高三數(shù)學復習知識點筆記

字號:

高中數(shù)學知識點眾多,光靠一個腦袋是記不全的,好記性不如爛筆頭,要想學好數(shù)學,同學們還是要多做知識點的總結。為各位同學整理了《高三數(shù)學復習知識點筆記》,希望對你的學習有所幫助!
    1.高三數(shù)學復習知識點筆記 篇一
    一個推導
    利用錯位相減法推導等比數(shù)列的前n項和:
    Sn=a1+a1q+a1q2+…+a1qn-1,
    同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,
    兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).
    兩個防范
    (1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0.
    (2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.
    三種方法
    等比數(shù)列的判斷方法有:
    (1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈N_,則{an}是等比數(shù)列.
    (2)中項公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈N_,則數(shù)列{an}是等比數(shù)列.
    (3)通項公式法:若數(shù)列通項公式可寫成an=c·qn(c,q均是不為0的常數(shù),n∈N_,則{an}是等比數(shù)列.
    注:前兩種方法也可用來證明一個數(shù)列為等比數(shù)列.
    2.高三數(shù)學復習知識點筆記 篇二
    求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數(shù)法和交軌法等。
    1.直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
    2.定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
    3.相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。
    4.參數(shù)法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數(shù)t的關系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
    5.交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
    求動點軌跡方程的一般步驟:
    ①建系——建立適當?shù)淖鴺讼?
    ②設點——設軌跡上的任一點P(x,y);
    ③列式——列出動點p所滿足的關系式;
    ④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;
    ⑤證明——證明所求方程即為符合條件的動點軌跡方程。
    3.高三數(shù)學復習知識點筆記 篇三
    1、有關平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內容,因此在主體幾何的總復習中,首先應從解決“平行與垂直”的有關問題著手,通過較為基本問題,熟悉公理、定理的內容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律——充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉化的思想,以提高邏輯思維能力和空間想象能力。
    2、判定兩個平面平行的方法:
    (1)根據定義——證明兩平面沒有公共點;
    (2)判定定理——證明一個平面內的兩條相交直線都平行于另一個平面;
    (3)證明兩平面同垂直于一條直線。
    3、兩個平面平行的主要性質:
    (1)由定義知:“兩平行平面沒有公共點”;
    (2)由定義推得:“兩個平面平行,其中一個平面內的直線必平行于另一個平面”;
    (3)兩個平面平行的性質定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;
    (4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;
    (5)夾在兩個平行平面間的平行線段相等;
    (6)經過平面外一點只有一個平面和已知平面平行。
    4.高三數(shù)學復習知識點筆記 篇四
    (一)導數(shù)第一定義
    設函數(shù)y=f(x)在點x0的某個領域內有定義,當自變量x在x0處有增量△x(x0+△x也在該鄰域內)時,相應地函數(shù)取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數(shù)y=f(x)在點x0處可導,并稱這個極限值為函數(shù)y=f(x)在點x0處的導數(shù)記為f'(x0),即導數(shù)第一定義
    (二)導數(shù)第二定義
    設函數(shù)y=f(x)在點x0的某個領域內有定義,當自變量x在x0處有變化△x(x-x0也在該鄰域內)時,相應地函數(shù)變化△y=f(x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數(shù)y=f(x)在點x0處可導,并稱這個極限值為函數(shù)y=f(x)在點x0處的導數(shù)記為f'(x0),即導數(shù)第二定義
    (三)導函數(shù)與導數(shù)
    如果函數(shù)y=f(x)在開區(qū)間I內每一點都可導,就稱函數(shù)f(x)在區(qū)間I內可導。這時函數(shù)y=f(x)對于區(qū)間I內的每一個確定的x值,都對應著一個確定的導數(shù),這就構成一個新的函數(shù),稱這個函數(shù)為原來函數(shù)y=f(x)的導函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導函數(shù)簡稱導數(shù)。
    (四)單調性及其應用
    1.利用導數(shù)研究多項式函數(shù)單調性的一般步驟
    (1)求f¢(x)
    (2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
    2.用導數(shù)求多項式函數(shù)單調區(qū)間的一般步驟
    (1)求f¢(x)
    (2)f¢(x)>0的解集與定義域的交集的對應區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應區(qū)間為減區(qū)間
    5.高三數(shù)學復習知識點筆記 篇五
    第一,函數(shù)與導數(shù)。主要考查集合運算、函數(shù)的有關概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導數(shù)。
    第二,平面向量與三角函數(shù)、三角變換及其應用。這一部分是高考的重點但不是難點,主要出一些基礎題或中檔題。
    第三,數(shù)列及其應用。這部分是高考的重點而且是難點,主要出一些綜合題。
    第四,不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。
    第五,概率和統(tǒng)計。這部分和我們的生活聯(lián)系比較大,屬應用題。
    第六,空間位置關系的定性與定量分析。主要是證明平行或垂直,求角和距離。
    第七,解析幾何。是高考的難點,運算量大,一般含參數(shù)。
    6.高三數(shù)學復習知識點筆記 篇六
    1、直線的傾斜角
    定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
    2、直線的斜率
    ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。
    ②過兩點的直線的斜率公式:已知A(x1,y1),B(x2,y2)
    注意下面四點:
    (1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
    (2)k與P1、P2的順序無關;
    (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
    (4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。