高三年級(jí)數(shù)學(xué)必修二知識(shí)點(diǎn)筆記

字號(hào):

數(shù)學(xué)和語文這一學(xué)科其實(shí)也差不多,數(shù)學(xué)也有很多知識(shí)點(diǎn)是要背的。為各位同學(xué)整理了《高三年級(jí)數(shù)學(xué)必修二知識(shí)點(diǎn)筆記》,希望對(duì)你的學(xué)習(xí)有所幫助!
    1.高三年級(jí)數(shù)學(xué)必修二知識(shí)點(diǎn)筆記 篇一
    垂直關(guān)系的判定和性質(zhì)定理
    線面垂直判定定理和性質(zhì)定理
    判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面.
    性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行.
    面面垂直的判定定理和性質(zhì)定理
    判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直.
    性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面.
    2.高三年級(jí)數(shù)學(xué)必修二知識(shí)點(diǎn)筆記 篇二
    空間直線與直線之間的位置關(guān)系
    異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線
    異面直線性質(zhì):既不平行,又不相交.
    異面直線判定:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過該店的直線是異面直線
    異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.
    3.高三年級(jí)數(shù)學(xué)必修二知識(shí)點(diǎn)筆記 篇三
    兩角和與差的三角函數(shù):
    cos(α+β)=cosα·cosβ-sinα·sinβ
    cos(α-β)=cosα·cosβ+sinα·sinβ
    sin(α±β)=sinα·cosβ±cosα·sinβ
    tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
    tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
    三角和的三角函數(shù):
    sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
    cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
    tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
    輔助角公式:
    Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中
    sint=B/(A2+B2)^(1/2)
    cost=A/(A2+B2)^(1/2)
    tant=B/A
    Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B
    倍角公式:
    sin(2α)=2sinα·cosα=2/(tanα+cotα)
    cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)
    tan(2α)=2tanα/[1-tan2(α)]
    三倍角公式:
    sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α)
    cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α)
    tan(3α)=tana·tan(π/3+a)·tan(π/3-a)
    半角公式:
    sin(α/2)=±√((1-cosα)/2)
    cos(α/2)=±√((1+cosα)/2)
    tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
    降冪公式
    sin2(α)=(1-cos(2α))/2=versin(2α)/2
    cos2(α)=(1+cos(2α))/2=covers(2α)/2
    tan2(α)=(1-cos(2α))/(1+cos(2α))
    萬能公式:
    sinα=2tan(α/2)/[1+tan2(α/2)]
    cosα=[1-tan2(α/2)]/[1+tan2(α/2)]
    tanα=2tan(α/2)/[1-tan2(α/2)]
    積化和差公式:
    sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
    cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
    cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
    sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
    和差化積公式:
    sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
    sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
    cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
    cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
    推導(dǎo)公式
    tanα+cotα=2/sin2α
    tanα-cotα=-2cot2α
    1+cos2α=2cos2α
    1-cos2α=2sin2α
    1+sinα=(sinα/2+cosα/2)2
    4.高三年級(jí)數(shù)學(xué)必修二知識(shí)點(diǎn)筆記 篇四
    平方關(guān)系:
    sin^2α+cos^2α=1
    1+tan^2α=sec^2α
    1+cot^2α=csc^2α
    積的關(guān)系:
    sinα=tanα×cosα
    cosα=cotα×sinα
    tanα=sinα×secα
    cotα=cosα×cscα
    secα=tanα×cscα
    cscα=secα×cotα
    倒數(shù)關(guān)系:
    tanα·cotα=1
    sinα·cscα=1
    cosα·secα=1
    商的關(guān)系:
    sinα/cosα=tanα=secα/cscα
    cosα/sinα=cotα=cscα/secα
    5.高三年級(jí)數(shù)學(xué)必修二知識(shí)點(diǎn)筆記 篇五
    一元二次不等式
    ①會(huì)從實(shí)際情境中抽象出一元二次不等式模型.
    ②通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
    ③會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,會(huì)設(shè)計(jì)求解的程序框圖.
    二元一次不等式組與簡(jiǎn)單線性規(guī)劃問題
    ①會(huì)從實(shí)際情境中抽象出二元一次不等式組.
    ②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
    ③會(huì)從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問題,并能加以解決.
    基本不等式:
    ①了解基本不等式的證明過程.
    ②會(huì)用基本不等式解決簡(jiǎn)單的大(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)
    6.高三年級(jí)數(shù)學(xué)必修二知識(shí)點(diǎn)筆記 篇六
    二面角和二面角的平面角
    ①二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面.
    ②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.
    ③直二面角:平面角是直角的二面角叫直二面角.
    兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過來,如果兩個(gè)平面垂直,那么所成的二面角為直二面角
    ④求二面角的方法
    定義法:在棱上選擇有關(guān)點(diǎn),過這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角
    垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角