高中數(shù)學(xué)學(xué)習(xí)方法心得體會(huì)(模板8篇)

字號(hào):

    心得體會(huì)是個(gè)人在經(jīng)歷某種事物、活動(dòng)或事件后,通過(guò)思考、總結(jié)和反思,從中獲得的經(jīng)驗(yàn)和感悟。好的心得體會(huì)對(duì)于我們的幫助很大,所以我們要好好寫一篇心得體會(huì)下面是小編幫大家整理的優(yōu)秀心得體會(huì)范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
    高中數(shù)學(xué)學(xué)習(xí)方法心得體會(huì)篇一
    課前預(yù)習(xí):一個(gè)老生常談的話題,也是提到學(xué)習(xí)方法必將的一個(gè),話雖老,雖舊,但仍然是不得不提。雖然大家都明白該這樣做,但是真正能夠做到課前預(yù)習(xí)的能有幾人,課前預(yù)習(xí)可以使我們提前了解將要學(xué)習(xí)的知識(shí),不至于到課上手足無(wú)措,加深我們聽(tīng)課時(shí)的理解,從而能夠很快的吸收新知識(shí)。
    記筆記:這里主要指的是課堂筆記,因?yàn)槊抗?jié)課的時(shí)間有限,所以老師將的東西一般都是精華部分,因此很有必要把它們記錄下來(lái),一來(lái)可以加深我們的理解,好記性不如爛筆頭嗎,二來(lái)可以方便我們以后復(fù)習(xí)查看。如果對(duì)課堂講述的知識(shí)不理解的同學(xué)更應(yīng)該做筆記,以便課下細(xì)細(xì)琢磨,直到理解為止。
    課后復(fù)習(xí):同預(yù)習(xí)一樣,是個(gè)老生常談的話題,但也是行之有效的方法,課堂的幾十分鐘不足以使我們學(xué)習(xí)和消化所學(xué)知識(shí),需要我們?cè)谡n下進(jìn)行大量的練習(xí)與鞏固,才能真正掌握所學(xué)知識(shí)。
    涉獵課外習(xí)題:想要在數(shù)學(xué)中有所建樹(shù),取得好成績(jī),光靠課本上的知識(shí)是遠(yuǎn)遠(yuǎn)不夠的,因此我們需要多多涉獵一些課外習(xí)題,學(xué)習(xí)它們的解題思路和方法,如果實(shí)在不能理解,可以問(wèn)問(wèn)老師或者同學(xué)。
    學(xué)會(huì)歸類總結(jié):學(xué)習(xí)數(shù)學(xué)要記得東西很多,尤其是數(shù)學(xué)公式,而且知識(shí)還很散,通常解一道題需要各種公式的配合,如果單純的記憶每個(gè)公式,不但增加記憶量,而且容易忘,此時(shí)我們必須學(xué)會(huì)歸類總結(jié),把經(jīng)常搭配使用的公式等總結(jié)在一起記憶,這樣會(huì)大大的減少我們的記憶量,同時(shí)提高我們做題效率(因?yàn)楣蕉冀壴谝黄鹆藛幔?BR>    建立糾錯(cuò)本:我們?cè)趯W(xué)習(xí)數(shù)學(xué)的時(shí)候可能會(huì)經(jīng)常因?yàn)橥瑯右活愵}目而失分,自己也十分懊惱,其實(shí)有辦法可以解決這個(gè)問(wèn)題,就是建立糾錯(cuò)本,幫我們經(jīng)常會(huì)出錯(cuò)的題目都集中在一起(當(dāng)然只要是做錯(cuò)過(guò)得都可以記錄上),然后空閑的時(shí)候看看,考試之前再看看,這樣考試的時(shí)候出現(xiàn)同類題目再出錯(cuò)的幾率就降低好多。
    寫考試總結(jié):寫考試總結(jié)是一個(gè)好習(xí)慣,考試總結(jié)可以幫我們找出學(xué)習(xí)之中不足之處,以及我們知識(shí)的薄弱環(huán)節(jié),從而及時(shí)的彌補(bǔ)不足,以及以后的學(xué)習(xí)方向,關(guān)于考試總結(jié)怎么寫可以參考小編的“考試總結(jié)怎么寫”這篇經(jīng)驗(yàn)。
    培養(yǎng)學(xué)習(xí)興趣:又是一個(gè)老話題了,今天小編好像講了很多“廢話”,雖然情況確實(shí)也是如此,但是小編仍然要講,興趣是最好的老師(又是廢話),只有有了興趣,才會(huì)自主自發(fā)的進(jìn)行學(xué)習(xí),學(xué)習(xí)的效率才會(huì)提高。當(dāng)然建立興趣不是一件容易的事情,怎樣才能對(duì)數(shù)學(xué)產(chǎn)生興趣還需自己去發(fā)掘,如果實(shí)在不能產(chǎn)生興趣,只有掌握以上學(xué)習(xí)方法了。
    高中數(shù)學(xué)學(xué)習(xí)方法心得體會(huì)篇二
    通過(guò)幾年的高中數(shù)學(xué)的教學(xué),我感覺(jué)到很多學(xué)生重視數(shù)學(xué),想學(xué)好數(shù)學(xué)。也有很多家長(zhǎng)告訴老師他的孩子在初中數(shù)學(xué)是如何的好現(xiàn)在怎么就落后了呢。作為衡量一個(gè)人能力的重要學(xué)科,從小學(xué)到高中絕大多數(shù)同學(xué)對(duì)它情有獨(dú)鐘,投入了大量的時(shí)間與精力.然而并非人人都是成功者,許多小學(xué)、初中數(shù)學(xué)學(xué)科成績(jī)的佼佼者,進(jìn)入高中階段,第一個(gè)跟頭就栽在數(shù)學(xué)上。眾多初中學(xué)習(xí)的成功者淪為高中學(xué)習(xí)的失敗者,主要原因有以下幾個(gè)方面.
