無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。那么我們該如何寫一篇較為完美的范文呢?下面是小編幫大家整理的優(yōu)質(zhì)范文,僅供參考,大家一起來看看吧。
的倍數(shù)特征的教學(xué)反思篇一
3的倍數(shù)是在學(xué)習(xí)了2、5的倍數(shù)特征的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,我讓孩子們提前進(jìn)行了預(yù)習(xí),通過授課發(fā)現(xiàn)孩子們的預(yù)習(xí)沒有達(dá)到預(yù)想的效果。學(xué)生在匯報(bào)時能夠圈出3的倍數(shù),而且非常準(zhǔn)確,在匯報(bào)3的倍數(shù)的方法時,他們大多數(shù)是借助結(jié)論得出來的,沒有體現(xiàn)出他們研究的過程。因此,我在課上進(jìn)行了及時的指導(dǎo),把孩子們需要匯報(bào)的過程進(jìn)行了詳細(xì)的說明。孩子們很快理解了我的意思,立刻進(jìn)行了新的分工。第一位同學(xué)匯報(bào)了他們找到的3的倍數(shù),并介紹的找3的倍數(shù)的方法即,用這個數(shù)除以3,看商是不是整數(shù)而且沒有余數(shù)。接下來匯報(bào)百數(shù)表中前十個3的倍數(shù),讓大家觀察個位上的數(shù)字,通過觀察發(fā)現(xiàn)3的倍數(shù)個位上是0-9的任意一個數(shù),不能像2、5的倍數(shù)特征只看個位的特殊數(shù)就行了。因此只看個位不能確定是不是3的倍數(shù)。
由于孩子們有了提前的預(yù)習(xí),孩子們心目中已經(jīng)有了結(jié)論。因此在這個時候孩子們思考的深度不夠,沒有理解教材的意圖。教師把教材的意圖有意識地進(jìn)行了滲透,讓學(xué)生駐足片刻,把握課堂的結(jié)構(gòu)。
第三個環(huán)節(jié),孩子們發(fā)現(xiàn)斜著看每個數(shù)的各位逐漸加一,十位逐漸減一,因此個位上的數(shù)字和十位上的數(shù)字之和不變,而且都是3的倍數(shù)。讓孩子試著總結(jié)結(jié)論:兩位數(shù)個位上和十位上的數(shù)字之和是3的倍數(shù),那么這個數(shù)也是3的倍數(shù)。
第四個環(huán)節(jié),其實(shí)并不是把3的倍數(shù)特征總結(jié)出來了就完成任務(wù)了。這個結(jié)論只是通過觀察百數(shù)表得出的關(guān)于兩位數(shù)的結(jié)論,兩位數(shù)滿足這個特征,是不是所有的數(shù)都適用呢?于是讓孩子試著寫一個三位數(shù)、四位數(shù)而且是3的倍數(shù),然后用這個結(jié)論進(jìn)行驗(yàn)證,看是否符合。孩子們先試著寫幾個3的倍數(shù),老師羅列到黑板上,然后分別用用各個數(shù)位之和相加的方法和除以3是否有余數(shù)的方法進(jìn)行驗(yàn)證。驗(yàn)證的結(jié)果是肯定的,因此得出的結(jié)論適合所有的數(shù)。
到這里孩子們對于3的倍數(shù)特征已經(jīng)理解的很透徹了,做起練習(xí)來也顯得得心應(yīng)手。孩子體驗(yàn)了結(jié)論得出的過程,每一個環(huán)節(jié)的設(shè)計(jì)都有他的`意圖,在每個環(huán)節(jié)孩子都有思考,有思維的碰撞,這才是教材的意圖,才是真正的數(shù)學(xué)課。
的倍數(shù)特征的教學(xué)反思篇二
《3的倍數(shù)的特征》是五年級下冊數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中的一個知識點(diǎn),是在學(xué)生已經(jīng)認(rèn)識倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出——根據(jù)個位數(shù)的特點(diǎn)就可以判斷出來。但是3的倍數(shù)的特征卻不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。
因而在《3的倍數(shù)的特征》的開始,我先復(fù)習(xí)了2、5的倍數(shù)的特征,然后學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會將“2.5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問題中,得出:個位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補(bǔ)充到“個位上是0—9的任何一個數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說3的倍數(shù)和一個數(shù)的個位數(shù)沒有關(guān)系,因此要從另外的角度來觀察和思考。在問題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突產(chǎn)生疑問,激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問題:把3的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征。接下來,經(jīng)過進(jìn)一步提示,引導(dǎo)學(xué)生觀察各位上數(shù)的和,發(fā)現(xiàn)各位上的和是3的倍數(shù)。于是,形成新的猜想:一個數(shù)如果是3的倍數(shù),那么它各位上數(shù)的和也是3的倍數(shù)。
為了驗(yàn)證這一猜想,我補(bǔ)充了一些其他的數(shù),如49×3=147,166×3=498等,使學(xué)生進(jìn)一步確認(rèn)這一結(jié)論的正確性。還可以任意寫一個數(shù),利用這一結(jié)論來驗(yàn)證,如3697,3+6+9+7=25,25不是3的倍數(shù),而3697÷3也不能得到整數(shù)商,因此,它不是3的倍數(shù)。通過這樣的方式也使學(xué)生認(rèn)識到:找出某個規(guī)律后,還要找出一些正面的、反面的例子進(jìn)行檢驗(yàn),看是不是普遍適用。
為了使學(xué)生更好地掌握3的倍數(shù)的特征,進(jìn)行課堂練習(xí)時,我還把一些數(shù)各個數(shù)位上的數(shù)經(jīng)過不同的排列,再讓學(xué)生判斷,以加深對“各位上數(shù)的和是3的倍數(shù)”的理解。如完成“做一做”第1題時,學(xué)生判斷完45是3的倍數(shù)后,教師可以再讓學(xué)生判斷一下54是不是3的倍數(shù)。
利用2、5、3的倍數(shù)的特征來判斷一個數(shù)是不是2、5或3的倍數(shù),其方法是比較容易掌握的,但要形成較好的數(shù)感,達(dá)到熟練判斷的程度,也不是一、兩節(jié)課所能解決的,還需要進(jìn)行較多的練習(xí)進(jìn)行鞏固。
這節(jié)課結(jié)束后,我感到自主學(xué)習(xí)和合作探究是這節(jié)課中最重要的兩種學(xué)習(xí)方式,學(xué)生通過自主選擇研究內(nèi)容,舉例驗(yàn)證等獨(dú)立思考和小組討論,相互質(zhì)疑等合作探究活動,獲得了數(shù)學(xué)知識。學(xué)生的學(xué)習(xí)能動性和潛在能力得到了激發(fā)。在自主探索的過程中,學(xué)生體驗(yàn)到了學(xué)習(xí)成功的愉悅,同時也促進(jìn)了自身的發(fā)展。但最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時,應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化。
的倍數(shù)特征的教學(xué)反思篇三
