優(yōu)質大學生數學建模論文(模板16篇)

字號:

    總結可以讓我們更加明確自己的優(yōu)勢和不足,從而做出更好的決策。總結前先梳理思緒,確保全面而有條理;掌握好寫作的基本要素和技巧,可以幫助我們提高寫作的質量和效果。
    大學生數學建模論文篇一
    計算數學建模是用數學的思考方式,采用數學的方法和語言,通過簡化,抽象的方式來解決實際問題的一種數學手段。數學建模所解決的問題不止現(xiàn)實的,還包括對未來的一種預見。數學建模可以說和我們的生活息息相關,尤其是如今科技發(fā)達的今天。數學建模應用領域超乎我們的想象,甚至達到無所不及的程度,隨著數學建模在大學教學中的廣泛使用,使數學建模不止成為一種學科,更重要的是指導新生代更好的利用現(xiàn)代科學技術,成為高科技人才,把我國人才強國,科教興國的戰(zhàn)略推向一個新的高度。
    1.數學建模對教學過程的作用
    1.1數學建模引進大學數學教學的必要。教學過程,是教師根據社會發(fā)展要求和當代學生身心發(fā)展的特點,借助教學條件,指導學生通過認識教學內容從而認識客觀世界,并在此基礎之上發(fā)展自身的過程,即教學活動的展開過程。以往高工專的數學教學存在著知識單一,內容陳舊,脫離實際等缺陷,已經不能滿足時代的發(fā)展,如今的數學教學過程不是單純的傳授數學學科知識,而是通過數學教學過程引導學生認識科學,理解科學,從而指導實踐,促進學生的德智體美勞全面的進步和發(fā)展。因此數學建模成為一門學科,被各大高等院校廣泛引用和推廣,其實數學建模不止應用在大學數學教學中,其他一切教學過程多可引進數學建模。1.2數學建模在大學數學教學中的運用。大學數學教師通過這個數學建模過程來引導學生解決問題和指導實踐的能力。再次建模結果對現(xiàn)實生活的指導,這是大學數學教學中數學建模所需要達到的效果和要求。不再停留在理論學習,而是通過理論指導實踐,從而為科學的進步和人才綜合水平的提高提供可能。
    2.數學建模對當代大學生的作用
    2.1數學建模對數學學科和其他學科學生的巨大影響力學習數學建模,能夠使一個單獨的數學家變成經濟學家,物理學家還有金融學家,甚至是藝術家,只要正握數學建模就能指導學生通過掌握數學建模的思維和方法向其他領域學習和進步。數學建模成為連接數學和其他領域的紐帶,是當今數學科學在其他領導應用的橋梁,是數學技術轉化為其他技術的途徑,數學建模在學生中越來越受到關注和歡迎,越來越多的學生開始學習數學建模,尤其是數學界和工程界的學生,這成為當今學生成為現(xiàn)代科技工作者必須掌握的只是能力之一。
    2.2數學建模對學生綜合能力的提高數學建模是大學數學教師運用數學科學去分析和解決實際問題,在數學建模學習的過程中,大學生的數學能力得到提高,其分析問題、解決問題的能力得到提高,這對大學生畢業(yè)走向社會具有著重大意義。通過數學建模的學習和應用,激發(fā)大學生學習數學和應用數學的能力,運用數學的思維和方法,利用現(xiàn)代計算機科學,來解決數學及其他領域的問題。
    3.數學建模對大學數學及其他學科教師的作用
    數學建模引入大學數學教學,這是時代的進步,是時代對當代大學教師提出的新要求,尤其是大學數學教師,其不再停留在以往的單純的數學知識講授方向,而是將數學科學作為基礎,引導當代大學生發(fā)散思維,發(fā)揮主觀能動性,從而學習數學科學,并運用數學科學解決現(xiàn)實問題。在這個過程中大學教師的專業(yè)知識得到提高,其創(chuàng)新精神也得到了極大的豐富。大學數學教師不止完成數學教學,更重要的是培養(yǎng)了高科技的人才,這對大學數學教師的社會地位也有了相應的改變,在尊重人才,尊重科學的氛圍中,大學數學教師及其他學科的教師得到了鼓舞,得到了進步,得到了認可。數學建模越來越重要,關于數學建模的各種國內國際大賽頻頻舉辦,這對大學數學教師在知識,體力和創(chuàng)新性上都提出新的要求,為了更好的參與數學建模比賽,大學數學教師投入更多的時間和經歷在學生教育和數學建模中,他們成為真正的臺前和幕后的指揮者。
    隨著現(xiàn)代大學學科的豐富,尤其是計算機科學的廣泛應用,大學數學教學的跨時代發(fā)展,數學建模成為各個高校數學教學的重點內容,數學建模教學吸納數學家,計算機學家等多個學科專家的意見,從而為培養(yǎng)出綜合行的高科技人才做好充分的準備??梢哉f數學建模教學是當今大學數學教學的主旋律,是數學科學和其他科學進步發(fā)展的方向和原動力。
    參考文獻:
    [1]李進華.教育教學改革與教育創(chuàng)新探索.安徽:安徽大學出版社,20xx.8.