    1.學(xué)習(xí)被動(dòng).許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒(méi)有掌握學(xué)習(xí)主動(dòng)權(quán).沒(méi)有真正理解所學(xué)內(nèi)容。在初中的數(shù)學(xué)教學(xué)中,教師講解詳細(xì),常把許多問(wèn)題的解決建立為固定的思維模式,而且各類題型反復(fù)練習(xí),學(xué)生漸漸養(yǎng)成了“依葫蘆畫瓢”的抄錄式的學(xué)習(xí)方法。而高中數(shù)學(xué)要求學(xué)生勤于思考,善于思考,掌握數(shù)學(xué)思想方法,善于歸納總結(jié)規(guī)律,在思維的靈活性、可延伸性、創(chuàng)造性方面提出了較高的要求。但學(xué)生的思維能力的發(fā)展和思維方式的轉(zhuǎn)換有一個(gè)循序漸進(jìn)的過(guò)程,這就給高一數(shù)學(xué)的學(xué)習(xí)形成了思維障礙。
    2.學(xué)不得法.老師上課一般都要講清知識(shí)的來(lái)龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法.而一部分同學(xué)上課沒(méi)能專心聽(tīng)課,對(duì)要點(diǎn)沒(méi)聽(tīng)到或聽(tīng)不全,筆記記了一大本,問(wèn)題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識(shí)間的聯(lián)系,只是趕做作業(yè),亂套題型,對(duì)概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背.也有的晚上加班加點(diǎn),白天無(wú)精打采,或是上課根本不聽(tīng),自己另搞一套,結(jié)果是事倍功半,收效甚微.
    3.基礎(chǔ)重視不夠.知識(shí)是能力的基礎(chǔ),要切實(shí)抓好基礎(chǔ)知識(shí)的學(xué)習(xí)。數(shù)學(xué)基礎(chǔ)知識(shí)學(xué)習(xí)包括概念學(xué)習(xí),定理公式學(xué)習(xí)以及解題學(xué)習(xí)三個(gè)方面一些“自我感覺(jué)良好”的同學(xué),常輕視基本知識(shí)、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對(duì)難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海.到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”.
    4.進(jìn)一步學(xué)習(xí)條件不具備.高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識(shí)的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識(shí)與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備.高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高.如二次函數(shù)在閉區(qū)間上的最值問(wèn)題,函數(shù)值域的求法,實(shí)根分布與參變量方程,三角公式的變形與靈活運(yùn)用,空間概念的形成,排列組合應(yīng)用題及實(shí)際應(yīng)用問(wèn)題等.客觀上這些觀點(diǎn)就是分化點(diǎn),有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的.
    高中學(xué)生不僅僅要“想學(xué)”,還必須“會(huì)學(xué)”,要講究科學(xué)的學(xué)習(xí)方法,提高學(xué)習(xí)效率,才能變被動(dòng)為主動(dòng).針對(duì)學(xué)生學(xué)習(xí)中出現(xiàn)的上述情況,我有些建議:
    1、 樹(shù)立學(xué)好高中數(shù)學(xué)的信心。
    進(jìn)入高中就必須樹(shù)立正確的學(xué)習(xí)目標(biāo)和遠(yuǎn)大的理想。學(xué)生可以閱讀一些數(shù)學(xué)歷史,體會(huì)數(shù)學(xué)家的創(chuàng)造所經(jīng)歷的種種挫折、數(shù)學(xué)家成長(zhǎng)的故事和他們?cè)诳茖W(xué)技術(shù)進(jìn)步中的卓越貢獻(xiàn),也可請(qǐng)高二、高三的優(yōu)秀學(xué)生講講他們學(xué)習(xí)數(shù)學(xué)的方法,以此激勵(lì)自己積極思維,勇于進(jìn)取,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,樹(shù)立學(xué)好數(shù)學(xué)的信心。
    2、培養(yǎng)良好學(xué)習(xí)習(xí)慣。
    良好的學(xué)習(xí)習(xí)慣包括制定計(jì)劃、課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面.