《3的倍數(shù)特征》進(jìn)行了兩次教學(xué)授課,第一次是新授,第二次是錄課重復(fù)授課。下面就本節(jié)課前后兩次上課進(jìn)行如下反思:第一次上課,采用游戲的方式引入,提前給學(xué)生編號,根據(jù)編號做游戲。由于每個學(xué)生的編號不一樣,所以在做游戲的時候,每個學(xué)生集中注意力,傾聽游戲要求,激發(fā)了學(xué)生的學(xué)習(xí)興趣。設(shè)置游戲的目的是復(fù)習(xí)2或5倍數(shù)的特征,同時,對3的倍數(shù)特征的學(xué)習(xí)產(chǎn)生求知欲。接下來是采用提出猜想,舉出個例否定猜想來過渡。讓學(xué)生充分地認(rèn)識到依據(jù)2或5的倍數(shù)特征的思想已經(jīng)行不通了,從而開始新的探索。在探索過程中借助“百數(shù)表”,讓學(xué)生獨(dú)立地圈出3的倍數(shù),圈完后互相交流3的倍數(shù)的個位有什么特點(diǎn),再次否定了之前的思維定式。由于個位上沒有特點(diǎn),所以引導(dǎo)學(xué)生從其他的角度觀察,學(xué)生能想到橫著觀察、豎著觀察,但對于斜著觀察不能很好的發(fā)現(xiàn),所以本節(jié)課中我關(guān)注到學(xué)生的思考困境,引導(dǎo)學(xué)生從斜著觀察的角度思考探索。當(dāng)學(xué)生斜著觀察時能發(fā)現(xiàn)個位上的數(shù)字依次減1,十位上的數(shù)字依次加1,適時提出“什么是沒有變的?”問題一提出,學(xué)生恍然大悟,發(fā)現(xiàn):個位和十位上的數(shù)的和沒有變!順其自然的知道了3的倍數(shù)具有這樣規(guī)律。經(jīng)過研究每一斜行發(fā)現(xiàn):個位和十位上的數(shù)的和不變,都是3的倍數(shù)。知道了這個規(guī)律后,下面開始延伸這個規(guī)律。一方面:驗(yàn)證百數(shù)表內(nèi)其他不是3的倍數(shù)是否具有這個規(guī)律?另一方面:比100大的數(shù),三位數(shù)、四位數(shù)、五位數(shù)等是否具有這個規(guī)律?通過兩方面的驗(yàn)證,再次強(qiáng)調(diào)了這個規(guī)律是普遍存在的,而這時3的倍數(shù)特征已經(jīng)歸結(jié)為:一個數(shù)各位上的數(shù)的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。知道了3的倍數(shù)特征之后通過練習(xí)鞏固加強(qiáng),練習(xí)的設(shè)計(jì)是三道題,這三道題設(shè)計(jì)為不同的層次,第一題是基礎(chǔ)題,第二題是拔高題,第三題是解決問題。通過做題發(fā)現(xiàn)學(xué)生本節(jié)課掌握得不錯。最后,對本節(jié)課的知識進(jìn)行了延伸,通過出示課本第13頁“你知道嗎?”,讓學(xué)生明白為什么2或5的倍數(shù)特征只看個位就可以了,而3的倍數(shù)特征需要看所有數(shù)位。從而達(dá)到學(xué)知識不但要知其然還要知其所以然。整個教學(xué)過程中,學(xué)生能在猜想、操作、驗(yàn)證、交流、歸納的數(shù)學(xué)活動中獲得豐富的數(shù)學(xué)經(jīng)驗(yàn),同時這也有利于學(xué)生創(chuàng)造力的培養(yǎng)。通過本節(jié)課的教學(xué)以及學(xué)生的掌握情況,最終檢測本節(jié)課的目標(biāo)較好的達(dá)成。但反思這節(jié)課的不足,我覺得在每個環(huán)節(jié)上的過渡應(yīng)該更加的自然。另外,在小組討論的時候應(yīng)多關(guān)注學(xué)生的交流,對學(xué)生進(jìn)行適時地指導(dǎo)?;诘谝还?jié)課的優(yōu)點(diǎn)和不足,進(jìn)行了第二次的授課即錄課。由于學(xué)生們已經(jīng)學(xué)習(xí)了過本節(jié)課,所以對于學(xué)生們來說已經(jīng)是舊知識。要把舊知識重新來講,如果照搬之前的授課方式已經(jīng)遠(yuǎn)遠(yuǎn)不夠了。如何更改,這給我提出來一個新的問題。為此,這節(jié)課我做了適當(dāng)?shù)恼{(diào)整。本節(jié)課我更多關(guān)注的是數(shù)學(xué)方法和思維方式的培養(yǎng)。其中體現(xiàn)在:
1、學(xué)生在舉例驗(yàn)證猜想的時候,讓學(xué)生體會反例的作用,如果有一個反例的存在,就說明猜想的結(jié)論是錯誤的。
2、在探索3的倍數(shù)特征時,對于100以內(nèi)3的倍數(shù),應(yīng)如何著手驗(yàn)證,怎么選取數(shù)來驗(yàn)證,這一環(huán)節(jié)讓學(xué)生體會:在研究規(guī)律的時候,優(yōu)先選擇數(shù)比較多的這一組,讓學(xué)生明白如果有規(guī)律更容易探索和發(fā)現(xiàn)。
3、在拓展規(guī)律的時候,采用舉了大量的數(shù)據(jù),證明了規(guī)律的普遍存在,讓學(xué)生體會規(guī)律的適用范圍。
4、在做練習(xí)的時候,第2小題,關(guān)注學(xué)生思考問題是否全面,關(guān)注學(xué)生的思考過程。
5、練習(xí)的第3小題,一道解決問題的題目,通過讓學(xué)生讀題、審題、分析題之后,再思考。這一道題學(xué)生展示了多種的做題方法,體現(xiàn)了方法的多樣性,同時也說明學(xué)生的思維是活躍的。本節(jié)課中的不足,練習(xí)中第3題學(xué)生的做法沒有完全的在黑板上板書,另外,本節(jié)課中學(xué)生會超前說出所有問題的答案,使得教師略顯失措,我覺得這是因?yàn)槲覀鋵W(xué)生還不夠。在今后的教學(xué)中,我會改進(jìn)自己的不足。我將更深入地研究教材、鉆研教法,不斷提高自己的教學(xué)水平,設(shè)計(jì)出學(xué)生更能接受和喜歡的課。
的倍數(shù)特征的教學(xué)反思篇四
(與第一次教學(xué)情況基本相同,有些學(xué)生能夠正確地判斷一個數(shù)是不是3的倍數(shù),這時一些學(xué)生卻依然感到困惑,我設(shè)法將這一困惑激發(fā)出來。)
生:只和一個數(shù)的個位有關(guān)。
師:與今天學(xué)習(xí)的知識比較一下,你有什么疑問嗎?
生1:為什么判斷一個數(shù)是不是3的倍數(shù)只看個位不行?
……
師:同學(xué)們思考問題確實(shí)比較深入,提出了非常有研究價(jià)值的問題。那我們先來研究一下2、5的倍數(shù)為什么只和它的個位有關(guān)。
(學(xué)生嘗試探索,教師適時引導(dǎo)學(xué)生從簡單數(shù)開始研究,借助小棒或其他方法進(jìn)行解釋。)
生1:我在擺小棒時發(fā)現(xiàn),十位上擺幾就是幾十,它肯定是2、5的倍數(shù),因此只要看個位擺幾就可以了。
生2:其實(shí)不用擺小棒也可以,我們組發(fā)現(xiàn)每個數(shù)都可以拆成一個整十?dāng)?shù)加個位數(shù),整十?dāng)?shù)當(dāng)然都是2、5的倍數(shù),所以這個數(shù)的個位是幾就決定了它是否是2、5的倍數(shù)。
師:同學(xué)們想到用“拆數(shù)”的方法來研究,是個好辦法。
生3:是否是3的倍數(shù)只看個位就不行了。比如13,雖然個位上是3的倍數(shù),但10卻不是3的倍數(shù);12雖然個位不是3的倍數(shù),但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的數(shù)和個位上的數(shù)合起來是不是3的倍數(shù)就行了。
生4:我也是這樣想的,我還發(fā)現(xiàn)十位上余下的數(shù)正好和十位上的數(shù)字一樣。
生5:(面帶困惑)起初,我也是這樣想的,可是在試三十幾、四十幾時就不行了。余下的數(shù)和十位上的數(shù)不一樣了,比如40除以3只余1,余下的數(shù)就和十位數(shù)字不同。
生(部分):對。
生4:其實(shí)40不要拆成39和1,你拆成36和4,余下的數(shù)不就和十位數(shù)字相同了嗎?
生6:也就是說整十?dāng)?shù)都可以拆成十位上的數(shù)字和一個3的倍數(shù)的數(shù)。這樣只要看十位上的數(shù)和個位上的和是不是3的倍數(shù)就可以了。
師:同學(xué)們確實(shí)很厲害!那三位數(shù)、四位數(shù)是不是也有這樣的規(guī)律呢?
學(xué)生用“拆數(shù)”的方法繼續(xù)研究三、四位數(shù),發(fā)現(xiàn)和兩位數(shù)一樣,只不過千位、百位上余下的數(shù)要依次加到下一位上進(jìn)行研究。3的倍數(shù)的特征在學(xué)生頭腦中越來越清晰。
生1:我想知道4的倍數(shù)有什么特征?
生2:我知道,應(yīng)該只要看末兩位就行了,因?yàn)檎?、整千?shù)一定都是4的倍數(shù)。
師:你能把學(xué)到的方法及時應(yīng)用,非常棒!
生3:7或9的倍數(shù)有什么特征呢?
