數(shù)學(xué)是人類對(duì)事物的抽象結(jié)構(gòu)與模式進(jìn)行嚴(yán)格描述的一種通用手段,可以應(yīng)用于現(xiàn)實(shí)世界的任何問(wèn)題,所有的數(shù)學(xué)對(duì)象本質(zhì)上都是人為定義的。為各位同學(xué)整理了《高一年級(jí)數(shù)學(xué)第二冊(cè)復(fù)習(xí)知識(shí)點(diǎn)》,希望對(duì)你的學(xué)習(xí)有所幫助!
1.高一年級(jí)數(shù)學(xué)第二冊(cè)復(fù)習(xí)知識(shí)點(diǎn) 篇一
多面體
1、棱柱
棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每?jī)蓚€(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質(zhì)
(1)側(cè)棱都相等,側(cè)面是平行四邊形
(2)兩個(gè)底面與平行于底面的截面是全等的多邊形
(3)過(guò)不相鄰的兩條側(cè)棱的截面(對(duì)角面)是平行四邊形
2、棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質(zhì):
(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
3、正棱錐
正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(2)多個(gè)特殊的直角三角形
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
2.高一年級(jí)數(shù)學(xué)第二冊(cè)復(fù)習(xí)知識(shí)點(diǎn) 篇二
1.任意角
(1)角的分類:
①按旋轉(zhuǎn)方向不同分為正角、負(fù)角、零角.
②按終邊位置不同分為象限角和軸線角.
(2)終邊相同的角:
終邊與角相同的角可寫(xiě)成+k360(kz).
(3)弧度制:
①1弧度的角:把長(zhǎng)度等于半徑長(zhǎng)的弧所對(duì)的圓心角叫做1弧度的角.
②規(guī)定:正角的弧度數(shù)為正數(shù),負(fù)角的弧度數(shù)為負(fù)數(shù),零角的弧度數(shù)為零,||=,l是以角作為圓心角時(shí)所對(duì)圓弧的長(zhǎng),r為半徑.
③用弧度做單位來(lái)度量角的制度叫做弧度制.比值與所取的r的大小無(wú)關(guān),僅與角的大小有關(guān).
④弧度與角度的換算:360弧度;180弧度.
⑤弧長(zhǎng)公式:l=||r,扇形面積公式:s扇形=lr=||r2.
2.任意角的三角函數(shù)
(1)任意角的三角函數(shù)定義:
設(shè)是一個(gè)任意角,角的終邊與單位圓交于點(diǎn)p(x,y),那么角的正弦、余弦、正切分別是:sin=y,cos=x,tan=,它們都是以角為自變量,以單位圓上點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù).
(2)三角函數(shù)在各象限內(nèi)的符號(hào)口訣是:一全正、二正弦、三正切、四余弦.
3.三角函數(shù)線
設(shè)角的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸非負(fù)半軸重合,終邊與單位圓相交于點(diǎn)p,過(guò)p作pm垂直于x軸于m.由三角函數(shù)的定義知,點(diǎn)p的坐標(biāo)為(cos_,sin_),即p(cos_,sin_),其中cos=om,sin=mp,單位圓與x軸的正半軸交于點(diǎn)a,單位圓在a點(diǎn)的切線與的終邊或其反向延長(zhǎng)線相交于點(diǎn)t,則tan=at.我們把有向線段om、mp、at叫做的余弦線、正弦線、正切線.