    [2]于駿.現(xiàn)代數學思想方法.山東:石油大學出版社,1997.
    大學生數學建模論文篇二
    大學生數學建模競賽,由教育部高教司和中國工業(yè)與應用數學學會主辦,創(chuàng)辦于1992年,每年一屆,目前已成為全國高校規(guī)模最大的基礎性學科競賽,也是世界上規(guī)模最大的數學建模競賽,同時成為高等院校文秘站-您的專屬秘書,中國最強免費!一項重大的課外科技活動。尤其,來自全國33個省/市/自治區(qū)(包括香港和澳門特區(qū))及新加坡、美國的1338所院校、25347個隊(其中本科組22233隊、專科組3114隊)、7萬多名大學生報名參加本項競賽。每年的9月份舉辦,三人為一組,比賽時間共三天,最終通過論文的形式來體現(xiàn),以創(chuàng)新意識、團隊精神、重在參與、公平競爭為宗旨,旨在培養(yǎng)大學生的創(chuàng)新意識與團隊精神。
    一、大學生數學建模競賽培訓的重要性
    數學建模競賽作為教育部四大學科競賽之首,規(guī)模最大,影響最大。因此,數學建模競賽培訓顯得尤為重要。它有利于讓學生盡早了解并掌握建模的基礎理論知識及相關應用軟件;有利于培養(yǎng)學生分析問題和解決實際問題的能力;有利于培養(yǎng)學生的團隊合作精神,使隊員間盡早磨合,相互了解;有利于培養(yǎng)學生的創(chuàng)新意識和發(fā)散思維;有利于訓練學生快速獲取有用信息和資料的能力;有利于增強學生的寫作技能和排版技術等。
    通過參加數學建模競賽,受到了一次科學研究的初步訓練,初步具備了科學研究的能力,提高了自身的分析問題和解決問題的能力以及計算機應用能力,培養(yǎng)了刻苦鉆研問題的精神以及與他人友好合作的團隊精神,培養(yǎng)了敢于戰(zhàn)勝困難的堅強意志和創(chuàng)新能力,這些能力和精神為各自今后的學習和工作都帶來了巨大的影響。因為參與數學建模比賽,許多學生收獲了知識,取得了榮譽,參賽隊員的共同體會是:一次參賽,終生受益。
    二、培訓中創(chuàng)新方法――案例模板式教學
    數學建模培訓一般是通過給學生講解數學建模的基本知識與理論,相關的數學軟件及軟件包,輔以講座,上機,討論等方式,讓學生對數學建模的基本方法及相關數學軟件的使用有一定的了解,對數學建模的基本思想有基本把握。
    在培訓中,通過對以往競賽試題的分析,將近幾年的數學建模競賽分為兩大類:固定式問題和開放式問題,采用案例模板式教學對參加建模競賽的同學進行輔導。其中,固定式問題指讓學生對固定的有一定物理背景的問題進行數學建模求解;開放式問題指讓學生準確把握題意后能充分根據自己的喜好,選取不同方向或方法進行建模求解。例如:
    全國大學生數學建模大賽a題《車道被占用對城市道路通行能力的影響》為典型的固定式題目,要求學生對已給的.視頻數據確定通行能力的數學模型,并且求出排隊長度。而全國大學生數學建模競賽b題《20上海世博會影響力的定量評估》為典型的開放式題目,讓學生選取感興趣的某個側面,利用互聯(lián)網數據,建立數學模型,使學生在準確把握題意后能充分根據自己的喜好,選取不同方向進行建模求解,相對于固定問題開放性較強。
    因此,要求教師在數學建模培訓中,既要突出固定式的求解思路,又要注意培養(yǎng)學生開放式的發(fā)散思維。具體表現(xiàn)為:在固定求解思路上,要包括深刻理解題意,挖掘問題內部的區(qū)別,結合已有的數學建?;A、數學建?;痉椒ā祵W建模特殊方法,通過對具體競賽題的分析,總結出相關類型問題的數學求解方法;在開放性問題上,充分調動學生的積極性,讓學生在查閱相關資料后,進行討論交流,各抒己見,從各個層面,多角度的找出可行性強的數學建模方法。求解思路如下圖1和圖2所示。
    三、結束語
