、圓柱r-底半徑,h-高,C—底面周長(zhǎng)S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
    10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
    11、r-底半徑h-高V=πr^2h/3
    12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
    14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
    15、球臺(tái)r1和r2-球臺(tái)上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
    16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
    17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
    4.高一下期數(shù)學(xué)知識(shí)點(diǎn)歸納 篇四
    數(shù)列
    (1)數(shù)列的概念和簡(jiǎn)單表示法
    ①了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式).
    ②了解數(shù)列是自變量為正整數(shù)的一類函數(shù).
    (2)等差數(shù)列、等比數(shù)列
    ①理解等差數(shù)列、等比數(shù)列的概念.
    ②掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式.
    ③能在具體的問題情境中,識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問題.
    ④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.
    5.高一下期數(shù)學(xué)知識(shí)點(diǎn)歸納 篇五
    空間兩條直線只有三種位置關(guān)系:平行、相交、異面
    1、按是否共面可分為兩類:
    (1)共面:平行、相交
    (2)異面:
    異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。
    異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。
    兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法
    兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法
    2、若從有無公共點(diǎn)的角度看可分為兩類:
    (1)有且僅有一個(gè)公共點(diǎn)——相交直線;
    (2)沒有公共點(diǎn)——平行或異面
    直線和平面的位置關(guān)系:
    直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
    ①直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)
    ②直線和平面相交——有且只有一個(gè)公共點(diǎn)
    直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。