3.高一年級(jí)數(shù)學(xué)第二冊(cè)復(fù)習(xí)知識(shí)點(diǎn) 篇三
1、科學(xué)記數(shù)法:把一個(gè)數(shù)字寫(xiě)成的形式的記數(shù)方法。
2、統(tǒng)計(jì)圖:形象地表示收集到的數(shù)據(jù)的圖。
3、扇形統(tǒng)計(jì)圖:用圓和扇形來(lái)表示總體和部分的關(guān)系,扇形大小反映部分占總體的百分比的大小;在扇形統(tǒng)計(jì)圖中,每個(gè)部分占總體的百分比等于該部分對(duì)應(yīng)的扇形圓心角與360°的比。
4、條形統(tǒng)計(jì)圖:清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目。
5、折線統(tǒng)計(jì)圖:清楚地反映事物的變化情況。
6、確定事件包括:肯定會(huì)發(fā)生的必然事件和一定不會(huì)發(fā)生的不可能事件。
7、不確定事件:可能發(fā)生也可能不發(fā)生的事件;不確定事件發(fā)生的可能性大小不同;不確定。
8、事件的概率:可用事件結(jié)果除以所以可能結(jié)果求得理論概率。
9、有效數(shù)字:對(duì)于一個(gè)近似數(shù),從左邊第一個(gè)不是0的數(shù)字起,到精確到的數(shù)位為止的數(shù)字。
10、游戲雙方公平:雙方獲勝的可能性相同。
11、算數(shù)平均數(shù):簡(jiǎn)稱“平均數(shù)”,最常用,受極端值得影響較大;加權(quán)平均數(shù)
12、中位數(shù):數(shù)據(jù)按大小排列,處于中間位置的數(shù),計(jì)算簡(jiǎn)單,受極端值得影響較小。
13、眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),受極端值得影響較小,跟其他數(shù)據(jù)關(guān)系不大。
14、平均數(shù)、眾數(shù)、中位數(shù)都是數(shù)據(jù)的代表,刻畫(huà)了一組數(shù)據(jù)的“平均水平”。
15、普查:為了一定目的對(duì)考察對(duì)象進(jìn)行全面調(diào)查;考察對(duì)象全體叫總體,每個(gè)考察對(duì)象叫個(gè)體。
16、抽樣調(diào)查:從總體中抽取部分個(gè)體進(jìn)行調(diào)查;從總體中抽出的一部分個(gè)體叫樣本(有代表性)。
17、隨機(jī)調(diào)查:按機(jī)會(huì)均等的原則進(jìn)行調(diào)查,總體中每個(gè)個(gè)體被調(diào)查的概率相同。
18、頻數(shù):每次對(duì)象出現(xiàn)的次數(shù)。
19、頻率:每次對(duì)象出現(xiàn)的次數(shù)與總次數(shù)的比值。
20、級(jí)差:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差,刻畫(huà)數(shù)據(jù)的離散程度。
21、方差:各個(gè)數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),刻畫(huà)數(shù)據(jù)的離散程度。
21、標(biāo)準(zhǔn)方差:方差的算數(shù)平方根刻畫(huà)數(shù)據(jù)的離散程度。
23、一組數(shù)據(jù)的級(jí)差、方差、標(biāo)準(zhǔn)方差越小,這組數(shù)據(jù)就越穩(wěn)定。
24、利用樹(shù)狀圖或表格方便求出某事件發(fā)生的概率。
25、兩個(gè)對(duì)比圖像中,坐標(biāo)軸上同一單位長(zhǎng)度表示的意義一致,縱坐標(biāo)從0開(kāi)始畫(huà)。
4.高一年級(jí)數(shù)學(xué)第二冊(cè)復(fù)習(xí)知識(shí)點(diǎn) 篇四
二面角和二面角的平面角
①二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面.
②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.
③直二面角:平面角是直角的二面角叫直二面角.
兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角
垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角
5.高一年級(jí)數(shù)學(xué)第二冊(cè)復(fù)習(xí)知識(shí)點(diǎn) 篇五
空間中的平行問(wèn)題
(1)直線與平面平行的判定及其性質(zhì)
線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.
線線平行線面平行
線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,
那么這條直線和交線平行.線面平行線線平行
(2)平面與平面平行的判定及其性質(zhì)
兩個(gè)平面平行的判定定理
(1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行
(線面平行→面面平行),
(2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行.
(線線平行→面面平行),
(3)垂直于同一條直線的兩個(gè)平面平行,
兩個(gè)平面平行的性質(zhì)定理
(1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行.(面面平行→線面平行)
(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行.(面面平行→線線平行)