高一數(shù)學(xué)必修二知識(shí)歸納整理

字號(hào):


    高中數(shù)學(xué)知識(shí)比較多,高一數(shù)學(xué)必修二需要記憶的知識(shí)點(diǎn)原理也很多,為各位同學(xué)整理了《高一數(shù)學(xué)必修二知識(shí)歸納整理》,希望對(duì)你的學(xué)習(xí)有所幫助!
    1.高一數(shù)學(xué)必修二知識(shí)歸納整理 篇一
    函數(shù)的周期性
    (1)y=f(x)對(duì)x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
    (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為2︱a︱的周期函數(shù);
    (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對(duì)稱,則f(x)是周期為4︱a︱的周期函數(shù);
    (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(x)是周期為2的周期函數(shù);
    (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對(duì)稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);
    (6)y=f(x)對(duì)x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù)。
    2.高一數(shù)學(xué)必修二知識(shí)歸納整理 篇二
    兩角和與差的三角函數(shù):
    cos(α+β)=cosα·cosβ-sinα·sinβ
    cos(α-β)=cosα·cosβ+sinα·sinβ
    sin(α±β)=sinα·cosβ±cosα·sinβ
    tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
    tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
    三角和的三角函數(shù):
    sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
    cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
    tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
    輔助角公式:
    Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中
    sint=B/(A2+B2)^(1/2)
    cost=A/(A2+B2)^(1/2)
    tant=B/A
    Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B
    倍角公式:
    sin(2α)=2sinα·cosα=2/(tanα+cotα)
    cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)
    tan(2α)=2tanα/[1-tan2(α)]
    三倍角公式:
    sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α)
    cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α)
    tan(3α)=tana·tan(π/3+a)·tan(π/3-a)
    半角公式:
    sin(α/2)=±√((1-cosα)/2)
    cos(α/2)=±√((1+cosα)/2)
    tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
    降冪公式
    sin2(α)=(1-cos(2α))/2=versin(2α)/2
    cos2(α)=(1+cos(2α))/2=covers(2α)/2
    tan2(α)=(1-cos(2α))/(1+cos(2α))
    3.高一數(shù)學(xué)必修二知識(shí)歸納整理 篇三
    數(shù)列
    (1)數(shù)列的概念和簡(jiǎn)單表示法
    ①了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式).
    ②了解數(shù)列是自變量為正整數(shù)的一類函數(shù).
    (2)等差數(shù)列、等比數(shù)列
    ①理解等差數(shù)列、等比數(shù)列的概念.
    ②掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式.
    ③能在具體的問(wèn)題情境中,識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題.
    ④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.
    4.高一數(shù)學(xué)必修二知識(shí)歸納整理 篇四
    正棱錐
    正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
    正棱錐的性質(zhì):
    (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
    (2)多個(gè)特殊的直角三角形
    a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
    b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
    5.高一數(shù)學(xué)必修二知識(shí)歸納整理 篇五
    二面角和二面角的平面角
    ①二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面.
    ②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.
    ③直二面角:平面角是直角的二面角叫直二面角.
    兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角
    ④求二面角的方法
    定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角
    垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角
    6.高一數(shù)學(xué)必修二知識(shí)歸納整理 篇六
    函數(shù)圖像(或方程曲線的對(duì)稱性)
    (1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;
    (2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;
    (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
    (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;
    (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱,高中數(shù)學(xué);
    (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱。