高一年級數(shù)學(xué)下冊復(fù)習(xí)知識點(diǎn)

字號:


    高一新生要根據(jù)自己的條件,以及高中階段學(xué)科知識交叉多、綜合性強(qiáng),以及考查的知識和思維觸點(diǎn)廣的特點(diǎn),找尋一套行之有效的學(xué)習(xí)方法。為各位同學(xué)整理了《高一年級數(shù)學(xué)下冊復(fù)習(xí)知識點(diǎn)》,希望對您的學(xué)習(xí)有所幫助!
    1.高一年級數(shù)學(xué)下冊復(fù)習(xí)知識點(diǎn)
    函數(shù)
    1.拋物線是軸對稱圖形。對稱軸為直線
    x=-b/2a。
    對稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。
    特別地,當(dāng)b=0時(shí),拋物線的對稱軸是y軸(即直線x=0)
    2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為
    P(-b/2a,(4ac-b’2)/4a)
    當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b’2-4ac=0時(shí),P在x軸上。
    3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
    當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。
    |a|越大,則拋物線的開口越小。
    4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置。
    當(dāng)a與b同號時(shí)(即ab>0),對稱軸在y軸左;
    當(dāng)a與b異號時(shí)(即ab<0),對稱軸在y軸右。
    5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
    拋物線與y軸交于(0,c)
    6.拋物線與x軸交點(diǎn)個(gè)數(shù)
    Δ=b’2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
    Δ=b’2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
    Δ=b’2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b’2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
    2.高一年級數(shù)學(xué)下冊復(fù)習(xí)知識點(diǎn)
    映射
    一般地,設(shè)A、B是兩個(gè)非空的函數(shù),如果按某一個(gè)確定的對應(yīng)法則f,使對于函數(shù)A中的任意一個(gè)元素x,在函數(shù)B中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個(gè)映射。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”
    對于映射f:A→B來說,則應(yīng)滿足:
    (1)函數(shù)A中的每一個(gè)元素,在函數(shù)B中都有象,并且象是的;
    (2)函數(shù)A中不同的元素,在函數(shù)B中對應(yīng)的象可以是同一個(gè);
    (3)不要求函數(shù)B中的每一個(gè)元素在函數(shù)A中都有原象。
    3.高一年級數(shù)學(xué)下冊復(fù)習(xí)知識點(diǎn)
    求定義域的幾種情況
    ①若f(x)是整式,則函數(shù)的定義域是實(shí)數(shù)集R;
    ②若f(x)是分式,則函數(shù)的定義域是使分母不等于0的實(shí)數(shù)集;
    ③若f(x)是二次根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實(shí)數(shù)集合;
    ④若f(x)是對數(shù)函數(shù),真數(shù)應(yīng)大于零。
    ⑤因?yàn)榱愕牧愦蝺鐩]有意義,所以底數(shù)和指數(shù)不能同時(shí)為零。
    ⑥若f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)集合;
    ⑦若f(x)是由實(shí)際問題抽象出來的函數(shù),則函數(shù)的定義域應(yīng)符合實(shí)際問題
    4.高一年級數(shù)學(xué)下冊復(fù)習(xí)知識點(diǎn)
    公式一:
    設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
    sin(2kπ+α)=sinα
    cos(2kπ+α)=cosα
    tan(2kπ+α)=tanα
    cot(2kπ+α)=cotα
    公式二:
    設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
    sin(π+α)=-sinα
    cos(π+α)=-cosα
    tan(π+α)=tanα
    cot(π+α)=cotα
    公式三:
    任意角α與-α的三角函數(shù)值之間的關(guān)系:
    sin(-α)=-sinα
    cos(-α)=cosα
    tan(-α)=-tanα
    cot(-α)=-cotα
    公式四:
    利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
    sin(π-α)=sinα
    cos(π-α)=-cosα
    tan(π-α)=-tanα
    cot(π-α)=-cotα
    5.高一年級數(shù)學(xué)下冊復(fù)習(xí)知識點(diǎn)
    等比數(shù)列求和公式
    (1)等比數(shù)列:a(n+1)/an=q(n∈n)。
    (2)通項(xiàng)公式:an=a1×q^(n-1);推廣式:an=am×q^(n-m);
    (3)求和公式:sn=n×a1(q=1)sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)(q為公比,n為項(xiàng)數(shù))
    (4)性質(zhì):
    ①若m、n、p、q∈n,且m+n=p+q,則am×an=ap×aq;
    ②在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列.
    ③若m、n、q∈n,且m+n=2q,則am×an=aq^2
    (5)"g是a、b的等比中項(xiàng)""g^2=ab(g≠0)".
    (6)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零.注意:上述公式中an表示等比數(shù)列的第n項(xiàng)。
    等比數(shù)列求和公式推導(dǎo):sn=a1+a2+a3+...+an(公比為q)q_sn=a1_q+a2_q+a3_q+...+an_q=a2+a3+a4+...+a(n+1)sn-q_sn=a1-a(n+1)(1-q)sn=a1-a1_q^nsn=(a1-a1_q^n)/(1-q)sn=(a1-an_q)/(1-q)sn=a1(1-q^n)/(1-q)sn=k_(1-q^n)~y=k_(1-a^x)。