數(shù)學(xué)在考試中占的分?jǐn)?shù)較大,將數(shù)學(xué)重要知識(shí)點(diǎn)總結(jié)起來,能夠大大提高自己的學(xué)習(xí)效率。為各位同學(xué)整理了《高二下學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)歸納》,希望對(duì)你的學(xué)習(xí)有所幫助!
1.高二下學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)歸納 篇一
向量公式:
1.單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a|.
2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根號(hào)(x平方+y平方)。
3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根號(hào)[(x2-x1)平方+(y2-y1)平方]。
4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根號(hào)(x1平方+y1平方)_根號(hào)(x2平方+y2平方)。
5.空間向量:同上推論(提示:向量a={x,y,z})。
6.充要條件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2.
7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方。
2.高二下學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)歸納 篇二
極值的定義:
(1)極大值:一般地,設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,如果對(duì)x0附近的所有的點(diǎn),都有f(x)
(2)極小值:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對(duì)x0附近的所有的點(diǎn),都有f(x)>f(x0),就說f(x0)是函數(shù)f(x)的一個(gè)極小值,記作y極小值=f(x0),x0是極小值點(diǎn)。
極值的性質(zhì):
(1)極值是一個(gè)局部概念,由定義知道,極值只是某個(gè)點(diǎn)的函數(shù)值與它附近點(diǎn)的函數(shù)值比較是或最小,并不意味著它在函數(shù)的整個(gè)的定義域內(nèi)或最小;
(2)函數(shù)的極值不是的,即一個(gè)函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個(gè);
(3)極大值與極小值之間無確定的大小關(guān)系,即一個(gè)函數(shù)的極大值未必大于極小值;
(4)函數(shù)的極值點(diǎn)一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點(diǎn)不能成為極值點(diǎn),而使函數(shù)取得值、最小值的點(diǎn)可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點(diǎn)。
求函數(shù)f(x)的極值的步驟:
(1)確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù)f′(x);
(2)求方程f′(x)=0的根;
(3)用函數(shù)的導(dǎo)數(shù)為0的點(diǎn),順次將函數(shù)的定義區(qū)間分成若干小開區(qū)間,并列成表格,檢查f′(x)在方程根左右的值的符號(hào),如果左正右負(fù),那么f(x)在這個(gè)根處取得極大值;如果左負(fù)右正,那么f(x)在這個(gè)根處取得極小值;如果左右不改變符號(hào)即都為正或都為負(fù),則f(x)在這個(gè)根處無極值。
3.高二下學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)歸納 篇三
函數(shù)的性質(zhì)
函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:定義:注意定義是相對(duì)與某個(gè)具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))
復(fù)合函數(shù)法和圖像法。
應(yīng)用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
判別方法:定義法,圖像法,復(fù)合函數(shù)法
應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。
4.高二下學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)歸納 篇四
數(shù)乘向量
實(shí)數(shù)λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
當(dāng)λ>0時(shí),λa與a同方向;
當(dāng)λ<0時(shí),λa與a反方向;
當(dāng)λ=0時(shí),λa=0,方向任意。
當(dāng)a=0時(shí),對(duì)于任意實(shí)數(shù)λ,都有λa=0。
注:按定義知,如果λa=0,那么λ=0或a=0。
實(shí)數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長(zhǎng)或壓縮。
當(dāng)∣λ∣>1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長(zhǎng)為原來的∣λ∣倍;
當(dāng)∣λ∣
數(shù)與向量的乘法滿足下面的運(yùn)算律
結(jié)合律:(λa)·b=λ(a·b)=(a·λb)。
向量對(duì)于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.
數(shù)對(duì)于向量的分配律(第二分配律):λ(a+b)=λa+λb.
數(shù)乘向量的消去律:
①如果實(shí)數(shù)λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
5.高二下學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)歸納 篇五
分層抽樣:
當(dāng)已知總體由差異明顯的幾部分組成時(shí),常將總體分成幾部分,然后按照各部分所占的比例進(jìn)行抽樣,這種抽樣叫做分層抽樣,其所分成的各個(gè)部分叫做層。
利用分層抽樣抽取樣本,每一層按照它在總體中所占的比例進(jìn)行抽取。
不放回抽樣和放回抽樣:
在抽樣中,如果每次抽出個(gè)體后不再將它放回總體,稱這樣的抽樣為不放回抽樣;如果每次抽出個(gè)體后再將它放回總體,稱這樣的抽樣為放回抽樣.
隨機(jī)抽樣、系統(tǒng)抽樣、分層抽樣都是不放回抽樣
分層抽樣的特點(diǎn):
(1)分層抽樣適用于差異明顯的幾部分組成的情況;
(2)在每一層進(jìn)行抽樣時(shí),在采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣;
(3)分層抽樣充分利用已掌握的信息,使樣具有良好的代表性;
(4)分層抽樣也是等概率抽樣,而且在每層抽樣時(shí),可以根據(jù)具體情況采用不同的抽樣方法,因此應(yīng)用較為廣泛。
6.高二下學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)歸納 篇六
1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線
x=-b/2a。
對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為
P(-b/2a,(4ac-b^2)/4a)
當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。
5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點(diǎn)個(gè)數(shù)
Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
Δ=b^2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

