高一下冊數(shù)學知識點總結(jié)歸納

字號:


    高一的課堂教學幾乎全是新授課,每一學科的知識都是一個體系,課堂上走神幾分鐘,往往會使知識斷鏈,以后很難補上。為各位同學整理了《高一下冊數(shù)學知識點總結(jié)歸納》,希望對你的學習有所幫助!
    1.高一下冊數(shù)學知識點總結(jié)歸納 篇一
    二面角
    (1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
    (2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
    (3)二面角的棱:這一條直線叫做二面角的棱。
    (4)二面角的面:這兩個半平面叫做二面角的面。
    (5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
    (6)直二面角:平面角是直角的二面角叫做直二面角。
    2.高一下冊數(shù)學知識點總結(jié)歸納 篇二
    復數(shù)定義
    我們把形如a+bi(a,b均為實數(shù))的數(shù)稱為復數(shù),其中a稱為實部,b稱為虛部,i稱為虛數(shù)單位。當虛部等于零時,這個復數(shù)可以視為實數(shù);當z的虛部不等于零時,實部等于零時,常稱z為純虛數(shù)。復數(shù)域是實數(shù)域的代數(shù)閉包,也即任何復系數(shù)多項式在復數(shù)域中總有根。
    復數(shù)表達式
    虛數(shù)是與任何事物沒有聯(lián)系的,是絕對的,所以符合的表達式為:
    a=a+ia為實部,i為虛部
    復數(shù)運算法則
    加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;
    減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;
    乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
    除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.
    例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,終結(jié)果還是0,也就在數(shù)字中沒有復數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個函數(shù)。
    復數(shù)與幾何
    ①幾何形式
    復數(shù)z=a+bi被復平面上的點z(a,b)確定。這種形式使復數(shù)的問題可以借助圖形來研究。也可反過來用復數(shù)的理論解決一些幾何問題。
    ②向量形式
    復數(shù)z=a+bi用一個以原點O(0,0)為起點,點Z(a,b)為終點的向量OZ表示。這種形式使復數(shù)四則運算得到恰當?shù)膸缀谓忉尅?BR>    ③三角形式
    復數(shù)z=a+bi化為三角形式
    3.高一下冊數(shù)學知識點總結(jié)歸納 篇三
    求函數(shù)的值域或值
    求函數(shù)值的常用方法和求函數(shù)值域的方法基本上是相同的,事實上,如果在函數(shù)的值域中存在一個小(大)數(shù),這個數(shù)就是函數(shù)的小(大)值。因此求函數(shù)的值與值域,其實質(zhì)是相同的,只是提問的角度不同。求函數(shù)值域與值的常用方法:
    ①觀察法:對于比較簡單的函數(shù),我們可以通過觀察直接得到值域或值.
    ②配方法:將函數(shù)解析式化成含有自變量的平方式與常數(shù)的和,然后根據(jù)變量的取值范圍確定函數(shù)的值域或值.
    ④不等式法:利用基本不等式確定函數(shù)的值域或值.
    ⑤換元法:通過變量代換達到化繁為簡、化難為易的目的,三角代換可將代數(shù)函數(shù)的值問題轉(zhuǎn)化為三角函數(shù)的值問題.
    ⑥反函數(shù)法:利用函數(shù)和它的反函數(shù)的定義域與值域的互逆關(guān)系確定函數(shù)的值域或值.
    ⑦數(shù)形結(jié)合法:利用函數(shù)圖象或幾何方法確定函數(shù)的值域或值.
    ⑧函數(shù)的單調(diào)性法.
    4.高一下冊數(shù)學知識點總結(jié)歸納 篇四
    定義:
    從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元方程所表示的圖形。求兩條直線的交點,只需把這兩個二元方程聯(lián)立求解,當這個聯(lián)立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度??梢酝ㄟ^斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元方程聯(lián)立,作為它們相交所得直線的方程。
    表達式:
    斜截式:y=kx+b
    兩點式:(y-y1)/(y1-y2)=(x-x1)/(x1-x2)
    點斜式:y-y1=k(x-x1)
    截距式:(x/a)+(y/b)=0
    5.高一下冊數(shù)學知識點總結(jié)歸納 篇五
    多面體的結(jié)構(gòu)特征
    (1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。
    正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。
    (2)棱錐的底面是任意多邊形,側(cè)面是有一個公共頂點的三角形。
    正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。
    (3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。
    6.高一下冊數(shù)學知識點總結(jié)歸納 篇六
    冪函數(shù)
    定義:
    形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。
    定義域和值域:
    當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。當x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:在x大于0時,函數(shù)的值域總是大于0的實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。而只有a為正數(shù),0才進入函數(shù)的值域
    性質(zhì):
    對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
    首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=—k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:
    排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);
    排除了為0這種可能,即對于x
    排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。