    制定計(jì)劃使學(xué)習(xí)目的明確,時(shí)間安排合理,不慌不忙,穩(wěn)扎穩(wěn)打,它是推動(dòng)學(xué)生主動(dòng)學(xué)習(xí)和克服困難的內(nèi)在動(dòng)力.但計(jì)劃一定要切實(shí)可行,既有長(zhǎng)遠(yuǎn)打算,又有短期安排,執(zhí)行過(guò)程中嚴(yán)格要求自己,磨煉學(xué)習(xí)意志.
    課前自學(xué)是學(xué)生上好新課,取得較好學(xué)習(xí)效果的基礎(chǔ).課前自學(xué)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)主動(dòng)權(quán).自學(xué)不能搞走過(guò)場(chǎng),要講究質(zhì)量,力爭(zhēng)在課前把教材弄懂,上課著重聽(tīng)老師講課的思路,把握重點(diǎn),突破難點(diǎn),盡可能把問(wèn)題解決在課堂上.
    上課是理解和掌握基本知識(shí)、基本技能和基本方法的關(guān)鍵環(huán)節(jié).“學(xué)然后知不足”,課前自學(xué)過(guò)的同學(xué)上課更能專心聽(tīng)課,他們知道什么地方該詳,什么地方可略;什么地方該精雕細(xì)刻,什么地方可以一帶而過(guò),該記的地方才記下來(lái),而不是全抄全錄,顧此失彼.
    及時(shí)復(fù)習(xí)是高效率學(xué)習(xí)的重要一環(huán),通過(guò)反復(fù)閱讀教材,多方查閱有關(guān)資料,強(qiáng)化對(duì)基本概念知識(shí)體系的理解與記憶,將所學(xué)的新知識(shí)與有關(guān)舊知識(shí)聯(lián)系起來(lái),進(jìn)行分析比較,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記上,使對(duì)所學(xué)的新知識(shí)由“懂”到“會(huì)”.
    獨(dú)立作業(yè)是學(xué)生通過(guò)自己的獨(dú)立思考,靈活地分析問(wèn)題、解決問(wèn)題,進(jìn)一步加深對(duì)所學(xué)新知識(shí)的理解和對(duì)新技能的掌握過(guò)程.這一過(guò)程是對(duì)學(xué)生意志毅力的考驗(yàn),通過(guò)運(yùn)用使學(xué)生對(duì)所學(xué)知識(shí)由“會(huì)”到“熟”.
    解決疑難是指對(duì)獨(dú)立完成作業(yè)過(guò)程中暴露出來(lái)對(duì)知識(shí)理解的錯(cuò)誤,或由于思維受阻遺漏解答,通過(guò)點(diǎn)撥使思路暢通,補(bǔ)遺解答的過(guò)程.解決疑難一定要有鍥而不舍的精神,做錯(cuò)的作業(yè)再做一遍.對(duì)錯(cuò)誤的地方?jīng)]弄清楚要反復(fù)思考,實(shí)在解決不了的要請(qǐng)教老師和同學(xué),并要經(jīng)常把易錯(cuò)的地方拿出來(lái)復(fù)習(xí)強(qiáng)化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把求老師問(wèn)同學(xué)獲得的東西消化變成自己的知識(shí),長(zhǎng)期堅(jiān)持使對(duì)所學(xué)知識(shí)由“熟”到“活”.
    系統(tǒng)小結(jié)是學(xué)生通過(guò)積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識(shí)和發(fā)展認(rèn)識(shí)能力的重要環(huán)節(jié).小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與有關(guān)資料,通過(guò)分析、綜合、類比、概括,揭示知識(shí)間的內(nèi)在聯(lián)系.以達(dá)到對(duì)所學(xué)知識(shí)融會(huì)貫通的目的.經(jīng)常進(jìn)行多層次小結(jié),能對(duì)所學(xué)知識(shí)由“活”到“悟”.
    課外學(xué)習(xí)包括閱讀課外書籍與報(bào)刊,參加學(xué)科競(jìng)賽與講座,走訪高年級(jí)同學(xué)或老師交流學(xué)習(xí)心得等.課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補(bǔ)充和繼續(xù),它不僅能豐富學(xué)生的文化科學(xué)知識(shí),加深和鞏固課內(nèi)所學(xué)的知識(shí),而且能滿足和發(fā)展他們的興趣愛(ài)好,培養(yǎng)獨(dú)立學(xué)習(xí)和工作能力,激發(fā)求知欲與學(xué)習(xí)熱情.