    數學建模培訓是對大學數學教學改革的一次推動,是對高校教學水平、管理水平的大檢驗,是對指導教師綜合實力的展示和提升,也是對學生各種能力和綜合素質的一次提高,參加過建模的同學收獲很多,不但領會到數學之美,建模之樂,還體會到團隊合作的強大,專業(yè)交叉的益處,可以說對學生是一個專業(yè),性格,心智等全方面的鍛煉和提高。
    通過對大學生數學建模競賽培訓中教學創(chuàng)新方法的初步探究,數學建模培訓變得更加系統(tǒng)化、專業(yè)化,為學生參加各級數學建模競賽提供了更好地學習實踐和交流的平臺,為培養(yǎng)學生的專業(yè)建模能力探索了新的途徑和方法。
    大學生數學建模論文篇三
    我們仔細閱讀了西北民族大學研究生數學建模競賽的競賽規(guī)則。
    我們完全明白,在競賽開始后參賽隊員不能以任何方式(包括電話、電子郵件、網上咨詢等)與隊外的任何人(包括指導教師)研究、討論與賽題有關的問題。
    我們知道,抄襲別人的成果是違反競賽規(guī)則的',如果引用別人的成果或其他公開的資料(包括網上查到的資料),必須按照規(guī)定的參考文獻的表述方式在正文引用處和參考文獻中明確列出。
    我們鄭重承諾,嚴格遵守競賽規(guī)則,以保證競賽的公正、公平性。如有違反競賽規(guī)則的行為,我們將受到嚴肅處理。
    我們參賽選擇的題號是(從a/b/c中選擇一項填寫):
    我們的參賽論文題目是:
    參賽隊員(打?。?BR>    隊員1姓名:;聯(lián)系電話:;郵箱:;
    學院:;專業(yè)年級:;
    隊員2姓名:;聯(lián)系電話:;郵箱:;
    學院:;專業(yè)年級:;
    隊員3姓名:;聯(lián)系電話:;郵箱:;
    學院:;專業(yè)年級:;
    參賽隊員簽名:1;2;3。
    日期:年月日
    將本文的word文檔下載到電腦,方便收藏和打印
    推薦度:
    點擊下載文檔
    搜索文檔
    大學生數學建模論文篇四
    一、數學建模競賽概述
    競賽形式組委會規(guī)定三名大學生組成一隊,參賽學生根據題目要求可以自由地收集、查閱資料,調查研究,使用計算機、互聯(lián)網和任何軟件,在三天時間內分工合作完成一篇包括模型假設、模型建立和模型求解、計算方法的設計和計算機實現(xiàn)、結果的檢驗和評價、模型的改進等方面的論文(即答卷)。競賽評獎的主要標準為假設的合理性、建模的創(chuàng)造性、結果的正確性和文字表述的清晰程度。
    二、賽前學習內容
    1.建?;A知識、常用工具軟件的使用
    (1)掌握數學建模必備的基礎知識(如線性代數、高等數學、概率統(tǒng)計等),還有數學建模競賽中常用的但尚未學過的方法,如灰色預測、回歸分析、曲線擬合等常用預測方法,運籌學中若干優(yōu)化算法。(2)針對數學建模特點,結合典型的問題,重點學習幾種常用數學軟件(matlab、lindo、lingo、spss)的使用,并且具備一般性開發(fā)能力,尤其應注意同一數學模型,有時可以使用多個軟件進行求解。
    2.常見數學建模的過程及方法
    數學建模競賽是一項非常具有挑戰(zhàn)性和創(chuàng)造性的活動,不一定用一些條條框框規(guī)定各種實際問題的模型具體如何建立。但一般來說,數學建模主要涉及兩個方面:一是將實際問題轉化為理論數學模型;二是對理論數學模型進行分析和計算。簡而言之,就是建立數學模型來解決各種實際問題的過程。這個過程可以用如圖1來表示。
    3.數學建模常用算法的設計
