高一必修二數(shù)學復習筆記

字號:

高一必修二數(shù)學復習筆記是為大家整理的,把握數(shù)學的重要知識點,會讓你輕松面對數(shù)學考試。
    1.高一必修二數(shù)學復習筆記 篇一
    數(shù)列
    (1)數(shù)列的概念和簡單表示法
    ①了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項公式).
    ②了解數(shù)列是自變量為正整數(shù)的一類函數(shù).
    (2)等差數(shù)列、等比數(shù)列
    ①理解等差數(shù)列、等比數(shù)列的概念.
    ②掌握等差數(shù)列、等比數(shù)列的通項公式與前項和公式.
    ③能在具體的問題情境中,識別數(shù)列的等差關系或等比關系,并能用有關知識解決相應的問題.
    ④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關系
    2.高一必修二數(shù)學復習筆記 篇二
    空間中的垂直問題
    (1)線線、面面、線面垂直的定義
    ①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.
    ②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直.
    ③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.
    (2)垂直關系的判定和性質(zhì)定理
    ①線面垂直判定定理和性質(zhì)定理
    判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面.
    性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.
    ②面面垂直的判定定理和性質(zhì)定理
    判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直.
    性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面.
    3.高一必修二數(shù)學復習筆記 篇三
    空間中的平行問題
    (1)直線與平面平行的判定及其性質(zhì)
    線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.
    線線平行線面平行
    線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,
    那么這條直線和交線平行.線面平行線線平行
    (2)平面與平面平行的判定及其性質(zhì)
    兩個平面平行的判定定理
    (1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行
    (線面平行→面面平行),
    (2)如果在兩個平面內(nèi),各有兩組相交直線對應平行,那么這兩個平面平行.
    (線線平行→面面平行),
    (3)垂直于同一條直線的兩個平面平行,
    兩個平面平行的性質(zhì)定理
    (1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行.(面面平行→線面平行)
    (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)
    4.高一必修二數(shù)學復習筆記 篇四
    棱錐
    棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐
    棱錐的性質(zhì):
    (1)側棱交于一點。側面都是三角形
    (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方
    正棱錐
    正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
    正棱錐的性質(zhì):
    (1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
    (2)多個特殊的直角三角形
    esp:
    a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
    b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
    5.高一必修二數(shù)學復習筆記 篇五
    二面角
    (1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
    (2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
    (3)二面角的棱:這一條直線叫做二面角的棱。
    (4)二面角的面:這兩個半平面叫做二面角的面。
    (5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
    (6)直二面角:平面角是直角的二面角叫做直二面角。
    6.高一必修二數(shù)學復習筆記 篇六
    柱、錐、臺、球的結構特征
    (1)棱柱:
    幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形.
    (2)棱錐
    幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.
    (3)棱臺:
    幾何特征:
    ①上下底面是相似的平行多邊形
    ②側面是梯形
    ③側棱交于原棱錐的頂點
    (4)圓柱:
    定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成
    幾何特征:
    ①底面是全等的圓;
    ②母線與軸平行;
    ③軸與底面圓的半徑垂直;
    ④側面展開圖是一個矩形.
    (5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成
    幾何特征:
    ①底面是一個圓;
    ②母線交于圓錐的頂點;
    ③側面展開圖是一個扇形.
    (6)圓臺:
    定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成
    幾何特征:
    ①上下底面是兩個圓;
    ②側面母線交于原圓錐的頂點;
    ③側面展開圖是一個弓形.
    (7)球體:
    定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
    幾何特征:
    ①球的截面是圓;
    ②球面上任意一點到球心的距離等于半徑.