    3、培養(yǎng)優(yōu)秀的數(shù)學(xué)思維品質(zhì),提高數(shù)學(xué)解決問(wèn)題的能力
    與初中數(shù)學(xué)相比高中數(shù)學(xué)在思維形式的靈活性、可拓展性等方面的要求較高。所以學(xué)習(xí)中加強(qiáng)思維訓(xùn)練,積極開(kāi)展思維活動(dòng),努力克服思維惰性,提高自身的分析問(wèn)題解決問(wèn)題的能力。
    4.循序漸進(jìn),防止急躁
    由于學(xué)生年齡較小,閱歷有限,為數(shù)不少的高中學(xué)生容易急躁,有的同學(xué)貪多求快,囫圇吞棗,有的同學(xué)想靠幾天“沖刺”一蹴而就,有的取得一點(diǎn)成績(jī)便洋洋自得,遇到挫折又一蹶不振.針對(duì)這些情況,教師要讓學(xué)生懂得學(xué)習(xí)是一個(gè)長(zhǎng)期的鞏固舊知識(shí)、發(fā)現(xiàn)新知識(shí)的積累過(guò)程,決非一朝一夕可以完成,為什么高中要上三年而不是三天!許多優(yōu)秀的同學(xué)能取得好成績(jī),其中一個(gè)重要原因是他們的基本功扎實(shí),他們的閱讀、書寫、運(yùn)算技能達(dá)到了自動(dòng)化或半自動(dòng)化的熟練程度。
    5.研究學(xué)科特點(diǎn),尋找最佳學(xué)習(xí)方法
    數(shù)學(xué)學(xué)科擔(dān)負(fù)著培養(yǎng)學(xué)生運(yùn)算能力、邏輯思維能力、空間想象能力,以及運(yùn)用所學(xué)知識(shí)分析問(wèn)題、解決問(wèn)題的能力的重任.它的特點(diǎn)是具有高度的抽象性、邏輯性和廣泛的適用性,對(duì)能力要求較高.學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書不做題不行,埋頭做題不總結(jié)積累不行,對(duì)課本知識(shí)既要能鉆進(jìn)去,又要能跳出來(lái),結(jié)合自身特點(diǎn),尋找最佳學(xué)習(xí)方法.華羅庚先生倡導(dǎo)的“由薄到厚”和“由厚到薄”的學(xué)習(xí)過(guò)程就是這個(gè)道理.方法因人而異,但學(xué)習(xí)的四個(gè)環(huán)節(jié)(預(yù)習(xí)、上課、整理、作業(yè))和一個(gè)步驟(復(fù)習(xí)總結(jié))是少不了的.
    6.重視輔導(dǎo),化解分化點(diǎn)
    如前所述高中數(shù)學(xué)中易分化的地方多,這些地方一般都有方法新、難度大、靈活性強(qiáng)等特點(diǎn).對(duì)易分化的地方應(yīng)當(dāng)采取多次反復(fù)理解,重視輔導(dǎo),將出現(xiàn)的錯(cuò)誤提出來(lái)和同學(xué)、老師議一議,充分理解題目的思維過(guò)程,通過(guò)變式練習(xí),提高自己的鑒賞能力,以達(dá)到靈活掌握知識(shí)、運(yùn)用知識(shí)的目的。
    實(shí)際上新的學(xué)習(xí)必然會(huì)有一些障礙,高中生要學(xué)好數(shù)學(xué),須解決好兩個(gè)問(wèn)題:第一是認(rèn)識(shí)問(wèn)題;第二是方法問(wèn)題。要了解學(xué)習(xí)數(shù)學(xué)困難的原因,采取正確的措施,發(fā)揮自己的主體作用,學(xué)會(huì)分析問(wèn)題、研究問(wèn)題,這樣在培養(yǎng)創(chuàng)造性思維能力的同時(shí),也提高了學(xué)習(xí)數(shù)學(xué)的興趣,使自己更有效、更順利的投入高中階段的學(xué)習(xí)。
    高中數(shù)學(xué)學(xué)習(xí)方法心得體會(huì)篇三
    從高考數(shù)學(xué)試題中可以明顯看出,高考重視對(duì)基礎(chǔ)知識(shí)、基本技能和通性通法的考查.所謂通性通法,是指具有某些規(guī)律性和普遍意義的常規(guī)解題模式和常用的數(shù)學(xué)思想方法.現(xiàn)在高考比較重視的就是這種具有普遍意義的方法和相關(guān)的知識(shí).例如,將直線方程代入圓錐曲線方程,整理成一元二次方程,再利用根的判別式、求根公式、根與系數(shù)的關(guān)系、兩點(diǎn)之間的距離公式等可以編制出很多精彩的試題.這些問(wèn)題考查了解析幾何的基本思想方法,這種通性通法在高中數(shù)學(xué)中是很多的,如二次函數(shù)在閉區(qū)間上求最值的一般方法:配方、作圖、截段等.考生在復(fù)習(xí)的過(guò)程中要對(duì)這些普遍性的東西不斷地進(jìn)行概括總結(jié),不斷地在具體解題中細(xì)心體會(huì).
    現(xiàn)在的高考命題的一個(gè)原則就是淡化特殊技巧,考生在復(fù)習(xí)中千萬(wàn)不要去刻意追求一些解題的特殊技巧,盡管一些數(shù)學(xué)題目有多種解法,有的甚至有十幾種解法,但這些解法中具有普遍意義的通用解法也就一兩種而已,更多的是針對(duì)這個(gè)題目的專用解法,這些解法作為興趣愛(ài)好去欣賞是可以的,但在高考復(fù)習(xí)中卻不能把它當(dāng)作重點(diǎn).數(shù)學(xué)屬于思考型的學(xué)科,在數(shù)學(xué)的學(xué)習(xí)和解題過(guò)程中理性思維起主導(dǎo)作用,考生在復(fù)習(xí)時(shí)要更多地注重“一題多變”(類比、拓展、延伸)、“一題多用”(即用同一個(gè)問(wèn)題做不同的事情)和“多題歸一”(所謂“一”就是具有普遍意義和廣泛遷移性的、“含金量”較高的那些策略性知識(shí)),更多地注重思考題目的“核心”是什么,從題目中“提煉”反映數(shù)學(xué)本質(zhì)的東西.掌握好數(shù)學(xué)模式題的通用方法.