    建模與計算是數學模型的兩大核心。當數學模型建立后,完成相關數學模型的計算就成為解決問題的關鍵,而所采用算法的好壞將直接影響運算速度的快慢,以及答案的優(yōu)劣。根據近年來競賽題型特點及以前參賽獲獎學生的心得體會,建議多用數學軟件如matlab、lindo、lingo、spss等來設計求解的算法,本文列舉了幾種常用的算法。(1)參數估計、數據擬合、插值等常用數據處理算法。在數學建模比賽中,通常會遇到海量的數據需要處理,而處理數據的關鍵就在于正確使用這些算法,通常采用matlab作為運算工具。(2)線性規(guī)劃、整數規(guī)劃、多目標規(guī)劃、二次規(guī)劃等優(yōu)化類問題。數學建模競賽大多數問題是最優(yōu)化問題,很多時候這些問題可以用數學規(guī)劃模型進行描述,通常使用lindo、lingo軟件求解。(3)圖論算法主要包括最短路、網絡流、二分圖等算法,如果涉及到圖論的問題可以用這些方法進行求解。(4)最優(yōu)化理論的三大非經典算法:神經網絡、模擬退火法、遺傳算法。這些算法通常是用來解決一些較困難的最優(yōu)化問題的,主要使用lingo、matlab、spss軟件來實現(xiàn)。
    三、數學建模競賽中經常出現(xiàn)的問題
    在國家數學建模競賽中常見如下問題:數學模型最好明確、合理、簡潔,但是有些論文不給出明確的模型,只是根據賽題的情況用“湊”的方法給出結果,雖然結果大致是對的,但是沒有一般性,不是數學建模的正確思路;有的論文過于簡單,該交代的內容省略了,難以看懂;有的隊羅列一系列假設或模型,又不作比較、評價,希望碰上“參考答案”或“評閱思路”,反而弄巧成拙;有的論文參考文獻不全,或引用他人成果不作交代。另外,吃透題意方面不足,沒有抓住和解決主要問題;就事論事,形成數學模型的意識和能力欠缺;對所用方法一知半解,不管具體條件,套用現(xiàn)成的方法,導致錯誤;對結果的分析不夠,怎樣符合實際考慮不周;隊員之間合作精神差,孤軍奮戰(zhàn);依賴心理重,甚至違紀。以上情況都需要各參賽隊引起注意,有則改之,無則加勉。
    四、競賽中應重視的問題
    1.團隊合作是能否獲獎的關鍵
    通常在數學建模競賽時,三個隊員的分工要明確,其中一個作為組長,也算是領軍人物,主要是負責構建整個問題的框架,并提出有創(chuàng)意的想法,當然其他部分如論文寫作、程序設計、計算等也要能參加;第二位是算手,主要進行算法設計及編程計算;最后一位是寫手,主要工作在于論文的'寫作和潤色上。好的論文要讓評委一眼就能明了其中的意思,因此寫手的工作也需要一定的技巧。當然,要想競賽時達到這樣的標準,需要三個隊員在平時訓練時多加練習。
    2.合理安排競賽過程中的時間
    數學建模競賽中時間分配很重要,分配不好有可能完不成競賽論文,有的隊伍把問題解答完了,但是發(fā)現(xiàn)沒有時間進行寫作,或者寫的很差勁而不能獲獎,因此要大致做好安排。一般前兩天不要熬的太狠,晚上10:00點前要休息,最后一夜必須熬通宵,否則體力肯定跟不上。之前有些隊伍,前兩天勁頭很足,晚上做到很晚才休息,但是到了第三天晚上就沒有精力了,這樣一般很難獲獎。
    3.摘要的撰寫很重要
    論文的摘要是整篇論文的門面。摘要首先可以強調一下所做問題的重要性和意義,但不要寫廢話,也不要完全照抄題目的一些話,應該直奔主題,主要寫明自己是怎樣分析問題,用什么方法解決問題,最重要的結論是什么。在中國的競賽中,結論很重要,評委肯定會去和標準答案進行比較。如果結論正確一般能得獎,如果不正確,評委可能會繼續(xù)往下看,也可能會扔在一邊,但不寫結論的話就一定不會得獎了,這一點和美國競賽不同,因此要認真把重要結論寫在摘要上,如果結論的數據太多,也可只寫幾個代表性的數據,注明其他數據見論文中何處。
    4.論文寫作也要規(guī)范
