高三數(shù)學(xué)知識點歸納總結(jié)

字號:

數(shù)學(xué)是人類對事物的抽象結(jié)構(gòu)與模式進(jìn)行嚴(yán)格描述的一種通用手段,可以應(yīng)用于現(xiàn)實世界的任何問題,所有的數(shù)學(xué)對象本質(zhì)上都是人為定義的。為各位同學(xué)整理了《高三數(shù)學(xué)知識點歸納總結(jié)》,希望對你的學(xué)習(xí)有所幫助!
    1.高三數(shù)學(xué)知識點歸納總結(jié) 篇一
    二面角和二面角的平面角
    ①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。
    ②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
    ③直二面角:平面角是直角的二面角叫直二面角。兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角
    ④求二面角的方法
    定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角
    垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角
    2.高三數(shù)學(xué)知識點歸納總結(jié) 篇二
    不等式分類:
    不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。一般地,用純粹的大于號、小于號“>”“<”連接的不等式稱為嚴(yán)格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)“≥”(大于等于符號)“≤”(小于等于符號)連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
    通常不等式中的數(shù)是實數(shù),字母也代表實數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號也可以為<,≥,>中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達(dá)一個命題,也可以表示一個問題。
    3.高三數(shù)學(xué)知識點歸納總結(jié) 篇三
    1、函數(shù)的單調(diào)性
    (1)設(shè)x1、x2[a,b],x1x2那么
    f(x1)f(x2)0f(x)在[a,b]上是增函數(shù);
    f(x1)f(x2)0f(x)在[a,b]上是減函數(shù).
    (2)設(shè)函數(shù)yf(x)在某個區(qū)間內(nèi)可導(dǎo),若f(x)0,則f(x)為增函數(shù);若f(x)0,則f(x)為減函數(shù).
    2、函數(shù)的奇偶性
    對于定義域內(nèi)任意的x,都有f(-x)=f(x),則f(x)是偶函數(shù);對于定義域內(nèi)任意的x,都有f(x)f(x),則f(x)是奇函數(shù)。奇函數(shù)的圖象關(guān)于原點對稱,偶函數(shù)的圖象關(guān)于y軸對稱。
    3、判別式
    b2-4ac=0注:方程有兩個相等的實根
    b2-4ac>0注:方程有兩個不等的實根
    b2-4ac<0注:方程沒有實根,有共軛復(fù)數(shù)根
    4、兩角和公式
    sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
    cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
    tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
    ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
    5、倍角公式
    tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
    cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
    6、拋物線
    拋物線:y=ax_bx+c就是y等于ax的平方加上bx再加上c。
    a>0時,拋物線開口向上;a<0時拋物線開口向下;c=0時拋物線經(jīng)過原點;b=0時拋物線對稱軸為y軸。
    頂點式y(tǒng)=a(x+h)_k就是y等于a乘以(x+h)的平方+k,-h是頂點坐標(biāo)的x,k是頂點坐標(biāo)的y,一般用于求值與最小值。
    拋物線標(biāo)準(zhǔn)方程:y^2=2px它表示拋物線的焦點在x的正半軸上,焦點坐標(biāo)為(p/2,0)。
    準(zhǔn)線方程為x=-p/2由于拋物線的焦點可在任意半軸,故共有標(biāo)準(zhǔn)方程:y^2=2pxy^2=-2p_^2=2pyx^2=-2py。
    4.高三數(shù)學(xué)知識點歸納總結(jié) 篇四
    1、三類角的求法:
    ①找出或作出有關(guān)的角。
    ②證明其符合定義,并指出所求作的角。
    ③計算大?。ń庵苯侨切?,或用余弦定理)
    2、正棱柱——底面為正多邊形的直棱柱
    正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。
    正棱錐的計算集中在四個直角三角形中:
    3、怎樣判斷直線l與圓C的位置關(guān)系?
    圓心到直線的距離與圓的半徑比較。
    直線與圓相交時,注意利用圓的“垂徑定理”。
    4、對線性規(guī)劃問題:
    作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。
    5.高三數(shù)學(xué)知識點歸納總結(jié) 篇五
    1.滿足二元一次不等式(組)的x和y的取值構(gòu)成有序數(shù)對(x,y),稱為二元一次不等式(組)的一個解,所有這樣的有序數(shù)對(x,y)構(gòu)成的集合稱為二元一次不等式(組)的解集。
    2.二元一次不等式(組)的每一個解(x,y)作為點的坐標(biāo)對應(yīng)平面上的一個點,二元一次不等式(組)的解集對應(yīng)平面直角坐標(biāo)系中的一個半平面(平面區(qū)域)。
    3.直線l:Ax+By+C=0(A、B不全為零)把坐標(biāo)平面劃分成兩部分,其中一部分(半個平面)對應(yīng)二元一次不等式Ax+By+C>0(或≥0),另一部分對應(yīng)二元一次不等式Ax+By+C<0(或≤0)。
    4.已知平面區(qū)域,用不等式(組)表示它,其方法是:在所有直線外任取一點(如本題的原點(0,0)),將其坐標(biāo)代入Ax+By+C,判斷正負(fù)就可以確定相應(yīng)不等式。
    5.一個二元一次不等式表示的平面區(qū)域是相應(yīng)直線劃分開的半個平面,一般用特殊點代入二元一次不等式檢驗就可以判定,當(dāng)直線不過原點時常選原點檢驗,當(dāng)直線過原點時,常選(1,0)或(0,1)代入檢驗,二元一次不等式組表示的平面區(qū)域是它的各個不等式所表示的平面區(qū)域的公共部分,注意邊界是實線還是虛線的含義?!熬€定界,點定域”。
    6.滿足二元一次不等式(組)的整數(shù)x和y的取值構(gòu)成的有序數(shù)對(x,y),稱為這個二元一次不等式(組)的一個解。所有整數(shù)解對應(yīng)的點稱為整點(也叫格點),它們都在這個二元一次不等式(組)表示的平面區(qū)域內(nèi)。
    7.畫二元一次不等式Ax+By+C≥0所表示的平面區(qū)域時,應(yīng)把邊界畫成實線,畫二元一次不等式Ax+By+C>0所表示的平面區(qū)域時,應(yīng)把邊界畫成虛線。
    8.若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的同側(cè),則Ax0+By0+C與Ax1+Byl+C符號相同;若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的兩側(cè),則Ax0+By0+C與Ax1+Byl+C符號相反。
    9.從實際問題中抽象出二元一次不等式(組)的步驟是:
    (1)根據(jù)題意,設(shè)出變量;
    (2)分析問題中的變量,并根據(jù)各個不等關(guān)系列出常量與變量x,y之間的不等式;
    (3)把各個不等式連同變量x,y有意義的實際范圍合在一起,組成不等式組。
    6.高三數(shù)學(xué)知識點歸納總結(jié) 篇六
    線線平行常用方法
    (1)定義:在同一平面內(nèi)沒有公共點的兩條直線是平行直線。
    (2)公理:在空間中平行于同一條直線的兩只直線互相平行。
    (3)初中所學(xué)平面幾何中判斷直線平行的方法
    (4)線面平行的性質(zhì):如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面的相交,那么這條直線就和兩平面的交線平行。
    (5)線面垂直的性質(zhì):如果兩直線同時垂直于同一平面,那么兩直線平行。
    (6)面面平行的性質(zhì):若兩個平行平面同時與第三個平面相交,則它們的交線平行。