高一下學(xué)期數(shù)學(xué)重點知識點

字號:

學(xué)習(xí)數(shù)學(xué)這門課程的時候需要經(jīng)常進(jìn)行總結(jié),能夠幫助自己更好地掌握知識。為各位同學(xué)整理了《高一下學(xué)期數(shù)學(xué)重點知識點》,希望對你的學(xué)習(xí)有所幫助!
    1.高一下學(xué)期數(shù)學(xué)重點知識點 篇一
    空間幾何體表面積體積公式:
    1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
    2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
    3、a-邊長,S=6a2,V=a3
    4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
    5、棱柱S-h-高V=Sh
    6、棱錐S-h-高V=Sh/3
    7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
    8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
    9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
    10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
    11、r-底半徑h-高V=πr^2h/3
    12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
    14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
    15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
    16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
    17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
    2.高一下學(xué)期數(shù)學(xué)重點知識點 篇二
    方程的根與函數(shù)的零點
    1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。
    2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo)。即:方程有實數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點,函數(shù)有零點.
    3、函數(shù)零點的求法:
    (1)(代數(shù)法)求方程的實數(shù)根;
    (2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.
    4、二次函數(shù)的零點:
    (1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.
    (2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
    (3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.
    3.高一下學(xué)期數(shù)學(xué)重點知識點 篇三
    反比例函數(shù)圖像性質(zhì):
    反比例函數(shù)的圖像為雙曲線。
    由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。
    另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標(biāo)軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
    上面給出了k分別為正和負(fù)(2和-2)時的函數(shù)圖像。
    當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)
    當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)
    反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。
    4.高一下學(xué)期數(shù)學(xué)重點知識點 篇四
    1.拋物線是軸對稱圖形。對稱軸為直線
    x=-b/2a。
    對稱軸與拋物線的交點為拋物線的頂點P。
    特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)
    2.拋物線有一個頂點P,坐標(biāo)為
    P(-b/2a,(4ac-b’2)/4a)
    當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b’2-4ac=0時,P在x軸上。
    3.二次項系數(shù)a決定拋物線的開口方向和大小。
    當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。
    |a|越大,則拋物線的開口越小。
    4.項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
    當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;
    當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。
    5.常數(shù)項c決定拋物線與y軸交點。
    拋物線與y軸交于(0,c)
    6.拋物線與x軸交點個數(shù)
    Δ=b’2-4ac>0時,拋物線與x軸有2個交點。
    Δ=b’2-4ac=0時,拋物線與x軸有1個交點。
    Δ=b’2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b’2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
    5.高一下學(xué)期數(shù)學(xué)重點知識點 篇五
    1.一些基本概念:
    (1)向量:既有大小,又有方向的量.
    (2)數(shù)量:只有大小,沒有方向的量.
    (3)有向線段的三要素:起點、方向、長度.
    (4)零向量:長度為0的向量.
    (5)單位向量:長度等于1個單位的向量.
    (6)平行向量(共線向量):方向相同或相反的非零向量.
    ※零向量與任一向量平行.
    (7)相等向量:長度相等且方向相同的向量.
    2.向量加法運(yùn)算:
    ⑴三角形法則的特點:首尾相連.
    ⑵平行四邊形法則的特點:共起點
    6.高一下學(xué)期數(shù)學(xué)重點知識點 篇六
    對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
    首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時,設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:
    排除了為0與負(fù)數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);
    排除了為0這種可能,即對于x<0和x>0的所有實數(shù),q不能是偶數(shù);
    排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負(fù)數(shù)。
    總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);
    如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。
    在x大于0時,函數(shù)的值域總是大于0的實數(shù)。
    在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。
    而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
    由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況。
    (1)所有的圖形都通過(1,1)這點。
    (2)當(dāng)a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。
    (3)當(dāng)a大于1時,冪函數(shù)圖形下凹;當(dāng)a小于1大于0時,冪函數(shù)圖形上凸。
    (4)當(dāng)a小于0時,a越小,圖形傾斜程度越大。
    (5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。
    (6)顯然冪函數(shù)無XX。