    數學建模競賽的論文有一個比較固定的模式。論文大致按照如下形式來寫:摘要、問題重述、模型假設和符號說明、問題分析(建立、分析、求解模型)、模型檢驗、模型的優(yōu)缺點評價、參考文獻、附錄等等。另外,在正文中也可以加入一些圖和表,附錄也可以貼一些算法流程圖或比較大的結果或圖表等等,近年來為了防止舞弊,組委會要求把算法的源程序也必須放在附錄中。
    五、結論
    全國大學生數學建模競賽對于大學生而言,是一個富有挑戰(zhàn)的競賽。它不但能培養(yǎng)大學生解決實際問題的能力,同時能培養(yǎng)其創(chuàng)造力、團隊合作的能力,而這些能力將會成為參賽學生以后成功就業(yè)的重要推動力??梢哉f,一次參賽,終身受益。
    大學生數學建模論文篇五
    在得知xxxx年全國大學生數學建模競賽中,我們隊(隊員:)獲得xxxx省賽區(qū)二等獎的時候,我并不喜出望外,反而覺得有點遺憾,有點可惜,因為我們沒有完全發(fā)揮出水平,這樣成績對我們來說并不理想。其實這也是在我的預料之中的。以下是我個人在這次比賽中的感受:
    在數模競賽中想獲得好成績,進軍全國評選并非易事。首先模型要建得好,其次文本要寫得好,即敘述要簡潔,文字要流暢,邏輯嚴謹。可要做到這兩點并不容易,每個問題涉及的知識面很廣,要求有扎實的數學基礎,需要掌握高等數學,線性代數,離散數學,概率與數理統(tǒng)計理論,有時還要涉及物理等等方面的知識,這有賴于我們平時不懈的努力和刻苦的學習鉆研。此外,開始建立的模型并不是最優(yōu)的,需要反復修改,不斷優(yōu)化,最后才能求出最優(yōu)解。建立好數學模型后,接下來是寫文本,文本必須簡潔,讓人容易看懂,如果文本寫得不好,不能把模型正確表達出來,也不能取得好成績。因為文本在評分中占了很大的比例,直接影響我們的論文是否能夠獲得高分。
    比賽的形式是以三人為一對的,隊員之間分工合理、科學與否直接影響比賽成績。如果能充分發(fā)揮各個隊員的優(yōu)勢,那么這是最好的。例如,文筆好的負責寫文本,數學好的負責建立模型,查資料,編程好的負責編程求解。也就是團隊精神,在意見有分歧的時候,要顧全大局,而不要各做各的,互不謙讓,這一點無論做什么都是至關重要的。
    在這次比賽中,我們隊合作得很愉快,配合也很默契,所以我們很順利的.建立了模型,并求出了模型的解。在與同學們和老師討論過程中,我們發(fā)現(xiàn)很多他們討論的問題,是我們小組討論過,并證明過不是最優(yōu)解的模型??梢哉f我們是最早建立模型的,并得出模型的解的。但我總覺得我們的文本寫得不理想,不滿意,這也沒辦法,因為我們花在第三個問題的時間太多了。以至到快要交卷的時候我們還忙于修改文本。
    我已參加過兩次比賽,兩次的成績都不錯,因此我們組比別人有優(yōu)勢,有參賽的經驗,除外,對于做題我們都很有經驗,知道如何去查資料,怎樣與指導老師討論問題,可以說,有一種居高臨下的感覺,游刃有余。
    雖然我們沒在全國上獲獎,但我們已經盡了力,結果如何,都無怨無悔。最后我要感謝廣州大學給我們提供這么一個參賽的機會,學校為了這次比賽,準備了很多人力物力,在比賽前一個月組織參賽的學生集訓,這是我校在這次比賽中取得好成績的原因之一。很多老師為了這次比賽花了很多心血,而且在比賽的最后一天,一些老師還陪著學生一起通宵達旦,這是難能可貴的精神,我想在我們學校應該大力發(fā)揚。預祝我校在今年的全國大學生數學建模取得更優(yōu)異的成績。
    大學生數學建模論文篇六
    摘要:在新課改以后,要求教師要在教學中重視學生的主體地位,提升學生學習興趣,培養(yǎng)他們的自主學習能力。本文從初中數學教學過程中數學建模入手,對如何將數學建模運用到學生解題過程中進行了分析。
    關鍵詞:數學;建模;運用