    高中數(shù)學(xué)學(xué)習(xí)方法心得體會(huì)篇四
    “數(shù)”與“形”無(wú)處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小兩個(gè)屬性,就交給了教學(xué)去研究了。初中數(shù)學(xué)兩個(gè)分支——代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形整合”是一種趨勢(shì),越學(xué)下去,“數(shù)”與“形”越密不可分。到了高中就出現(xiàn)了專門用代數(shù)方法研究幾何問(wèn)題的一門課,叫做“解析幾何”。在初二建立平面直角坐標(biāo)系后,研究函數(shù)的問(wèn)題就離不開(kāi)圖像了。往往借助圖像能使問(wèn)題明朗化,比較容易找到問(wèn)題的關(guān)鍵所在,從而解決問(wèn)題。在今后的數(shù)學(xué)學(xué)習(xí)中,要重視“數(shù)形結(jié)合”的思維訓(xùn)練,任何一道題,只要與“形”沾上了一點(diǎn)邊,就應(yīng)該根據(jù)題意畫出草圖來(lái)分析一番。這樣做,不但直觀,而且全面,整體性強(qiáng),容易找出切入點(diǎn),對(duì)解題大有益處。嘗到甜頭的人就會(huì)慢慢養(yǎng)成一種“數(shù)形結(jié)合”的好習(xí)慣。
    數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見(jiàn)的等量關(guān)系就是“方程”。比如等速運(yùn)動(dòng)中,路程、速度和時(shí)間三者之間就有一種等量關(guān)系,可以建立一個(gè)相關(guān)的等式:速度?時(shí)間=路程,在這樣的等式中,一般會(huì)有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過(guò)方程里的已知量求出未知量的過(guò)程就是解方程。我們?cè)谛W(xué)就已經(jīng)接觸過(guò)簡(jiǎn)易方程,而初一則比較系統(tǒng)地學(xué)習(xí)解一元一次方程,并總結(jié)出解一元一次方程的五個(gè)步驟。如果學(xué)會(huì)并掌握了這五個(gè)步驟,任何一元一次方程都能順利地解出來(lái)。初二、初三我們還將學(xué)習(xí)解一元二次方程、二元二次方程組、分式方程,到了高中我們還將學(xué)習(xí)指數(shù)方程、對(duì)數(shù)方程、線性方程、參數(shù)方程、極坐標(biāo)方程等。解這些方程的思維幾乎一致,都是通過(guò)一定的方法將它們轉(zhuǎn)化一元一次方程或是一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個(gè)步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實(shí)中的大量實(shí)際運(yùn)用,都需要建立方程,通過(guò)解方程來(lái)求出結(jié)果。因此同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進(jìn)而學(xué)好其它形式的方程。所謂的“議程”思維就是對(duì)于數(shù)學(xué)問(wèn)題,特別是現(xiàn)實(shí)當(dāng)中碰到的未知量和已知量的錯(cuò)綜復(fù)雜的關(guān)系,善于用“方程”的觀點(diǎn)去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。
    學(xué)數(shù)學(xué)就像吃“牛軋花生糖”
    怎么學(xué)?其實(shí),這是一個(gè)吃“牛軋花生糖”的過(guò)程。我想借用這5個(gè)字“牛、軋(同音“扎”,即扎實(shí))、花生(諧音“化生”,即解題中的“化生為熟”策略)糖(甜蜜)”,來(lái)談?wù)勎覍?duì)大家的建議。
    提起“牛”,人們會(huì)說(shuō)牛氣沖天、老黃牛、牛勁。是的,我們學(xué)習(xí)就是要一股牛氣,要有一股初生牛犢的精神,要有牛氣沖天的干勁,要不畏難、不怕苦,要勤于思考、敢于實(shí)踐,要把自卑一掃而光,代之而起的是高漲而持續(xù)的學(xué)習(xí)熱情。
    牛在緊要關(guān)頭不僅有沖勁,在平時(shí)耕田拉車中還特有韌勁,我們特別需要能長(zhǎng)久維持的韌勁,它是我們的必要條件,有了這股韌勁,就能克服一切困難,集中精力,發(fā)奮讀書,即使身體小有不適,也能盡量堅(jiān)持學(xué)習(xí),這是對(duì)自己意志的考驗(yàn)。
    “軋”音同“扎”,寓意是學(xué)習(xí)要扎實(shí)。數(shù)學(xué)學(xué)習(xí)的扎實(shí)表現(xiàn)在:
    (1)不滿足于聽(tīng)懂、看懂,關(guān)鍵要能準(zhǔn)確地書寫表達(dá)出來(lái),還要能舉一反三,否則,沒(méi)有真懂。
    (2)運(yùn)算要既快又準(zhǔn)。速度慢了不行,但算錯(cuò)了更不行!
