高一上學(xué)期數(shù)學(xué)筆記整理

字號:


    預(yù)習(xí)可以把握聽課的主動權(quán),預(yù)習(xí)可以掃清舊知識的障礙,為主動學(xué)習(xí)新知識輔平道路。為各位同學(xué)整理了《高一上學(xué)期數(shù)學(xué)筆記整理》,希望對你的學(xué)習(xí)有所幫助!
    1.高一上學(xué)期數(shù)學(xué)筆記整理 篇一
    復(fù)數(shù)定義
    我們把形如a+bi(a,b均為實(shí)數(shù))的數(shù)稱為復(fù)數(shù),其中a稱為實(shí)部,b稱為虛部,i稱為虛數(shù)單位。當(dāng)虛部等于零時,這個復(fù)數(shù)可以視為實(shí)數(shù);當(dāng)z的虛部不等于零時,實(shí)部等于零時,常稱z為純虛數(shù)。復(fù)數(shù)域是實(shí)數(shù)域的代數(shù)閉包,也即任何復(fù)系數(shù)多項(xiàng)式在復(fù)數(shù)域中總有根。
    復(fù)數(shù)表達(dá)式
    虛數(shù)是與任何事物沒有聯(lián)系的,是絕對的,所以符合的表達(dá)式為:
    a=a+ia為實(shí)部,i為虛部
    復(fù)數(shù)運(yùn)算法則
    加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;
    減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;
    乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
    除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.
    例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,終結(jié)果還是0,也就在數(shù)字中沒有復(fù)數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個函數(shù)。
    復(fù)數(shù)與幾何
    ①幾何形式
    復(fù)數(shù)z=a+bi被復(fù)平面上的點(diǎn)z(a,b)確定。這種形式使復(fù)數(shù)的問題可以借助圖形來研究。也可反過來用復(fù)數(shù)的理論解決一些幾何問題。
    ②向量形式
    復(fù)數(shù)z=a+bi用一個以原點(diǎn)O(0,0)為起點(diǎn),點(diǎn)Z(a,b)為終點(diǎn)的向量OZ表示。這種形式使復(fù)數(shù)四則運(yùn)算得到恰當(dāng)?shù)膸缀谓忉尅?BR>    ③三角形式
    復(fù)數(shù)z=a+bi化為三角形式
    2.高一上學(xué)期數(shù)學(xué)筆記整理 篇二
    二面角
    (1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
    (2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
    (3)二面角的棱:這一條直線叫做二面角的棱。
    (4)二面角的面:這兩個半平面叫做二面角的面。
    (5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
    (6)直二面角:平面角是直角的二面角叫做直二面角。
    3.高一上學(xué)期數(shù)學(xué)筆記整理 篇三
    數(shù)列的定義
    按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項(xiàng).
    (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.
    (2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….。
    (3)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當(dāng)于f(n)中的n.
    (4)次序?qū)τ跀?shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.
    4.高一上學(xué)期數(shù)學(xué)筆記整理 篇四
    函數(shù)的值域與值
    1、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:
    (1)直接法:亦稱觀察法,對于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.
    (2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里式時用代數(shù)換元,當(dāng)根式里是二次式時,用三角換元.
    (3)反函數(shù)法:利用函數(shù)f(_)與其反函數(shù)f-1(_)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.
    (4)配方法:對于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法.
    (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時需用到平方等技巧.
    (6)判別式法:把y=f(_)變形為關(guān)于_的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.
    (7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.
    (8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.
    2、求函數(shù)的值與值域的區(qū)別和聯(lián)系
    求函數(shù)值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存在一個小(大)數(shù),這個數(shù)就是函數(shù)的小(大)值.因此求函數(shù)的值與值域,其實(shí)質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異.
    如函數(shù)的值域是(0,16],值是16,無小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無值和小值,只有在改變函數(shù)定義域后,如_>0時,函數(shù)的小值為2.可見定義域?qū)瘮?shù)的值域或值的影響.
    3、函數(shù)的值在實(shí)際問題中的應(yīng)用
    函數(shù)的值的應(yīng)用主要體現(xiàn)在用函數(shù)知識求解實(shí)際問題上,從文字表述上常常表現(xiàn)為“工程造價低”,“利潤”或“面積(體積)(小)”等諸多現(xiàn)實(shí)問題上,求解時要特別關(guān)注實(shí)際意義對自變量的制約,以便能正確求得值.
    5.高一上學(xué)期數(shù)學(xué)筆記整理 篇五
    1.多面體的結(jié)構(gòu)特征
    (1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。
    正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形.
    (2)棱錐的底面是任意多邊形,側(cè)面是有一個公共頂點(diǎn)的三角形.
    正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心.
    (3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形.
    2.旋轉(zhuǎn)體的結(jié)構(gòu)特征
    (1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到.
    (2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到.
    (3)圓臺可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到.
    (4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到.
    3.空間幾何體的三視圖
    空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖.
    三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實(shí)、虛線的畫法.
    4.空間幾何體的直觀圖
    空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:
    (1)畫幾何體的底面
    在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫直觀圖時,把它們畫成對應(yīng)的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话?
    (2)畫幾何體的高
    在已知圖形中過O點(diǎn)作z軸垂直于xOy平面,在直觀圖中對應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變.