    數學建模是指利用數學模型的形式去解決實際中遇到的問題,換句話說,就是利用數學思維、數學方法解決各種數學問題。數學建模是在新課程改革后出現(xiàn)的新概念,經過一段時間的觀察我們可以發(fā)現(xiàn),數學建模的方法能夠有效的提高學生的學習興趣,培養(yǎng)學生的數學能力。這種方式能夠將復雜的數學問題利用簡單的方式找到解決方案,是提高初中數學課堂效率及課堂質量的有效手段。初中數學是初中學習中的重要課程之一,也是培養(yǎng)學生數學思維的重要階段。可以說,初中數學的學習是學生學習數學的關鍵,對今后的學習起到極大的影響。因此,對于初中數學教師來說,不斷的完善教學手段,提高數學課堂質量是教學工作中的重中之重。而數學建模就是為了解決數學在生活中的實際問題,能夠讓學生感受到數學本身的魅力,培養(yǎng)他們的數學思維,提高數學學習能力,從而讓初中數學教學質量也得到大幅度的提升。初中數學與數學建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進,如何有效的.將數學建模運用在初中數學教學過程中,是每個初中數學教師都值得思考的問題。
    一、培養(yǎng)學生數學建模意識
    數學建模是為了解決數學中遇到的問題,數學本身特別是初中數學也是一門較貼近學生生活的學科。因此在數學學習中,教師要首先培養(yǎng)學生的數學學習意識,讓他們感受到數學與生活的緊密聯(lián)系,然后再引導學生用數學建模去解決遇到的問題。在這一過程中,數學教師要注意以下兩個問題:(一)在教學中一定要貼近學生的生活,課堂中所提出的問題也必須要符合生活實際,讓學生對所學內容感到親切。積極引導學生利用多種方式解決同一問題,尤其是利用數學建模的方式,以達到培養(yǎng)他們的數學思維以及想象能力的目的。(二)在學生進行數學建模的過程中要利用多鼓勵的方式調動他們對數學學習的積極性,讓他們在數學建模中獲得成就感,增加自信心,以此來提高學生在今后學習中使用數學建模方法的熱情。
    二、提高學生想象力,用數學建模簡化問題
    對于初中生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數學學習中,如果能將想象力與數學學習結合在一起,一定會得到意想不到的效果。教師可以根據初中生這一特點,提高他們的想象力,然后再引導他們利用數學建模解決問題,讓題目簡單化。具體來說,就是在面對復雜的數學問題時,教師可以先為學生創(chuàng)建教學情境,以這樣的方式提高學生的學習興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導,讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導他們進行數學建模,解決問題。這樣的方式充分的利用了學生的想象能力,將所需解決的問題簡單化。
    三、選擇合適的題目作為建模案例
    在數學建模過程中,教師也要時刻牢記題目應該貼近學生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數學建模的過程中去,然后再反復練習之后達到提高他們建模能力的目的。在選擇數學建模案例時教師主要應該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學生在學習了該題目以后掌握這一類的解題方法,達到初中數學教學的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學生進行不同方面的建模練習,以此提高他們數學建模的能力。
    四、引導學生主動進行數學建模
    在教師經過反復的教學后,學生都已經擁有了基本的數學建模知識,了解了數學建模過程,并且能夠在解題過程中簡單的使用數學建模。此時,教師在教學中就可以引導學生利用數學建模解決數學題目了。引導學生用數學建模方法解決數學問題,就要在解題過程中多對學生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學生之間利用合作的方式讓他們進行數學建模方法的探討,并在探討的過程中吸取他人的經驗,提高自己數學建模水平,同時這樣的方式能夠讓數學建模深入到每一個學生的心中,逐漸影響每一個學生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數學建模的方法能夠有效的改變過去的傳統(tǒng)教學思路,增加學生對數學的學習興趣,提高數學解題能力。這種教學方法對于初中數學教師來說,值得不斷的探討研究,并應用在教學中,以此提高數學課堂的教學效率和教學質量。
    大學生數學建模論文篇七
    眾所周知,高等數學是所有自然學科的基礎,一個大學生要想在以后的工作、學習中大展宏圖,那么就一定少不了堅實的高等數學基礎。如何解決大學生在學習高等數學時碰到的問題?如何調動大學生學習高等數學的積極性?讓學生們了解高等數學的用途,真正愿意靜下心來好好學習高等數學,努力為以后的發(fā)展打好數學基礎。一直以來,各所高校的教師們都在努力的想辦法、找對策,一些實用有效的方法已經提出并且在逐步推廣,比如,問題驅動式的教學方法和基于pbl的教學方法等。筆者從所在學校的學生實際學習情況出發(fā),根據幾年來的教學心得和積累,打算提出一種較為實用的教學方法——利用數學建模的思想調動大學生學習高等數學的積極性。該方法在筆者所教授的班級中已經實際應用過幾屆,學生普遍反映效果較好,任課老師也認為該方法確實能極大地調動學生的學習積極性。
    提到高等數學,學生們的第一反應往往是:各種公式塞滿黑板,各種運算充斥腦海;定義、定理、推論一個連著一個;極限、連續(xù)、可導可積一個涵蓋另一個[1]。和高中數學相比,記憶的負擔輕了(實際上是知識點太多,記不住了),而對思維的要求卻提高了。對大學生來說,每一次的高數課,都是一次大腦的思維訓練,時刻要求精神高度集中,一定要緊跟老師的步劃,一旦走神,后面的內容就不知所云了。這樣的要求短時間可以達到,長久下去學生們會覺得很辛苦,很有壓力,會出現(xiàn)抱怨。筆者碰到過這樣的學生,剛開始時,興致勃勃,雄心萬丈,可到后來興趣索然,馬虎應對。怪學生嗎?誠然學生有責任,但任課老師也該負很大的責任。作為高等數學的老師我們經常要面對學生提的這些問題:(1)我學的專業(yè)和高等數學相差甚遠,有可能這一輩子都不會用到高等數學的知識,那我學高等數學的目的何在?(2)老師您天天鼓吹高等數學的強大功能和廣泛用途,但是通過一學期的學習,我發(fā)現(xiàn)除了對付考試有用,真不知高等數學可以用在何處?這些問題不及時解決,時間長了一定會影響到大學生對高等數學的學習積極性,甚至有可能會產生厭學的情緒和氛圍。有些極端的學生,期末考試之后,一聽到自己高等數學考過了,立馬將高等數學的課本給撕了,可想而知高等數學對其造成的壓力有多大[2]。如何解決大學生在學習高等數學時碰到的問題?如何調動大學生學習高等數學的積極性?讓學生們了解高等數學的用途,真正愿意靜下心來好好學習高等數學,努力地為以后的發(fā)展打好數學基礎。筆者從所在學校的學生實際學習情況出發(fā),根據幾年來的教學心得和積累,打算提出一種較為實用的教學方法——利用數學建模的思想調動大學生學習高等數學的積極性。
    一、以實際問題反推解決問題時我們需要的高等數學知識
    有這樣一個實際問題:報童每天清晨從報社購進報紙零售,晚上將沒賣掉的報紙退回給報社。假設報紙每份的購進價為b元,零售價為a元,退回價為c元,自然地有abc。這就是說,報童每售出一份報紙賺a-b元,每退回一份報紙賠b-c元,報童每天如果購進的報紙?zhí)伲敲磿粔蛸u,就會少賺錢;如果每天購進的報紙?zhí)啵敲磿u不完,將要賠錢。請為報童規(guī)劃一下,他該如何確定每天購進的報紙份數,以獲得最大的收入[3]。
