高一必修三數(shù)學知識點梳理

字號:


    各個科目都有自己的學習方法,但其實都是萬變不離其中的,基本離不開背、記,練,數(shù)學作為最燒腦的科目之一,也是一樣的。以下是整理的《高一必修三數(shù)學知識點梳理》希望能夠幫助到大家。
    1.高一必修三數(shù)學知識點梳理 篇一
    系統(tǒng)抽樣
    1.系統(tǒng)抽樣(等距抽樣或機械抽樣):
    把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個樣本采用簡單隨機抽樣的辦法抽取。K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)
    前提條件:總體中個體的排列對于研究的變量來說,應是隨機的,即不存在某種與研究變量相關的規(guī)則分布??梢栽谡{(diào)查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。
    2.系統(tǒng)抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。因為它對抽樣框的要求較低,實施也比較簡單。更為重要的是,如果有某種與調(diào)查指標相關的輔助變量可供使用,總體單元按輔助變量的大小順序排隊的話,使用系統(tǒng)抽樣可以大大提高估計精度。
    2.高一必修三數(shù)學知識點梳理 篇二
    函數(shù)的性質:
    函數(shù)的單調(diào)性、奇偶性、周期性
    單調(diào)性:定義:注意定義是相對與某個具體的區(qū)間而言。
    判定方法有:定義法(作差比較和作商比較)
    導數(shù)法(適用于多項式函數(shù))
    復合函數(shù)法和圖像法。
    應用:比較大小,證明不等式,解不等式。
    奇偶性:定義:注意區(qū)間是否關于原點對稱,比較f(x)與f(-x)的關系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
    判別方法:定義法,圖像法,復合函數(shù)法
    應用:把函數(shù)值進行轉化求解。
    周期性:定義:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
    其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
    應用:求函數(shù)值和某個區(qū)間上的函數(shù)解析式。
    3.高一必修三數(shù)學知識點梳理 篇三
    總體和樣本
    ①在統(tǒng)計學中,把研究對象的全體叫做總體。
    ②把每個研究對象叫做個體。
    ③把總體中個體的總數(shù)叫做總體容量。
    ④為了研究總體的有關性質,一般從總體中隨機抽取一部分:x1,x2,....,x-x研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量。
    簡單隨機抽樣也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎,高三。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
    4.高一必修三數(shù)學知識點梳理 篇四
    1、直線方程形式
    一般式:Ax+By+C=0(AB≠0)
    斜截式:y=kx+b(k是斜率b是x軸截距)
    點斜式:y-y1=k(x-x1)(直線過定點(x1,y1))
    兩點式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直線過定點(x1,y1),(x2,y2))
    截距式:x/a+y/b=1(a是x軸截距,b是y軸截距)
    做題過程中,點斜式和斜截式用的最多(兩種合占90%以上),一般式屬于中間過渡形態(tài)。
    在與圓及圓錐曲線結合的過程中,還要用到點到直線距離公式。
    2、直線方程的局限性
    各種不同形式的直線方程的局限性:
    (1)點斜式和斜截式都不能表示斜率不存在的直線;
    (2)兩點式不能表示與坐標軸平行的直線;
    (3)截距式不能表示與坐標軸平行或過原點的直線;
    (4)直線方程的一般式中系數(shù)A、B不能同時為零。
    5.高一必修三數(shù)學知識點梳理 篇五
    集合間的基本關系
    1.“包含”關系—子集
    注意:有兩種可能
    (1)A是B的一部分。
    (2)A與B是同一集合。
    反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
    2.“相等”關系(5≥5,且5≤5,則5=5)
    實例:設A={xx2-1=0}B={-1,1}“元素相同”
    結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
    ①任何一個集合是它本身的子集。AíA
    ②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
    ③如果AíB,BíC,那么AíC
    ④如果AíB同時BíA那么A=B
    3.不含任何元素的集合叫做空集,記為Φ
    6.高一必修三數(shù)學知識點梳理 篇六
    算法
    1、算法概念:
    在數(shù)學中,算法通常是指按照一定規(guī)則解決某一類問題的明確和有限的步驟.現(xiàn)在,算法通??梢跃幊捎嬎銠C程序,讓計算機執(zhí)行并解決問題.
    2、算法的特征
    ①有限性:算法中的步驟序列是有限的,必須在有限操作之后停止,不能是無限的。
    ②確定性:算法中的每一步應該是確定的并且能有效地執(zhí)行且得到確定的結果,而不應當是模棱兩可。
    ③順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后續(xù)步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題。
    ④不性:求解某一個問題的解法不一定是的,對于一個問題可以有不同的算法。
    ⑤普通性:很多具體的問題,都可以設計合理的算法去解決,如心算、計算其計算都要經(jīng)過有限、事先設計好的步驟加以解決。
    概率
    (1)事件的包含、并事件、交事件、相等事件
    (2)若A∩B為不可能事件,即A∩B=ф,即不可能同時發(fā)生的兩個事件,稱事件A與事件B互斥;
    (3)若A∩B為不可能事件,A∪B為必然事件,即不能同時發(fā)生且必有一個發(fā)生的兩個事件,稱事件A與事件B互為對立事件;
    概率加法公式:當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)