高二下冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)

字號(hào):


    知識(shí)點(diǎn)有時(shí)候特指教科書(shū)上或考試的知識(shí)。還在為沒(méi)有系統(tǒng)的知識(shí)點(diǎn)而發(fā)愁嗎?為各位同學(xué)整理了《高二下冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)》,希望對(duì)你的學(xué)習(xí)有所幫助!
    1.高二下冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn) 篇一
    判斷函數(shù)零點(diǎn)個(gè)數(shù)的常用方法
    1、解方程法:
    令f(x)=0,如果能求出解,則有幾個(gè)解就有幾個(gè)零點(diǎn)。
    2、零點(diǎn)存在性定理法:
    利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線(xiàn),且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對(duì)稱(chēng)性)才能確定函數(shù)有多少個(gè)零點(diǎn)。
    3、數(shù)形結(jié)合法:
    轉(zhuǎn)化為兩個(gè)函數(shù)的圖象的交點(diǎn)個(gè)數(shù)問(wèn)題.先畫(huà)出兩個(gè)函數(shù)的圖象,看其交點(diǎn)的個(gè)數(shù),其中交點(diǎn)的個(gè)數(shù),就是函數(shù)零點(diǎn)的個(gè)數(shù)。
    已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)取值常用的方法
    1、直接法:
    直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過(guò)解不等式確定參數(shù)范圍。
    2、分離參數(shù)法:
    先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問(wèn)題加以解決。
    3、數(shù)形結(jié)合法:
    先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫(huà)出函數(shù)的圖象,然后數(shù)形結(jié)合求解。
    2.高二下冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn) 篇二
    函數(shù)的周期性
    (1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
    (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線(xiàn)x=a對(duì)稱(chēng),則f(x)是周期為2︱a︱的周期函數(shù);
    (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線(xiàn)x=a對(duì)稱(chēng),則f(x)是周期為4︱a︱的周期函數(shù);
    (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱(chēng),則f(x)是周期為2的周期函數(shù);
    (5)y=f(x)的圖象關(guān)于直線(xiàn)x=a,x=b(a≠b)對(duì)稱(chēng),則函數(shù)y=f(x)是周期為2的周期函數(shù);
    (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù)。
    3.高二下冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn) 篇三
    有界性
    設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對(duì)于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱(chēng)f(x)在區(qū)間X上有界,否則稱(chēng)f(x)在區(qū)間上無(wú)XX。
    單調(diào)性
    設(shè)函數(shù)f(x)的定義域?yàn)镈,區(qū)間I包含于D。如果對(duì)于區(qū)間上任意兩點(diǎn)x1及x2,當(dāng)x1f(x2),則稱(chēng)函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的。單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱(chēng)為單調(diào)函數(shù)。
    奇偶性
    設(shè)為一個(gè)實(shí)變量實(shí)值函數(shù),若有f(-x)=-f(x),則f(x)為奇函數(shù)。
    幾何上,一個(gè)奇函數(shù)關(guān)于原點(diǎn)對(duì)稱(chēng),亦即其圖像在繞原點(diǎn)做180度旋轉(zhuǎn)后不會(huì)改變。
    奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x)。
    設(shè)f(x)為一實(shí)變量實(shí)值函數(shù),若有f(x)=f(-x),則f(x)為偶函數(shù)。
    幾何上,一個(gè)偶函數(shù)關(guān)于y軸對(duì)稱(chēng),亦即其圖在對(duì)y軸映射后不會(huì)改變。
    偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x)。
    偶函數(shù)不可能是個(gè)雙射映射。
    連續(xù)性
    在數(shù)學(xué)中,連續(xù)是函數(shù)的一種屬性。直觀上來(lái)說(shuō),連續(xù)的函數(shù)就是當(dāng)輸入值的變化足夠小的時(shí)候,輸出的變化也會(huì)隨之足夠小的函數(shù)。如果輸入值的某種微小的變化會(huì)產(chǎn)生輸出值的一個(gè)突然的跳躍甚至無(wú)法定義,則這個(gè)函數(shù)被稱(chēng)為是不連續(xù)的函數(shù)(或者說(shuō)具有不連續(xù)性)。
    4.高二下冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn) 篇四
    系統(tǒng)抽樣
    系統(tǒng)抽樣的概念:
    當(dāng)整體中個(gè)體數(shù)較多時(shí),將整體均分為幾個(gè)部分,然后按一定的規(guī)則,從每一個(gè)部分抽取1個(gè)個(gè)體而得到所需要的樣本的方法叫系統(tǒng)抽樣。
    系統(tǒng)抽樣的步驟:
    (1)采用隨機(jī)方式將總體中的個(gè)體編號(hào);
    (2)將整個(gè)編號(hào)進(jìn)行均勻分段在確定相鄰間隔k后,若不能均勻分段,即=k不是整數(shù)時(shí),可采用隨機(jī)方法從總體中剔除一些個(gè)體,使總體中剩余的個(gè)體數(shù)N′滿(mǎn)足是整數(shù);
    (3)在第一段中采用簡(jiǎn)單隨機(jī)抽樣方法確定第一個(gè)被抽得的個(gè)體編號(hào)l;
    (4)依次將l加上ik,i=1,2,…,(n-1),得到其余被抽取的個(gè)體的編號(hào),從而得到整個(gè)樣本。
    5.高二下冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn) 篇五
    分層抽樣:
    當(dāng)已知總體由差異明顯的幾部分組成時(shí),常將總體分成幾部分,然后按照各部分所占的比例進(jìn)行抽樣,這種抽樣叫做分層抽樣,其所分成的各個(gè)部分叫做層。
    利用分層抽樣抽取樣本,每一層按照它在總體中所占的比例進(jìn)行抽取。
    不放回抽樣和放回抽樣:
    在抽樣中,如果每次抽出個(gè)體后不再將它放回總體,稱(chēng)這樣的抽樣為不放回抽樣;如果每次抽出個(gè)體后再將它放回總體,稱(chēng)這樣的抽樣為放回抽樣.
    隨機(jī)抽樣、系統(tǒng)抽樣、分層抽樣都是不放回抽樣
    分層抽樣的特點(diǎn):
    (1)分層抽樣適用于差異明顯的幾部分組成的情況;
    (2)在每一層進(jìn)行抽樣時(shí),在采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣;
    (3)分層抽樣充分利用已掌握的信息,使樣具有良好的代表性;
    (4)分層抽樣也是等概率抽樣,而且在每層抽樣時(shí),可以根據(jù)具體情況采用不同的抽樣方法,因此應(yīng)用較為廣泛。