    要做到這兩條,必須在上認(rèn)真聽(tīng)講、用心思考、勤于演算、善于筆記。在課后還要通過(guò)一定數(shù)量模仿性練習(xí)、提高性練習(xí)等高質(zhì)量作業(yè)才能牢固掌握,做作業(yè)不互相對(duì)答案,不抄襲,遇到不懂問(wèn)題可以相互討論,但懂了以后自己再獨(dú)立做。還要自覺(jué)學(xué)會(huì)歸納解題成功的經(jīng)驗(yàn)和總結(jié)失敗的教訓(xùn),做到吃一塹,長(zhǎng)一智。
    花生的果實(shí)生長(zhǎng)在地下,默默地被大地滋潤(rùn)著,直到成熟才離開(kāi)土地,營(yíng)養(yǎng)價(jià)值極高。滋潤(rùn)著成長(zhǎng)的是國(guó)家以及你們的父母和。
    “花生”的“生”單獨(dú)字面有陌生、生疏的意思,“花”有相間的意思 高中化學(xué),此處借用“花生”是想說(shuō)在學(xué)習(xí)過(guò)程中會(huì)時(shí)常出現(xiàn)一些新的問(wèn)題和困難,這需要我們正確的態(tài)度去對(duì)待,是強(qiáng)調(diào)基礎(chǔ)差、問(wèn)題難,還是知難而進(jìn),用心思考,不恥下問(wèn),是對(duì)每個(gè)同學(xué)學(xué)習(xí)毅力的考驗(yàn)。
    “花生”的諧音是“化生”,借指數(shù)學(xué)中常用的——化生為熟。這是數(shù)學(xué)學(xué)習(xí)中解決問(wèn)題的一條重要途徑,是學(xué)會(huì)分析問(wèn)題和解決問(wèn)題的重要。
    糖是大家喜歡的食品,它給我們辛苦的學(xué)習(xí)帶來(lái)一絲甜意,我希望大家在繁重的學(xué)習(xí)間隙,可以唱支歌、跳曲舞來(lái)調(diào)節(jié)生活,來(lái)體驗(yàn)學(xué)習(xí)的甜蜜,預(yù)示同學(xué)們?nèi)晟钣幸粋€(gè)甜美的結(jié)果。但是大家知道,葡萄在成熟之前是不甜的,這預(yù)示著,在我們最后幾個(gè)月的學(xué)習(xí)中可能會(huì)有很多感觸,那種時(shí)而忽然開(kāi)朗,眼前一片光明,時(shí)而百思不解,眼前一片黑暗,那種糾結(jié)、煩躁、甚至憤怒,沒(méi)有親身經(jīng)歷的人是難以體會(huì)的!這樣的經(jīng)歷是一個(gè)人成長(zhǎng)、成熟所必須經(jīng)歷的,我們只能面對(duì),沒(méi)有逃避的余地,這或許是“先苦后甜”的深刻含義吧。
    吃了今天的“牛軋花生糖”,我相信今后你們學(xué)習(xí)信心更大,克服困難的意志更堅(jiān)強(qiáng),解決問(wèn)題方法更多,成績(jī)提高得更快,明天的日子會(huì)更甜!
    高中數(shù)學(xué)學(xué)習(xí)方法心得體會(huì)篇五
    常聽(tīng)同學(xué)抱怨,作業(yè)太多,做不完了,有的同學(xué)為應(yīng)付還不惜抄襲作業(yè),影響出色品質(zhì)的形成。了解下來(lái),問(wèn)題大多是在時(shí)間安排上。覺(jué)得辛苦的同學(xué),他們的作業(yè)都是在彈性的時(shí)間內(nèi)完成,想做就做些,不想做就玩會(huì)兒;或者慢條斯理,認(rèn)為時(shí)間還有的是,等會(huì)再完成。有一次,作業(yè)量并不大,可是有位同學(xué)居然沒(méi)完成,他坦誠(chéng)的說(shuō),晚上應(yīng)該花上半小時(shí)就完成,可是當(dāng)走到電視前時(shí),就自我安慰,看會(huì)吧,睡前再做,而到睡前又想起語(yǔ)代老師布置的“周記”明天早自習(xí)要交,只有先寫周記,早自習(xí)再做吧,早自習(xí)外語(yǔ)老師來(lái)檢查背誦,所以就誤了事。
    但是,大部分同學(xué)還是對(duì)數(shù)學(xué)作業(yè)高度重視,應(yīng)對(duì)自如,甚至還學(xué)有余力,額外做了些提高題,所以他們經(jīng)常要求老師多布置些作業(yè)。調(diào)查下來(lái),有兩個(gè)是他們的共同特點(diǎn):一是他們做作業(yè)限時(shí)完成,不拖拉,干凈利落,遇到困難,待各項(xiàng)任務(wù)基本完成后,再進(jìn)行鉆研。另一方面,他們做到了心動(dòng)不如行動(dòng)。他們拿到問(wèn)題,常常是立即投入戰(zhàn)斗,而不是去想今天有多少作業(yè),需多少時(shí)間,難度是否太大,能不能完成得了等等。他們遇到難題是先能做多少就做多少,能解決到什么程度就解決到什么程度,當(dāng)解決了問(wèn)題的部分時(shí),常常會(huì)閃出好念頭,悟出問(wèn)題的解決方案。實(shí)際上每解決一點(diǎn)就是向目標(biāo)靠近一步,這就是“吹盡黃沙始得金”的道理。
    高中數(shù)學(xué)學(xué)習(xí)方法心得體會(huì)篇六
    1.整體預(yù)習(xí)。就是對(duì)學(xué)習(xí)內(nèi)容進(jìn)行全局性的把握,一般在開(kāi)學(xué)前或者開(kāi)學(xué)初,比如暑假或者寒假,集中一定的時(shí)間,通閱新教材,進(jìn)行系統(tǒng)的自學(xué),了解數(shù)學(xué)的知識(shí)體系,有個(gè)概括性的印象,做到心中有數(shù),學(xué)習(xí)起來(lái)就居高臨下,有條不紊,并且能夠緩解對(duì)數(shù)學(xué)學(xué)習(xí)的精神壓力。由于數(shù)學(xué)學(xué)科是大家普遍覺(jué)得困難的學(xué)科,所以整體預(yù)習(xí)就更顯得必要。
    2.階段預(yù)習(xí)。就是對(duì)有關(guān)知識(shí)塊或者知識(shí)點(diǎn)的內(nèi)容進(jìn)行預(yù)習(xí),一般以一個(gè)章節(jié)或者單元為整體,初步建立這部分的知識(shí)結(jié)構(gòu),明確知識(shí)的重點(diǎn),了解學(xué)習(xí)的難點(diǎn),發(fā)現(xiàn)一些重要的方法,增強(qiáng)學(xué)習(xí)的目的性,從系統(tǒng)的角度掌握這部分的知識(shí)和方法。這種預(yù)習(xí)方法得到大部分學(xué)生的認(rèn)可,但常常是蜻蜓點(diǎn)水,沒(méi)有形成知識(shí)框架,應(yīng)該加以糾正。
    3.及時(shí)預(yù)習(xí)。就是在教師上課前,把即將學(xué)習(xí)的內(nèi)容進(jìn)行預(yù)習(xí),再次明確重點(diǎn)和難點(diǎn)內(nèi)容,把握重要的思想方法。這樣的預(yù)習(xí)時(shí)間短,印象深,見(jiàn)效快,上課時(shí)有的放矢,得心應(yīng)手,高質(zhì)高效。這種方法更為常用,但是由于每天的不確定因素比較多,不一定都能如愿,所以要統(tǒng)籌安排,把三個(gè)預(yù)習(xí)的層次有機(jī)結(jié)合起來(lái),相輔相成,全面兼顧。
    高中數(shù)學(xué)學(xué)習(xí)方法心得體會(huì)篇七
    聯(lián)想即有一種心理過(guò)程而引起另一種與之相連的心理過(guò)程的現(xiàn)象。知識(shí)的掌握過(guò)程中的聯(lián)想即以所形成的問(wèn)題的表征為提取線索,去激活腦中有關(guān)的知識(shí)結(jié)構(gòu)。聯(lián)想是使抽象化或概括化的知識(shí)得以具體化的必要環(huán)節(jié),解決問(wèn)題總是依賴過(guò)去的知識(shí)經(jīng)驗(yàn)。比如在解決數(shù)學(xué)問(wèn)題時(shí),根據(jù)所形成的問(wèn)題表征,去激活回憶與該問(wèn)題有關(guān)的知識(shí)方法、公式、定理、定義、學(xué)過(guò)的例題、解過(guò)的題目等,并考慮能否利用它們的結(jié)果或者方法,克服在引進(jìn)適當(dāng)?shù)妮o助元素后加以利用,能否找出與該問(wèn)題有關(guān)的一個(gè)特殊的問(wèn)題或一個(gè)一般的問(wèn)題或一個(gè)類似的問(wèn)題。如果能夠從所給問(wèn)題中辨認(rèn)出符合問(wèn)題目標(biāo)的某個(gè)熟悉的模式,那么就能提出相應(yīng)的解題設(shè)想,進(jìn)而解決問(wèn)題。
    在解題過(guò)程中,聯(lián)想活動(dòng)的進(jìn)行將因問(wèn)題的復(fù)雜程度和學(xué)生對(duì)所學(xué)知識(shí)的掌握程度的不同,而有擴(kuò)展與壓縮、直接與間接。意識(shí)到知識(shí)的重現(xiàn)與意識(shí)到知識(shí)的重現(xiàn)的分別,有些情況下,學(xué)生不能聯(lián)想,難以激活原來(lái)的知識(shí)結(jié)構(gòu),或者即使聯(lián)想,但聯(lián)想的內(nèi)容錯(cuò)誤,常受到與其相近的比較鞏固的舊的知識(shí)的干擾。其主要原因是領(lǐng)會(huì)水平較低或者領(lǐng)會(huì)錯(cuò)誤,或原有的知識(shí)不鞏固,或缺乏聯(lián)想的技能。為產(chǎn)生準(zhǔn)確而靈活的聯(lián)想,除了要保證知識(shí)的領(lǐng)會(huì)和鞏固外,還要有目的的進(jìn)行聯(lián)想技能的訓(xùn)練。
    解析解題途徑
    解析即分析事物的矛盾,分析已知和未知雙方的內(nèi)部聯(lián)系,尋找解決矛盾的條件和方法,數(shù)學(xué)解題中的解析即統(tǒng)一的分析問(wèn)題中各部分的內(nèi)在聯(lián)系,分析問(wèn)題的結(jié)構(gòu)。將問(wèn)題結(jié)構(gòu)的各部分與原有知識(shí)結(jié)構(gòu)的有關(guān)部分進(jìn)行匹配,解析的結(jié)果往往表現(xiàn)為提出解決當(dāng)前問(wèn)題的各種設(shè)想、制定具體的計(jì)劃與步驟。探索解決問(wèn)題的方法有多種多樣,比如在解決數(shù)學(xué)問(wèn)題時(shí),可以通過(guò)分析、綜合等基本的思維活動(dòng),并依據(jù)已有的知識(shí),將問(wèn)題的條件或結(jié)論作適當(dāng)?shù)淖兏娃D(zhuǎn)換。
    使之更易于利用某種原理或者概念來(lái)解決問(wèn)題;也可以通過(guò)變換,使眼前的問(wèn)題特殊化或者一般化;還可以利用適當(dāng)?shù)妮o助問(wèn)題。在探索解題方法的過(guò)程中,有時(shí)需要不斷的多次變更問(wèn)題,綜合應(yīng)用各種方法。解析是具體化過(guò)程的核心環(huán)節(jié),決定著具體化的水平。為此,在教學(xué)中應(yīng)對(duì)解析技能的培養(yǎng)給予高度的重視。教師可以遵循心智技能形成和培訓(xùn)的規(guī)律,來(lái)傳授和提高學(xué)生的解析能力。
    高中數(shù)學(xué)學(xué)習(xí)方法心得體會(huì)篇八
    課前預(yù)習(xí)一般是學(xué)生自己獨(dú)立地首次接受新知識(shí),要自己獨(dú)立地閱讀、獨(dú)立地思考,因此,課前預(yù)習(xí)實(shí)際上是課前自學(xué)。自學(xué)能力的強(qiáng)弱對(duì)于一個(gè)人是否能成才起很大的作用。
    古往今來(lái),許多有成就的人都是靠自學(xué)成才的?,F(xiàn)代社會(huì)科學(xué)技術(shù)的發(fā)展十分迅速,知識(shí)更新的周期愈來(lái)愈短,學(xué)校教育不可能完成傳授知識(shí)的任務(wù),只可能教給學(xué)生最基本的、起碼的知識(shí)。
    大量的新知識(shí)靠學(xué)生走向社會(huì)后,在工作過(guò)程中根據(jù)需要去自學(xué)。因此,學(xué)生在校學(xué)習(xí)期間就開(kāi)始培養(yǎng)自學(xué)能力,具有十分重要的意義。預(yù)習(xí)正是過(guò)渡到自學(xué)的必要步驟。
    預(yù)習(xí)是自己獨(dú)立地由已知向未知進(jìn)軍,需要較強(qiáng)的獨(dú)立思維能力和閱讀能力,而長(zhǎng)期堅(jiān)持預(yù)習(xí),又可以提高獨(dú)立思維能力和閱讀能力。雖然教科書有系統(tǒng)的論述,但是通過(guò)自己閱讀來(lái)搞清思路、掌握要點(diǎn)、找出關(guān)鍵和難點(diǎn),非經(jīng)過(guò)獨(dú)立思考不可,因?yàn)檫@些東西,教科書上并沒(méi)有加以注明。
    如,預(yù)習(xí)英語(yǔ)課文,不是簡(jiǎn)單地通讀一遍了事,其中還有一番揣摩、比較和查對(duì)的深功夫。這種功夫下大了,你就會(huì)產(chǎn)生一種“開(kāi)竅”感。這種“開(kāi)竅”感就是個(gè)人獨(dú)立思維能力和閱讀能力不斷提高的反映。(這種個(gè)人獨(dú)立思維能力和閱讀能力提高的反映正是個(gè)人自學(xué)能力提高的反映)。隨著預(yù)習(xí)次數(shù)的逐漸增多,這種“開(kāi)竅”感會(huì)越來(lái)越明顯,以至后來(lái),打開(kāi)一篇新英語(yǔ)課文,不待別人指點(diǎn)和講解,自己便能順利地閱讀,并能較為正確地領(lǐng)會(huì)課文內(nèi)容。
    此外,通過(guò)做預(yù)習(xí)筆記,以及經(jīng)過(guò)預(yù)習(xí)后的聽(tīng)課,可以提高課堂筆記的水平。這些都有利于培養(yǎng)和提高自學(xué)能力。