……
師:同學(xué)們又提出了一些新的、非常有價(jià)值的問題,課后可以繼續(xù)進(jìn)行探索。
1. 找準(zhǔn)知識間的沖突,激發(fā)探究的愿望。學(xué)生剛剛學(xué)習(xí)了2、5的倍數(shù)的特征,知道只要看一個數(shù)的個位,因此在學(xué)習(xí)3的倍數(shù)的特征時,自然會把“看個位”這一方法遷移過來。而實(shí)際上,3的倍數(shù)的特征,卻要把各個位上的數(shù)加起來研究。于是新舊知識之間的矛盾沖突使學(xué)生產(chǎn)生了困惑,“為什么2或5的倍數(shù)只看個位?”“為什么3的倍數(shù)要把各個位上的數(shù)加起來研究?”……學(xué)生急于想了解這些為什么,便會自覺地進(jìn)入到自主探究的狀態(tài)之中。知識不是孤立的,新舊知識有時會存在矛盾沖突,教師如能找準(zhǔn)知識間的沖突并巧妙激發(fā)出來,就能激起學(xué)生探究的愿望。這樣不僅有利于學(xué)生對新知的掌握,有效地將新知納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。
2. 激活學(xué)習(xí)中的困惑,讓探究走向深入。創(chuàng)造和發(fā)現(xiàn)往往是由驚訝和困惑開始。對比兩次教學(xué),第一次教學(xué)由于忽視了學(xué)習(xí)中的困惑,學(xué)生對于3的倍數(shù)的特征理解并不透徹,探索的體驗(yàn)也并不深刻。第二次教學(xué)留給學(xué)生質(zhì)疑的時空,巧設(shè)沖突,讓學(xué)生進(jìn)行新舊知識的對比,將困惑激發(fā)出來,通過學(xué)生間相互啟發(fā)、相互質(zhì)疑,對問題的思考漸漸完整而清晰。學(xué)生不但經(jīng)歷由困惑到明了的過程,而且思維不斷走向深入,獲得了更有價(jià)值的發(fā)現(xiàn),探究能力也得到切實(shí)提高。學(xué)生在學(xué)習(xí)中難免會產(chǎn)生困惑,這種困惑有時是學(xué)生希望理解更全面、更深刻的表現(xiàn)。面對這些有價(jià)值的思考,我們要有敏銳的洞察力,采取恰當(dāng)?shù)姆椒▽⑵浼せ?,促使探究活動走向深入,讓學(xué)生獲得更大的發(fā)展。當(dāng)然,學(xué)生在學(xué)習(xí)中可能產(chǎn)生怎樣的困惑,面對這一困惑又該如何恰當(dāng)引導(dǎo),尚需要教師課前精心預(yù)設(shè)。
3. 溝通知識間的聯(lián)系,讓學(xué)生不斷探究。顯然,2、5的倍數(shù)的特征與3的倍數(shù)的特征是相互聯(lián)系的,其研究方法是相通的(都可以通過“拆數(shù)”進(jìn)行觀察),特征的本質(zhì)也是相同的。這種研究方法和特征本質(zhì)的及時溝通,激發(fā)了學(xué)生繼續(xù)研究4、7、9……的倍數(shù)的特征的好奇心,促使學(xué)生不斷探究,將學(xué)習(xí)由課內(nèi)延伸到課外,并在探究過程中建構(gòu)起對數(shù)的倍數(shù)特征的整體認(rèn)識,感悟數(shù)學(xué)其實(shí)就是以一馭萬,以簡馭繁。課堂不是句號,學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)絕不能僅僅局限于學(xué)生對于一堂課知識的掌握,而應(yīng)著眼于學(xué)生對于解決問題方法的感悟,獲得可持續(xù)發(fā)展的動力。
的倍數(shù)特征的教學(xué)反思篇五
《3的倍數(shù)的特征》的教學(xué)是五年級數(shù)學(xué)上冊第三單元“因數(shù)與倍數(shù)”中一個重要知識點(diǎn),是學(xué)生在學(xué)習(xí)了2和5的倍數(shù)特征之后的新內(nèi)容。
3的倍數(shù)的特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我在本節(jié)課設(shè)計(jì)理念上,突出以學(xué)生為主體,教師為主導(dǎo),方法為主線的原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當(dāng)然本節(jié)課也存在很多問題,下面我進(jìn)行做幾點(diǎn)反思。
在導(dǎo)入環(huán)節(jié),我通過復(fù)習(xí)舊知識進(jìn)行“熱身”。由于學(xué)生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個數(shù)的個位就能判斷一個數(shù)是不是2或5的倍數(shù),因此在學(xué)習(xí)3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來,盡管是負(fù)遷移。實(shí)際上,鮮明的沖突讓學(xué)生發(fā)現(xiàn)卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。
猜想3的倍數(shù)特征是基礎(chǔ),在學(xué)生得出猜想后,我便引導(dǎo)學(xué)生找出百數(shù)表中3的倍數(shù)去驗(yàn)證,并在驗(yàn)證中推翻了剛才的猜想。驗(yàn)證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個位上可能是10個數(shù)字中的任何一個,之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴(yán)謹(jǐn),必須跳出百數(shù)表,在100以上的數(shù)中去驗(yàn)證這個規(guī)律。最后,引導(dǎo)學(xué)生理解這個結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來,學(xué)生不僅學(xué)會本節(jié)課知識,更掌握了科學(xué)的探究方法。
本節(jié)課的目標(biāo)定位上,我考慮到學(xué)生的已有認(rèn)知基礎(chǔ),我決定引導(dǎo)學(xué)生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對學(xué)生學(xué)情把握的基礎(chǔ)上,因?yàn)?的倍數(shù)的特征的結(jié)論一但得出,運(yùn)用起來沒有難度,后面的練習(xí)往往成了“休閑時間”,而進(jìn)一步提升探索難度,無疑是開發(fā)思維的良好契機(jī)。我運(yùn)用數(shù)形結(jié)合的.方法逐步深入,最后還是把話語權(quán)留給學(xué)生,這樣就給予不同學(xué)生各自適應(yīng)的個性化學(xué)習(xí)方略,真正做到了讓每位同學(xué)在數(shù)學(xué)上都得到發(fā)展。
的倍數(shù)特征的教學(xué)反思篇六
3的倍數(shù)的特征的教學(xué)與2、5倍數(shù)的特征難度上有不同,因?yàn)?、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出(根據(jù)個位數(shù)的特點(diǎn)就可以判斷出來),但是3的倍數(shù)的特征卻不能從表面去判斷,因而我特設(shè)以下環(huán)節(jié)突破重難點(diǎn)預(yù)習(xí)題。
1、給出一些數(shù)讓學(xué)生先判斷哪些數(shù)是3的倍數(shù)。并讓學(xué)生說一說你是怎么判斷的?
2、從以上的3的倍數(shù)進(jìn)行思考:
(1)、3的倍數(shù)與它個位上的數(shù)有關(guān)系嗎?
(2)、 3的倍數(shù)的各位上的數(shù)的和都是3的倍數(shù)嗎?
