高二年級數(shù)學(xué)必修四知識點(diǎn)復(fù)習(xí)

字號:

高二本身的知識體系而言,它主要是對高一知識的深入和新知識模塊的補(bǔ)充。高二頻道為你整理了《高二年級數(shù)學(xué)必修四知識點(diǎn)復(fù)習(xí)》希望對你有所幫助!
    1.高二年級數(shù)學(xué)必修四知識點(diǎn)復(fù)習(xí)
    (一)導(dǎo)數(shù)第一定義
    設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x0+△x也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第一定義
    (二)導(dǎo)數(shù)第二定義
    設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化△x(x-x0也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)變化△y=f(x)-f(x0);如果△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱函數(shù)y=f(x)在點(diǎn)x0處可導(dǎo),并稱這個(gè)極限值為函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第二定義
    (三)導(dǎo)函數(shù)與導(dǎo)數(shù)
    如果函數(shù)y=f(x)在開區(qū)間I內(nèi)每一點(diǎn)都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時(shí)函數(shù)y=f(x)對于區(qū)間I內(nèi)的每一個(gè)確定的x值,都對應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),稱這個(gè)函數(shù)為原來函數(shù)y=f(x)的導(dǎo)函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。
    (四)單調(diào)性及其應(yīng)用
    1.利用導(dǎo)數(shù)研究多項(xiàng)式函數(shù)單調(diào)性的一般步驟
    (1)求f¢(x)
    (2)確定f¢(x)在(a,b)內(nèi)符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
    2.用導(dǎo)數(shù)求多項(xiàng)式函數(shù)單調(diào)區(qū)間的一般步驟
    (1)求f¢(x)
    (2)f¢(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間
    2.高二年級數(shù)學(xué)必修四知識點(diǎn)復(fù)習(xí)
    求異面直線所成角步驟:
    A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。
    B、證明作出的角即為所求角
    C、利用三角形來求角
    等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。
    空間直線與平面之間的位置關(guān)系
    直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn).
    三種位置關(guān)系的符號表示:aαa∩α=Aa‖α
    平面與平面之間的位置關(guān)系:平行——沒有公共點(diǎn);α‖β
    相交——有一條公共直線。α∩β=b
    3.高二年級數(shù)學(xué)必修四知識點(diǎn)復(fù)習(xí)
    判斷函數(shù)零點(diǎn)個(gè)數(shù)的常用方法
    1、解方程法:
    令f(x)=0,如果能求出解,則有幾個(gè)解就有幾個(gè)零點(diǎn)。
    2、零點(diǎn)存在性定理法:
    利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對稱性)才能確定函數(shù)有多少個(gè)零點(diǎn)。
    3、數(shù)形結(jié)合法:
    轉(zhuǎn)化為兩個(gè)函數(shù)的圖象的交點(diǎn)個(gè)數(shù)問題,先畫出兩個(gè)函數(shù)的圖象,看其交點(diǎn)的個(gè)數(shù),其中交點(diǎn)的個(gè)數(shù),就是函數(shù)零點(diǎn)的個(gè)數(shù)。
    已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)取值常用的方法
    1、直接法:
    直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍。
    2、分離參數(shù)法:
    先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決。
    3、數(shù)形結(jié)合法:
    先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解。
    4.高二年級數(shù)學(xué)必修四知識點(diǎn)復(fù)習(xí)
    數(shù)列定義:
    如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。
    等差數(shù)列的通項(xiàng)公式為:an=a1+(n-1)d(1)
    前n項(xiàng)和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
    以上n均屬于正整數(shù)。
    解釋說明:
    從(1)式可以看出,an是n的一次函數(shù)(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0。
    在等差數(shù)列中,等差中項(xiàng):一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項(xiàng),且為數(shù)列的平均數(shù)。
    且任意兩項(xiàng)am,an的關(guān)系為:an=am+(n-m)d
    它可以看作等差數(shù)列廣義的通項(xiàng)公式。
    公式:
    從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
    若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等。
    基本公式:
    和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2
    項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1
    首項(xiàng)=2和÷項(xiàng)數(shù)-末項(xiàng)
    末項(xiàng)=2和÷項(xiàng)數(shù)-首項(xiàng)
    末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)-1)×公差
    5.高二年級數(shù)學(xué)必修四知識點(diǎn)復(fù)習(xí)
    立體幾何初步
    (1)棱柱:
    定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
    分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
    表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱
    幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
    (2)棱錐
    定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體
    分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
    表示:用各頂點(diǎn)字母,如五棱錐
    幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
    (3)棱臺:
    定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分
    分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等
    表示:用各頂點(diǎn)字母,如五棱臺
    幾何特征:
    ①上下底面是相似的平行多邊形
    ②側(cè)面是梯形
    ③側(cè)棱交于原棱錐的頂點(diǎn)
    (4)圓柱:
    定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體
    幾何特征:
    ①底面是全等的圓;
    ②母線與軸平行;
    ③軸與底面圓的半徑垂直;
    ④側(cè)面展開圖是一個(gè)矩形。
    (5)圓錐:
    定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體
    幾何特征:
    ①底面是一個(gè)圓;
    ②母線交于圓錐的頂點(diǎn);
    ③側(cè)面展開圖是一個(gè)扇形。
    (6)圓臺:
    定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
    幾何特征:
    ①上下底面是兩個(gè)圓;
    ②側(cè)面母線交于原圓錐的頂點(diǎn);
    ③側(cè)面展開圖是一個(gè)弓形。
    (7)球體:
    定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
    幾何特征:
    ①球的截面是圓;
    ②球面上任意一點(diǎn)到球心的距離等于半徑。
    6.高二年級數(shù)學(xué)必修四知識點(diǎn)復(fù)習(xí)
    函數(shù)的性質(zhì):
    函數(shù)的單調(diào)性、奇偶性、周期性
    單調(diào)性:定義:注意定義是相對與某個(gè)具體的區(qū)間而言。
    判定方法有:定義法(作差比較和作商比較)
    導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))
    復(fù)合函數(shù)法和圖像法。
    應(yīng)用:比較大小,證明不等式,解不等式。
    奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);
    f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
    判別方法:定義法,圖像法,復(fù)合函數(shù)法
    應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。
    周期性:定義:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
    其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
    應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。