然后再讓每個同學(xué)任意寫一個3的倍數(shù),再看看這個數(shù)的各個數(shù)位上的數(shù)的和是不是3的倍數(shù)。要求學(xué)生說出方法和思路。
經(jīng)過以上這些活動后學(xué)生都能對一個數(shù)是不是3的倍數(shù)進(jìn)行簡單的判斷。特別是學(xué)生對3的倍數(shù)特征的判斷大多數(shù)的學(xué)生能先求出各個數(shù)位的數(shù)字之和是不是3的倍數(shù),然后再進(jìn)行判斷,效果很好。
的倍數(shù)特征的教學(xué)反思篇七
《3的倍數(shù)的特征》看似一節(jié)知識簡單的課,但從教學(xué)實(shí)際來看,是我想得過于簡單了,教師注重的不應(yīng)該僅僅是對知識的掌握,更應(yīng)該使學(xué)生站在跳板上學(xué)習(xí)數(shù)學(xué),關(guān)注數(shù)學(xué)思維的發(fā)展。
新的課程理念要求我們在教學(xué)中盡可能地為學(xué)生提供一個自主、合作、探究機(jī)會,其宗旨也就在于培養(yǎng)學(xué)生在實(shí)際的學(xué)習(xí)活動中,善于發(fā)現(xiàn)問題和提出問題的能力,靈活運(yùn)用知識去解決問題的能力,在研究和解決問題的過程中學(xué)會合作。3的倍數(shù)的特征,有規(guī)律可循,容易上成機(jī)械刻板、枯燥無味的課,學(xué)生雖能死套規(guī)律判斷,但學(xué)生的能力沒能培養(yǎng),智力得不到開發(fā)。本課的設(shè)計(jì)采用了啟發(fā)與發(fā)現(xiàn)相結(jié)合的教學(xué)方法,激勵學(xué)生大膽猜想,動手實(shí)踐,去發(fā)現(xiàn)規(guī)律,形成技能,升華至應(yīng)用于生活。
2、5的倍數(shù)特征一樣,看一個數(shù)的末尾了,引導(dǎo)學(xué)生是不是要看這個數(shù)其它的數(shù)位上的數(shù)呢?學(xué)生發(fā)現(xiàn)也不是很難。教材中有提示,學(xué)生回家預(yù)習(xí)后也會清楚敘述出3的倍數(shù)特征是一個數(shù)各個數(shù)位上數(shù)字相加的和。找準(zhǔn)知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,剛開始我們先采用課本上百數(shù)表來研究,結(jié)果在一個班實(shí)踐后認(rèn)為效果并不是很理想,由于數(shù)太多,讓學(xué)生觀察3的倍數(shù)的這些數(shù)時,并從中找出相同的地方,結(jié)果,很多同學(xué)找了與本節(jié)課毫無關(guān)系的東西,浪費(fèi)了很多時間。在評課的時候,我們又討論是不是找一些數(shù)代表百數(shù)表,于是我設(shè)計(jì)了一個表格,讓學(xué)生用除法計(jì)算的方法找到3的倍數(shù)的特征,并觀察這些數(shù),這些數(shù)的個位分別從0到9都有,讓學(xué)生知道3的倍數(shù)的特征跟數(shù)的個位沒有關(guān)系,然后從中又把像45和54,75和57,123和321等特殊的數(shù)單獨(dú)展示出來,讓學(xué)生觀察從中找出規(guī)律。結(jié)果我又重新上了這節(jié)課,效果比上節(jié)課要好。
這節(jié)課結(jié)束后,我感覺最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時,應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化,如用卡片練習(xí)判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)應(yīng)著眼于學(xué)生對解決問題方法的感悟,這樣才可獲得最佳的效果。
的倍數(shù)特征的教學(xué)反思篇八
《3的倍數(shù)的特征》的教學(xué)是五年級數(shù)學(xué)上冊第三單元“因數(shù)與倍數(shù)”中一個重要知識點(diǎn),是學(xué)生在學(xué)習(xí)了2和5的倍數(shù)特征之后的新內(nèi)容。
3的倍數(shù)的'特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我在本節(jié)課設(shè)計(jì)理念上,突出以學(xué)生為主體,教師為主導(dǎo),方法為主線的原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當(dāng)然本節(jié)課也存在很多問題,下面我進(jìn)行做幾點(diǎn)反思。
在導(dǎo)入環(huán)節(jié),我通過復(fù)習(xí)舊知識進(jìn)行“熱身”。由于學(xué)生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個數(shù)的個位就能判斷一個數(shù)是不是2或5的倍數(shù),因此在學(xué)習(xí)3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來,盡管是負(fù)遷移。實(shí)際上,鮮明的沖突讓學(xué)生發(fā)現(xiàn)卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。
猜想3的倍數(shù)特征是基礎(chǔ),在學(xué)生得出猜想后,我便引導(dǎo)學(xué)生找出百數(shù)表中3的倍數(shù)去驗(yàn)證,并在驗(yàn)證中推翻了剛才的猜想。驗(yàn)證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個位上可能是10個數(shù)字中的任何一個,之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴(yán)謹(jǐn),必須跳出百數(shù)表,在100以上的數(shù)中去驗(yàn)證這個規(guī)律。最后,引導(dǎo)學(xué)生理解這個結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來,學(xué)生不僅學(xué)會本節(jié)課知識,更掌握了科學(xué)的探究方法。
本節(jié)課的目標(biāo)定位上,我考慮到學(xué)生的已有認(rèn)知基礎(chǔ),我決定引導(dǎo)學(xué)生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對學(xué)生學(xué)情把握的基礎(chǔ)上,因?yàn)?的倍數(shù)的特征的結(jié)論一但得出,運(yùn)用起來沒有難度,后面的練習(xí)往往成了“休閑時間”,而進(jìn)一步提升探索難度,無疑是開發(fā)思維的良好契機(jī)。我運(yùn)用數(shù)形結(jié)合的方法逐步深入,最后還是把話語權(quán)留給學(xué)生,這樣就給予不同學(xué)生各自適應(yīng)的個性化學(xué)習(xí)方略,真正做到了讓每位同學(xué)在數(shù)學(xué)上都得到發(fā)展。
的倍數(shù)特征的教學(xué)反思篇九
本節(jié)課探究3的倍數(shù)的特征之前,我還是先讓學(xué)生寫出50以內(nèi)3的倍數(shù),然后讓學(xué)生觀察這些數(shù)有何特征,大部分同學(xué)找不著規(guī)律,個別同學(xué)可能是受上節(jié)課的影響,說出了:個位上是0、1、2、3、4、5、6、7、8、9的數(shù)就是3的倍數(shù),但馬上就被其他同學(xué)推翻了。
然后我就出示計(jì)數(shù)器,依次撥出3的倍數(shù),讓學(xué)生觀察一共用了幾顆珠子,讓學(xué)生體會到有幾顆珠子就是各個數(shù)位上數(shù)的和,發(fā)現(xiàn)珠子的顆數(shù)正好是3的倍數(shù),也就是各個數(shù)位上數(shù)的和是3的倍數(shù),那么這個數(shù)就是3的倍數(shù)。說實(shí)話,學(xué)生對于這一規(guī)律,不是很容易接受,在后來的練習(xí)中,才慢慢體會到。
“想想做做”的五道題設(shè)計(jì)得比較好,體現(xiàn)了分層,特別是最后一道,學(xué)生通過交流討論后,得出了先選數(shù)后組數(shù)的思路,練習(xí)的效果比較好。
的倍數(shù)特征的教學(xué)反思篇十
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2和5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?和5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——動手試驗(yàn)的過程中,概括歸納出3的倍數(shù)特征。
但上課的過程中,學(xué)生并沒有按照我想的思路去進(jìn)行,一個學(xué)生在我沒有預(yù)想的前提下說出了3的倍數(shù)的特征,所以我準(zhǔn)備讓四人小組去合作交流發(fā)現(xiàn)3的倍數(shù)的特征也沒有進(jìn)行。只是讓學(xué)生兩人去再說一說剛才那個學(xué)生的發(fā)現(xiàn),加以理解,鞏固。
這節(jié)課結(jié)束后,我感覺以下方面做得不好。
1、備課不充分。自己在備課時沒有好好的去備學(xué)生,沒有做好多方面的預(yù)設(shè);
2、在觀察百數(shù)表到后面總結(jié)3的倍數(shù)特征時,都應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。老師不要著急,學(xué)生能說出的盡量讓學(xué)生說,多放手,相信學(xué)生。
的倍數(shù)特征的教學(xué)反思篇十一
在執(zhí)教《2、5、3的倍數(shù)的特征》后,我針對本節(jié)課的教學(xué)情況進(jìn)行反思。
一、跨年級學(xué)習(xí)新數(shù)學(xué)知識,知識銜接不上,不符合學(xué)生的認(rèn)知規(guī)律。
雖然2、5、3的倍數(shù)的特征看起來很簡單,探究的過程可能沒有什么困難之處,但要內(nèi)容讓學(xué)生學(xué)懂,首先存在知識銜接問題,整除、倍數(shù)、因數(shù)這些概念學(xué)生都從未接觸過,因此,我在課開始安排了整除、倍數(shù)、因數(shù)新概念的介紹,在我看來,這些概念比較抽象,學(xué)生一時難以掌握。
二、為了體現(xiàn)“容量大”,教學(xué)延堂。
備課時也參考了不少資料,大多數(shù)教學(xué)設(shè)計(jì)都是將這一內(nèi)容分成兩節(jié)課來學(xué)習(xí),一節(jié)學(xué)《2、5的倍數(shù)的特征》,一節(jié)學(xué)《3的倍數(shù)的特征》,我確定用一節(jié)課教學(xué)《2、5、3的倍數(shù)的特征》,其目的是為了體現(xiàn)容量大,我的設(shè)計(jì)內(nèi)容多,相應(yīng)的學(xué)生自學(xué)、展示、鞏固練習(xí)的時間和機(jī)會就壓縮的比較少了。而3的倍數(shù)的特征與2、5的又完全不同,學(xué)生接受起來可能會有一定的難度,最好單獨(dú)作為一課時學(xué)習(xí)。最后的環(huán)節(jié)達(dá)標(biāo)測試拖堂了。
三、學(xué)生合作學(xué)習(xí)的效果較好,但展示未體現(xiàn)立體式。
高效課堂要充分發(fā)揮學(xué)生的主體作用,要體現(xiàn)學(xué)生會學(xué),學(xué)會,在本節(jié)課上,學(xué)生合作學(xué)習(xí)的熱情高,通過展示,發(fā)現(xiàn)學(xué)生學(xué)懂了,總結(jié)出了2、5、3的倍數(shù)的特征,在展示環(huán)節(jié),學(xué)生講的、板書的相互干擾,于是,我臨時安排按先后順序進(jìn)行,沒體現(xiàn)出高效課堂的“立體式”這一特點(diǎn)。
的倍數(shù)特征的教學(xué)反思篇一
3的倍數(shù)是在學(xué)習(xí)了2、5的倍數(shù)特征的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,我讓孩子們提前進(jìn)行了預(yù)習(xí),通過授課發(fā)現(xiàn)孩子們的預(yù)習(xí)沒有達(dá)到預(yù)想的效果。學(xué)生在匯報(bào)時能夠圈出3的倍數(shù),而且非常準(zhǔn)確,在匯報(bào)3的倍數(shù)的方法時,他們大多數(shù)是借助結(jié)論得出來的,沒有體現(xiàn)出他們研究的過程。因此,我在課上進(jìn)行了及時的指導(dǎo),把孩子們需要匯報(bào)的過程進(jìn)行了詳細(xì)的說明。孩子們很快理解了我的意思,立刻進(jìn)行了新的分工。第一位同學(xué)匯報(bào)了他們找到的3的倍數(shù),并介紹的找3的倍數(shù)的方法即,用這個數(shù)除以3,看商是不是整數(shù)而且沒有余數(shù)。接下來匯報(bào)百數(shù)表中前十個3的倍數(shù),讓大家觀察個位上的數(shù)字,通過觀察發(fā)現(xiàn)3的倍數(shù)個位上是0-9的任意一個數(shù),不能像2、5的倍數(shù)特征只看個位的特殊數(shù)就行了。因此只看個位不能確定是不是3的倍數(shù)。
由于孩子們有了提前的預(yù)習(xí),孩子們心目中已經(jīng)有了結(jié)論。因此在這個時候孩子們思考的深度不夠,沒有理解教材的意圖。教師把教材的意圖有意識地進(jìn)行了滲透,讓學(xué)生駐足片刻,把握課堂的結(jié)構(gòu)。
第三個環(huán)節(jié),孩子們發(fā)現(xiàn)斜著看每個數(shù)的各位逐漸加一,十位逐漸減一,因此個位上的數(shù)字和十位上的數(shù)字之和不變,而且都是3的倍數(shù)。讓孩子試著總結(jié)結(jié)論:兩位數(shù)個位上和十位上的數(shù)字之和是3的倍數(shù),那么這個數(shù)也是3的倍數(shù)。
第四個環(huán)節(jié),其實(shí)并不是把3的倍數(shù)特征總結(jié)出來了就完成任務(wù)了。這個結(jié)論只是通過觀察百數(shù)表得出的關(guān)于兩位數(shù)的結(jié)論,兩位數(shù)滿足這個特征,是不是所有的數(shù)都適用呢?于是讓孩子試著寫一個三位數(shù)、四位數(shù)而且是3的倍數(shù),然后用這個結(jié)論進(jìn)行驗(yàn)證,看是否符合。孩子們先試著寫幾個3的倍數(shù),老師羅列到黑板上,然后分別用用各個數(shù)位之和相加的方法和除以3是否有余數(shù)的方法進(jìn)行驗(yàn)證。驗(yàn)證的結(jié)果是肯定的,因此得出的結(jié)論適合所有的數(shù)。
到這里孩子們對于3的倍數(shù)特征已經(jīng)理解的很透徹了,做起練習(xí)來也顯得得心應(yīng)手。孩子體驗(yàn)了結(jié)論得出的過程,每一個環(huán)節(jié)的設(shè)計(jì)都有他的`意圖,在每個環(huán)節(jié)孩子都有思考,有思維的碰撞,這才是教材的意圖,才是真正的數(shù)學(xué)課。
的倍數(shù)特征的教學(xué)反思篇二
《3的倍數(shù)的特征》是五年級下冊數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中的一個知識點(diǎn),是在學(xué)生已經(jīng)認(rèn)識倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出——根據(jù)個位數(shù)的特點(diǎn)就可以判斷出來。但是3的倍數(shù)的特征卻不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。
因而在《3的倍數(shù)的特征》的開始,我先復(fù)習(xí)了2、5的倍數(shù)的特征,然后學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會將“2.5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問題中,得出:個位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補(bǔ)充到“個位上是0—9的任何一個數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說3的倍數(shù)和一個數(shù)的個位數(shù)沒有關(guān)系,因此要從另外的角度來觀察和思考。在問題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突產(chǎn)生疑問,激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問題:把3的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征。接下來,經(jīng)過進(jìn)一步提示,引導(dǎo)學(xué)生觀察各位上數(shù)的和,發(fā)現(xiàn)各位上的和是3的倍數(shù)。于是,形成新的猜想:一個數(shù)如果是3的倍數(shù),那么它各位上數(shù)的和也是3的倍數(shù)。
為了驗(yàn)證這一猜想,我補(bǔ)充了一些其他的數(shù),如49×3=147,166×3=498等,使學(xué)生進(jìn)一步確認(rèn)這一結(jié)論的正確性。還可以任意寫一個數(shù),利用這一結(jié)論來驗(yàn)證,如3697,3+6+9+7=25,25不是3的倍數(shù),而3697÷3也不能得到整數(shù)商,因此,它不是3的倍數(shù)。通過這樣的方式也使學(xué)生認(rèn)識到:找出某個規(guī)律后,還要找出一些正面的、反面的例子進(jìn)行檢驗(yàn),看是不是普遍適用。
為了使學(xué)生更好地掌握3的倍數(shù)的特征,進(jìn)行課堂練習(xí)時,我還把一些數(shù)各個數(shù)位上的數(shù)經(jīng)過不同的排列,再讓學(xué)生判斷,以加深對“各位上數(shù)的和是3的倍數(shù)”的理解。如完成“做一做”第1題時,學(xué)生判斷完45是3的倍數(shù)后,教師可以再讓學(xué)生判斷一下54是不是3的倍數(shù)。
利用2、5、3的倍數(shù)的特征來判斷一個數(shù)是不是2、5或3的倍數(shù),其方法是比較容易掌握的,但要形成較好的數(shù)感,達(dá)到熟練判斷的程度,也不是一、兩節(jié)課所能解決的,還需要進(jìn)行較多的練習(xí)進(jìn)行鞏固。
這節(jié)課結(jié)束后,我感到自主學(xué)習(xí)和合作探究是這節(jié)課中最重要的兩種學(xué)習(xí)方式,學(xué)生通過自主選擇研究內(nèi)容,舉例驗(yàn)證等獨(dú)立思考和小組討論,相互質(zhì)疑等合作探究活動,獲得了數(shù)學(xué)知識。學(xué)生的學(xué)習(xí)能動性和潛在能力得到了激發(fā)。在自主探索的過程中,學(xué)生體驗(yàn)到了學(xué)習(xí)成功的愉悅,同時也促進(jìn)了自身的發(fā)展。但最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時,應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化。
的倍數(shù)特征的教學(xué)反思篇三
《3的倍數(shù)特征》進(jìn)行了兩次教學(xué)授課,第一次是新授,第二次是錄課重復(fù)授課。下面就本節(jié)課前后兩次上課進(jìn)行如下反思:第一次上課,采用游戲的方式引入,提前給學(xué)生編號,根據(jù)編號做游戲。由于每個學(xué)生的編號不一樣,所以在做游戲的時候,每個學(xué)生集中注意力,傾聽游戲要求,激發(fā)了學(xué)生的學(xué)習(xí)興趣。設(shè)置游戲的目的是復(fù)習(xí)2或5倍數(shù)的特征,同時,對3的倍數(shù)特征的學(xué)習(xí)產(chǎn)生求知欲。接下來是采用提出猜想,舉出個例否定猜想來過渡。讓學(xué)生充分地認(rèn)識到依據(jù)2或5的倍數(shù)特征的思想已經(jīng)行不通了,從而開始新的探索。在探索過程中借助“百數(shù)表”,讓學(xué)生獨(dú)立地圈出3的倍數(shù),圈完后互相交流3的倍數(shù)的個位有什么特點(diǎn),再次否定了之前的思維定式。由于個位上沒有特點(diǎn),所以引導(dǎo)學(xué)生從其他的角度觀察,學(xué)生能想到橫著觀察、豎著觀察,但對于斜著觀察不能很好的發(fā)現(xiàn),所以本節(jié)課中我關(guān)注到學(xué)生的思考困境,引導(dǎo)學(xué)生從斜著觀察的角度思考探索。當(dāng)學(xué)生斜著觀察時能發(fā)現(xiàn)個位上的數(shù)字依次減1,十位上的數(shù)字依次加1,適時提出“什么是沒有變的?”問題一提出,學(xué)生恍然大悟,發(fā)現(xiàn):個位和十位上的數(shù)的和沒有變!順其自然的知道了3的倍數(shù)具有這樣規(guī)律。經(jīng)過研究每一斜行發(fā)現(xiàn):個位和十位上的數(shù)的和不變,都是3的倍數(shù)。知道了這個規(guī)律后,下面開始延伸這個規(guī)律。一方面:驗(yàn)證百數(shù)表內(nèi)其他不是3的倍數(shù)是否具有這個規(guī)律?另一方面:比100大的數(shù),三位數(shù)、四位數(shù)、五位數(shù)等是否具有這個規(guī)律?通過兩方面的驗(yàn)證,再次強(qiáng)調(diào)了這個規(guī)律是普遍存在的,而這時3的倍數(shù)特征已經(jīng)歸結(jié)為:一個數(shù)各位上的數(shù)的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。知道了3的倍數(shù)特征之后通過練習(xí)鞏固加強(qiáng),練習(xí)的設(shè)計(jì)是三道題,這三道題設(shè)計(jì)為不同的層次,第一題是基礎(chǔ)題,第二題是拔高題,第三題是解決問題。通過做題發(fā)現(xiàn)學(xué)生本節(jié)課掌握得不錯。最后,對本節(jié)課的知識進(jìn)行了延伸,通過出示課本第13頁“你知道嗎?”,讓學(xué)生明白為什么2或5的倍數(shù)特征只看個位就可以了,而3的倍數(shù)特征需要看所有數(shù)位。從而達(dá)到學(xué)知識不但要知其然還要知其所以然。整個教學(xué)過程中,學(xué)生能在猜想、操作、驗(yàn)證、交流、歸納的數(shù)學(xué)活動中獲得豐富的數(shù)學(xué)經(jīng)驗(yàn),同時這也有利于學(xué)生創(chuàng)造力的培養(yǎng)。通過本節(jié)課的教學(xué)以及學(xué)生的掌握情況,最終檢測本節(jié)課的目標(biāo)較好的達(dá)成。但反思這節(jié)課的不足,我覺得在每個環(huán)節(jié)上的過渡應(yīng)該更加的自然。另外,在小組討論的時候應(yīng)多關(guān)注學(xué)生的交流,對學(xué)生進(jìn)行適時地指導(dǎo)?;诘谝还?jié)課的優(yōu)點(diǎn)和不足,進(jìn)行了第二次的授課即錄課。由于學(xué)生們已經(jīng)學(xué)習(xí)了過本節(jié)課,所以對于學(xué)生們來說已經(jīng)是舊知識。要把舊知識重新來講,如果照搬之前的授課方式已經(jīng)遠(yuǎn)遠(yuǎn)不夠了。如何更改,這給我提出來一個新的問題。為此,這節(jié)課我做了適當(dāng)?shù)恼{(diào)整。本節(jié)課我更多關(guān)注的是數(shù)學(xué)方法和思維方式的培養(yǎng)。其中體現(xiàn)在:
1、學(xué)生在舉例驗(yàn)證猜想的時候,讓學(xué)生體會反例的作用,如果有一個反例的存在,就說明猜想的結(jié)論是錯誤的。
2、在探索3的倍數(shù)特征時,對于100以內(nèi)3的倍數(shù),應(yīng)如何著手驗(yàn)證,怎么選取數(shù)來驗(yàn)證,這一環(huán)節(jié)讓學(xué)生體會:在研究規(guī)律的時候,優(yōu)先選擇數(shù)比較多的這一組,讓學(xué)生明白如果有規(guī)律更容易探索和發(fā)現(xiàn)。
3、在拓展規(guī)律的時候,采用舉了大量的數(shù)據(jù),證明了規(guī)律的普遍存在,讓學(xué)生體會規(guī)律的適用范圍。
4、在做練習(xí)的時候,第2小題,關(guān)注學(xué)生思考問題是否全面,關(guān)注學(xué)生的思考過程。
5、練習(xí)的第3小題,一道解決問題的題目,通過讓學(xué)生讀題、審題、分析題之后,再思考。這一道題學(xué)生展示了多種的做題方法,體現(xiàn)了方法的多樣性,同時也說明學(xué)生的思維是活躍的。本節(jié)課中的不足,練習(xí)中第3題學(xué)生的做法沒有完全的在黑板上板書,另外,本節(jié)課中學(xué)生會超前說出所有問題的答案,使得教師略顯失措,我覺得這是因?yàn)槲覀鋵W(xué)生還不夠。在今后的教學(xué)中,我會改進(jìn)自己的不足。我將更深入地研究教材、鉆研教法,不斷提高自己的教學(xué)水平,設(shè)計(jì)出學(xué)生更能接受和喜歡的課。
的倍數(shù)特征的教學(xué)反思篇四
(與第一次教學(xué)情況基本相同,有些學(xué)生能夠正確地判斷一個數(shù)是不是3的倍數(shù),這時一些學(xué)生卻依然感到困惑,我設(shè)法將這一困惑激發(fā)出來。)
生:只和一個數(shù)的個位有關(guān)。
師:與今天學(xué)習(xí)的知識比較一下,你有什么疑問嗎?
生1:為什么判斷一個數(shù)是不是3的倍數(shù)只看個位不行?
……
師:同學(xué)們思考問題確實(shí)比較深入,提出了非常有研究價(jià)值的問題。那我們先來研究一下2、5的倍數(shù)為什么只和它的個位有關(guān)。
(學(xué)生嘗試探索,教師適時引導(dǎo)學(xué)生從簡單數(shù)開始研究,借助小棒或其他方法進(jìn)行解釋。)
生1:我在擺小棒時發(fā)現(xiàn),十位上擺幾就是幾十,它肯定是2、5的倍數(shù),因此只要看個位擺幾就可以了。
生2:其實(shí)不用擺小棒也可以,我們組發(fā)現(xiàn)每個數(shù)都可以拆成一個整十?dāng)?shù)加個位數(shù),整十?dāng)?shù)當(dāng)然都是2、5的倍數(shù),所以這個數(shù)的個位是幾就決定了它是否是2、5的倍數(shù)。
師:同學(xué)們想到用“拆數(shù)”的方法來研究,是個好辦法。
生3:是否是3的倍數(shù)只看個位就不行了。比如13,雖然個位上是3的倍數(shù),但10卻不是3的倍數(shù);12雖然個位不是3的倍數(shù),但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的數(shù)和個位上的數(shù)合起來是不是3的倍數(shù)就行了。
生4:我也是這樣想的,我還發(fā)現(xiàn)十位上余下的數(shù)正好和十位上的數(shù)字一樣。
生5:(面帶困惑)起初,我也是這樣想的,可是在試三十幾、四十幾時就不行了。余下的數(shù)和十位上的數(shù)不一樣了,比如40除以3只余1,余下的數(shù)就和十位數(shù)字不同。
生(部分):對。
生4:其實(shí)40不要拆成39和1,你拆成36和4,余下的數(shù)不就和十位數(shù)字相同了嗎?
生6:也就是說整十?dāng)?shù)都可以拆成十位上的數(shù)字和一個3的倍數(shù)的數(shù)。這樣只要看十位上的數(shù)和個位上的和是不是3的倍數(shù)就可以了。
師:同學(xué)們確實(shí)很厲害!那三位數(shù)、四位數(shù)是不是也有這樣的規(guī)律呢?
學(xué)生用“拆數(shù)”的方法繼續(xù)研究三、四位數(shù),發(fā)現(xiàn)和兩位數(shù)一樣,只不過千位、百位上余下的數(shù)要依次加到下一位上進(jìn)行研究。3的倍數(shù)的特征在學(xué)生頭腦中越來越清晰。
生1:我想知道4的倍數(shù)有什么特征?
生2:我知道,應(yīng)該只要看末兩位就行了,因?yàn)檎?、整千?shù)一定都是4的倍數(shù)。
師:你能把學(xué)到的方法及時應(yīng)用,非常棒!
生3:7或9的倍數(shù)有什么特征呢?
……
師:同學(xué)們又提出了一些新的、非常有價(jià)值的問題,課后可以繼續(xù)進(jìn)行探索。
1. 找準(zhǔn)知識間的沖突,激發(fā)探究的愿望。學(xué)生剛剛學(xué)習(xí)了2、5的倍數(shù)的特征,知道只要看一個數(shù)的個位,因此在學(xué)習(xí)3的倍數(shù)的特征時,自然會把“看個位”這一方法遷移過來。而實(shí)際上,3的倍數(shù)的特征,卻要把各個位上的數(shù)加起來研究。于是新舊知識之間的矛盾沖突使學(xué)生產(chǎn)生了困惑,“為什么2或5的倍數(shù)只看個位?”“為什么3的倍數(shù)要把各個位上的數(shù)加起來研究?”……學(xué)生急于想了解這些為什么,便會自覺地進(jìn)入到自主探究的狀態(tài)之中。知識不是孤立的,新舊知識有時會存在矛盾沖突,教師如能找準(zhǔn)知識間的沖突并巧妙激發(fā)出來,就能激起學(xué)生探究的愿望。這樣不僅有利于學(xué)生對新知的掌握,有效地將新知納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。
2. 激活學(xué)習(xí)中的困惑,讓探究走向深入。創(chuàng)造和發(fā)現(xiàn)往往是由驚訝和困惑開始。對比兩次教學(xué),第一次教學(xué)由于忽視了學(xué)習(xí)中的困惑,學(xué)生對于3的倍數(shù)的特征理解并不透徹,探索的體驗(yàn)也并不深刻。第二次教學(xué)留給學(xué)生質(zhì)疑的時空,巧設(shè)沖突,讓學(xué)生進(jìn)行新舊知識的對比,將困惑激發(fā)出來,通過學(xué)生間相互啟發(fā)、相互質(zhì)疑,對問題的思考漸漸完整而清晰。學(xué)生不但經(jīng)歷由困惑到明了的過程,而且思維不斷走向深入,獲得了更有價(jià)值的發(fā)現(xiàn),探究能力也得到切實(shí)提高。學(xué)生在學(xué)習(xí)中難免會產(chǎn)生困惑,這種困惑有時是學(xué)生希望理解更全面、更深刻的表現(xiàn)。面對這些有價(jià)值的思考,我們要有敏銳的洞察力,采取恰當(dāng)?shù)姆椒▽⑵浼せ?,促使探究活動走向深入,讓學(xué)生獲得更大的發(fā)展。當(dāng)然,學(xué)生在學(xué)習(xí)中可能產(chǎn)生怎樣的困惑,面對這一困惑又該如何恰當(dāng)引導(dǎo),尚需要教師課前精心預(yù)設(shè)。
3. 溝通知識間的聯(lián)系,讓學(xué)生不斷探究。顯然,2、5的倍數(shù)的特征與3的倍數(shù)的特征是相互聯(lián)系的,其研究方法是相通的(都可以通過“拆數(shù)”進(jìn)行觀察),特征的本質(zhì)也是相同的。這種研究方法和特征本質(zhì)的及時溝通,激發(fā)了學(xué)生繼續(xù)研究4、7、9……的倍數(shù)的特征的好奇心,促使學(xué)生不斷探究,將學(xué)習(xí)由課內(nèi)延伸到課外,并在探究過程中建構(gòu)起對數(shù)的倍數(shù)特征的整體認(rèn)識,感悟數(shù)學(xué)其實(shí)就是以一馭萬,以簡馭繁。課堂不是句號,學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)絕不能僅僅局限于學(xué)生對于一堂課知識的掌握,而應(yīng)著眼于學(xué)生對于解決問題方法的感悟,獲得可持續(xù)發(fā)展的動力。
的倍數(shù)特征的教學(xué)反思篇五
《3的倍數(shù)的特征》的教學(xué)是五年級數(shù)學(xué)上冊第三單元“因數(shù)與倍數(shù)”中一個重要知識點(diǎn),是學(xué)生在學(xué)習(xí)了2和5的倍數(shù)特征之后的新內(nèi)容。
3的倍數(shù)的特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我在本節(jié)課設(shè)計(jì)理念上,突出以學(xué)生為主體,教師為主導(dǎo),方法為主線的原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當(dāng)然本節(jié)課也存在很多問題,下面我進(jìn)行做幾點(diǎn)反思。
在導(dǎo)入環(huán)節(jié),我通過復(fù)習(xí)舊知識進(jìn)行“熱身”。由于學(xué)生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個數(shù)的個位就能判斷一個數(shù)是不是2或5的倍數(shù),因此在學(xué)習(xí)3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來,盡管是負(fù)遷移。實(shí)際上,鮮明的沖突讓學(xué)生發(fā)現(xiàn)卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。
猜想3的倍數(shù)特征是基礎(chǔ),在學(xué)生得出猜想后,我便引導(dǎo)學(xué)生找出百數(shù)表中3的倍數(shù)去驗(yàn)證,并在驗(yàn)證中推翻了剛才的猜想。驗(yàn)證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個位上可能是10個數(shù)字中的任何一個,之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴(yán)謹(jǐn),必須跳出百數(shù)表,在100以上的數(shù)中去驗(yàn)證這個規(guī)律。最后,引導(dǎo)學(xué)生理解這個結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來,學(xué)生不僅學(xué)會本節(jié)課知識,更掌握了科學(xué)的探究方法。
本節(jié)課的目標(biāo)定位上,我考慮到學(xué)生的已有認(rèn)知基礎(chǔ),我決定引導(dǎo)學(xué)生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對學(xué)生學(xué)情把握的基礎(chǔ)上,因?yàn)?的倍數(shù)的特征的結(jié)論一但得出,運(yùn)用起來沒有難度,后面的練習(xí)往往成了“休閑時間”,而進(jìn)一步提升探索難度,無疑是開發(fā)思維的良好契機(jī)。我運(yùn)用數(shù)形結(jié)合的.方法逐步深入,最后還是把話語權(quán)留給學(xué)生,這樣就給予不同學(xué)生各自適應(yīng)的個性化學(xué)習(xí)方略,真正做到了讓每位同學(xué)在數(shù)學(xué)上都得到發(fā)展。
的倍數(shù)特征的教學(xué)反思篇六
3的倍數(shù)的特征的教學(xué)與2、5倍數(shù)的特征難度上有不同,因?yàn)?、5的倍數(shù)的特征從數(shù)的表面的特點(diǎn)就可以很容易看出(根據(jù)個位數(shù)的特點(diǎn)就可以判斷出來),但是3的倍數(shù)的特征卻不能從表面去判斷,因而我特設(shè)以下環(huán)節(jié)突破重難點(diǎn)預(yù)習(xí)題。
1、給出一些數(shù)讓學(xué)生先判斷哪些數(shù)是3的倍數(shù)。并讓學(xué)生說一說你是怎么判斷的?
2、從以上的3的倍數(shù)進(jìn)行思考:
(1)、3的倍數(shù)與它個位上的數(shù)有關(guān)系嗎?
(2)、 3的倍數(shù)的各位上的數(shù)的和都是3的倍數(shù)嗎?
然后再讓每個同學(xué)任意寫一個3的倍數(shù),再看看這個數(shù)的各個數(shù)位上的數(shù)的和是不是3的倍數(shù)。要求學(xué)生說出方法和思路。
經(jīng)過以上這些活動后學(xué)生都能對一個數(shù)是不是3的倍數(shù)進(jìn)行簡單的判斷。特別是學(xué)生對3的倍數(shù)特征的判斷大多數(shù)的學(xué)生能先求出各個數(shù)位的數(shù)字之和是不是3的倍數(shù),然后再進(jìn)行判斷,效果很好。
的倍數(shù)特征的教學(xué)反思篇七
《3的倍數(shù)的特征》看似一節(jié)知識簡單的課,但從教學(xué)實(shí)際來看,是我想得過于簡單了,教師注重的不應(yīng)該僅僅是對知識的掌握,更應(yīng)該使學(xué)生站在跳板上學(xué)習(xí)數(shù)學(xué),關(guān)注數(shù)學(xué)思維的發(fā)展。
新的課程理念要求我們在教學(xué)中盡可能地為學(xué)生提供一個自主、合作、探究機(jī)會,其宗旨也就在于培養(yǎng)學(xué)生在實(shí)際的學(xué)習(xí)活動中,善于發(fā)現(xiàn)問題和提出問題的能力,靈活運(yùn)用知識去解決問題的能力,在研究和解決問題的過程中學(xué)會合作。3的倍數(shù)的特征,有規(guī)律可循,容易上成機(jī)械刻板、枯燥無味的課,學(xué)生雖能死套規(guī)律判斷,但學(xué)生的能力沒能培養(yǎng),智力得不到開發(fā)。本課的設(shè)計(jì)采用了啟發(fā)與發(fā)現(xiàn)相結(jié)合的教學(xué)方法,激勵學(xué)生大膽猜想,動手實(shí)踐,去發(fā)現(xiàn)規(guī)律,形成技能,升華至應(yīng)用于生活。
2、5的倍數(shù)特征一樣,看一個數(shù)的末尾了,引導(dǎo)學(xué)生是不是要看這個數(shù)其它的數(shù)位上的數(shù)呢?學(xué)生發(fā)現(xiàn)也不是很難。教材中有提示,學(xué)生回家預(yù)習(xí)后也會清楚敘述出3的倍數(shù)特征是一個數(shù)各個數(shù)位上數(shù)字相加的和。找準(zhǔn)知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,剛開始我們先采用課本上百數(shù)表來研究,結(jié)果在一個班實(shí)踐后認(rèn)為效果并不是很理想,由于數(shù)太多,讓學(xué)生觀察3的倍數(shù)的這些數(shù)時,并從中找出相同的地方,結(jié)果,很多同學(xué)找了與本節(jié)課毫無關(guān)系的東西,浪費(fèi)了很多時間。在評課的時候,我們又討論是不是找一些數(shù)代表百數(shù)表,于是我設(shè)計(jì)了一個表格,讓學(xué)生用除法計(jì)算的方法找到3的倍數(shù)的特征,并觀察這些數(shù),這些數(shù)的個位分別從0到9都有,讓學(xué)生知道3的倍數(shù)的特征跟數(shù)的個位沒有關(guān)系,然后從中又把像45和54,75和57,123和321等特殊的數(shù)單獨(dú)展示出來,讓學(xué)生觀察從中找出規(guī)律。結(jié)果我又重新上了這節(jié)課,效果比上節(jié)課要好。
這節(jié)課結(jié)束后,我感覺最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時,應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化,如用卡片練習(xí)判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學(xué)生的發(fā)展始終是教學(xué)的落腳點(diǎn)。我們的教學(xué)應(yīng)著眼于學(xué)生對解決問題方法的感悟,這樣才可獲得最佳的效果。
的倍數(shù)特征的教學(xué)反思篇八
《3的倍數(shù)的特征》的教學(xué)是五年級數(shù)學(xué)上冊第三單元“因數(shù)與倍數(shù)”中一個重要知識點(diǎn),是學(xué)生在學(xué)習(xí)了2和5的倍數(shù)特征之后的新內(nèi)容。
3的倍數(shù)的'特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我在本節(jié)課設(shè)計(jì)理念上,突出以學(xué)生為主體,教師為主導(dǎo),方法為主線的原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當(dāng)然本節(jié)課也存在很多問題,下面我進(jìn)行做幾點(diǎn)反思。
在導(dǎo)入環(huán)節(jié),我通過復(fù)習(xí)舊知識進(jìn)行“熱身”。由于學(xué)生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個數(shù)的個位就能判斷一個數(shù)是不是2或5的倍數(shù),因此在學(xué)習(xí)3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來,盡管是負(fù)遷移。實(shí)際上,鮮明的沖突讓學(xué)生發(fā)現(xiàn)卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。
猜想3的倍數(shù)特征是基礎(chǔ),在學(xué)生得出猜想后,我便引導(dǎo)學(xué)生找出百數(shù)表中3的倍數(shù)去驗(yàn)證,并在驗(yàn)證中推翻了剛才的猜想。驗(yàn)證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個位上可能是10個數(shù)字中的任何一個,之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴(yán)謹(jǐn),必須跳出百數(shù)表,在100以上的數(shù)中去驗(yàn)證這個規(guī)律。最后,引導(dǎo)學(xué)生理解這個結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來,學(xué)生不僅學(xué)會本節(jié)課知識,更掌握了科學(xué)的探究方法。
本節(jié)課的目標(biāo)定位上,我考慮到學(xué)生的已有認(rèn)知基礎(chǔ),我決定引導(dǎo)學(xué)生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對學(xué)生學(xué)情把握的基礎(chǔ)上,因?yàn)?的倍數(shù)的特征的結(jié)論一但得出,運(yùn)用起來沒有難度,后面的練習(xí)往往成了“休閑時間”,而進(jìn)一步提升探索難度,無疑是開發(fā)思維的良好契機(jī)。我運(yùn)用數(shù)形結(jié)合的方法逐步深入,最后還是把話語權(quán)留給學(xué)生,這樣就給予不同學(xué)生各自適應(yīng)的個性化學(xué)習(xí)方略,真正做到了讓每位同學(xué)在數(shù)學(xué)上都得到發(fā)展。
的倍數(shù)特征的教學(xué)反思篇九
本節(jié)課探究3的倍數(shù)的特征之前,我還是先讓學(xué)生寫出50以內(nèi)3的倍數(shù),然后讓學(xué)生觀察這些數(shù)有何特征,大部分同學(xué)找不著規(guī)律,個別同學(xué)可能是受上節(jié)課的影響,說出了:個位上是0、1、2、3、4、5、6、7、8、9的數(shù)就是3的倍數(shù),但馬上就被其他同學(xué)推翻了。
然后我就出示計(jì)數(shù)器,依次撥出3的倍數(shù),讓學(xué)生觀察一共用了幾顆珠子,讓學(xué)生體會到有幾顆珠子就是各個數(shù)位上數(shù)的和,發(fā)現(xiàn)珠子的顆數(shù)正好是3的倍數(shù),也就是各個數(shù)位上數(shù)的和是3的倍數(shù),那么這個數(shù)就是3的倍數(shù)。說實(shí)話,學(xué)生對于這一規(guī)律,不是很容易接受,在后來的練習(xí)中,才慢慢體會到。
“想想做做”的五道題設(shè)計(jì)得比較好,體現(xiàn)了分層,特別是最后一道,學(xué)生通過交流討論后,得出了先選數(shù)后組數(shù)的思路,練習(xí)的效果比較好。
的倍數(shù)特征的教學(xué)反思篇十
《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2和5倍數(shù)特征之后的又一內(nèi)容,因?yàn)?和5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——動手試驗(yàn)的過程中,概括歸納出3的倍數(shù)特征。
但上課的過程中,學(xué)生并沒有按照我想的思路去進(jìn)行,一個學(xué)生在我沒有預(yù)想的前提下說出了3的倍數(shù)的特征,所以我準(zhǔn)備讓四人小組去合作交流發(fā)現(xiàn)3的倍數(shù)的特征也沒有進(jìn)行。只是讓學(xué)生兩人去再說一說剛才那個學(xué)生的發(fā)現(xiàn),加以理解,鞏固。
這節(jié)課結(jié)束后,我感覺以下方面做得不好。
1、備課不充分。自己在備課時沒有好好的去備學(xué)生,沒有做好多方面的預(yù)設(shè);
2、在觀察百數(shù)表到后面總結(jié)3的倍數(shù)特征時,都應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。老師不要著急,學(xué)生能說出的盡量讓學(xué)生說,多放手,相信學(xué)生。
的倍數(shù)特征的教學(xué)反思篇十一
在執(zhí)教《2、5、3的倍數(shù)的特征》后,我針對本節(jié)課的教學(xué)情況進(jìn)行反思。
一、跨年級學(xué)習(xí)新數(shù)學(xué)知識,知識銜接不上,不符合學(xué)生的認(rèn)知規(guī)律。
雖然2、5、3的倍數(shù)的特征看起來很簡單,探究的過程可能沒有什么困難之處,但要內(nèi)容讓學(xué)生學(xué)懂,首先存在知識銜接問題,整除、倍數(shù)、因數(shù)這些概念學(xué)生都從未接觸過,因此,我在課開始安排了整除、倍數(shù)、因數(shù)新概念的介紹,在我看來,這些概念比較抽象,學(xué)生一時難以掌握。
二、為了體現(xiàn)“容量大”,教學(xué)延堂。
備課時也參考了不少資料,大多數(shù)教學(xué)設(shè)計(jì)都是將這一內(nèi)容分成兩節(jié)課來學(xué)習(xí),一節(jié)學(xué)《2、5的倍數(shù)的特征》,一節(jié)學(xué)《3的倍數(shù)的特征》,我確定用一節(jié)課教學(xué)《2、5、3的倍數(shù)的特征》,其目的是為了體現(xiàn)容量大,我的設(shè)計(jì)內(nèi)容多,相應(yīng)的學(xué)生自學(xué)、展示、鞏固練習(xí)的時間和機(jī)會就壓縮的比較少了。而3的倍數(shù)的特征與2、5的又完全不同,學(xué)生接受起來可能會有一定的難度,最好單獨(dú)作為一課時學(xué)習(xí)。最后的環(huán)節(jié)達(dá)標(biāo)測試拖堂了。
三、學(xué)生合作學(xué)習(xí)的效果較好,但展示未體現(xiàn)立體式。
高效課堂要充分發(fā)揮學(xué)生的主體作用,要體現(xiàn)學(xué)生會學(xué),學(xué)會,在本節(jié)課上,學(xué)生合作學(xué)習(xí)的熱情高,通過展示,發(fā)現(xiàn)學(xué)生學(xué)懂了,總結(jié)出了2、5、3的倍數(shù)的特征,在展示環(huán)節(jié),學(xué)生講的、板書的相互干擾,于是,我臨時安排按先后順序進(jìn)行,沒體現(xiàn)出高效課堂的“立體式”這一特點(diǎn)。