    現(xiàn)在我們來反推該問題涉及到的高等數學的知識:首先,通過分析題目可知,問題解決的關鍵在于——如何確定每天的報紙需求量,注意每天的報紙需求量是隨機變化的?解決這個關鍵問題的知識我們早就掌握了,分別是數理統(tǒng)計中的頻率連續(xù)化、概率論中的概率密度與期望和高等數學中的定積分[4]。
    二、利用高等數學的解決實際問題
    f(r)[4]。如果求出了f(r),那么
    g(n)=[(a-b)r+(b-c)(n-r)]f(r)+(a-b)nf(r).(1)
    現(xiàn)在我們來求f(r),假定報童已經通過自己的經驗和其他渠道掌握了一年(365天)中每天報紙的售出份數,那么在他的銷售范圍內,每天報紙日需求量r的概率f(r)為:
    f(r)=,r=(0,1,2,3,…)
    其中k表示為賣出r份的天數。
    g(n)=[(a-b)r+(b-c)(n-r)]p(r)dr+(a-b)np(r)dr.(2)
    通過上面的分析,可知實際問題歸結為,在p(r)和a,b,c已知時,求n使得g(n)最大。
    =-(b-c)p(r)dr+(a-b)p(r)dr.(3)
    令=0,得到=,又因為p(r)dr+p(r)dr=1,所以p(r)dr=.(4)
    在等式(4)中,p(r)和a,b,c均為已知,所以利用定積分的知識一定可以求出n。也即可以確定每天購進的報紙份數,使報童每天獲得最大的收入。
    三、利用現(xiàn)實問題,讓學生學會思考,給他們提供創(chuàng)造成就感的機會
    通過上面碰到的實際問題,可以很容易地說服同學們靜下心來好好學習高等數學。因為通過實際問題的求解,學生們了解到了,要想解決一個實際問題(哪怕是很小的問題),也需要大量的高等數學知識的儲備;學生們也大概領略到了高等數學的用途與功能。這樣的教學方法簡單、直接,勝過老師課堂上反復的嘮叨與強調。有了這樣的一些實際問題,老師們就可以大膽地將數學建模思想引入高等數學的教學當中,讓學生們在解決實際問題中學會思考,掌握知識,提高能力。
    通過訓練后,碰到實際問題,同學們會自然的想到我們的教學方法:(1)這些實際問題涉及到的高等數學知識?那些自己掌握了,那些還沒有弄明白,學要加強學習。(2)知識點找到后,如何建立起數學與實際問題求解之間的關系?也即如何建立數學模型。(3)除了老師給的題目,自己本專業(yè)中的實際問題,能否用高等數學的知識去解決?通過思考、分析、解決這些問題,學生們會有一種創(chuàng)造創(chuàng)新的成就感,會愿意自主學習,自然而然其學習高等數學的積極性也會大大提高了。
    大學生數學建模論文篇八
    :本文從“如何培養(yǎng)學生實踐應用能力提高就業(yè)素質”出發(fā),通過對大專院校進行廣泛的調研,分析了目前高職院校開展數學建模的現(xiàn)狀,并總結了黑龍江交通職業(yè)技術院校開展數學建模教學與競賽活動的經驗和做法,對指導高職院校的數學建模實踐教學工作具有重要意義。
    :數學建模競賽;教學改革;實踐教學
    中國大學生數學建模競賽是目前全國高校中規(guī)模最大、影響最廣的大學生課外科技活動,它在培養(yǎng)大學生知識的應用能力、創(chuàng)新能力以及團隊的合作精神、頑強的意志品質等方面都顯示了獨特的作用和優(yōu)勢。然而,大學生數學建模競賽在高職學院的開展卻起步遲緩且步履維艱,如何改變現(xiàn)狀,促進大學生數學建模競賽在高職學院持續(xù)健康發(fā)展,已經成為教育工作者研究的重要課題。
    總體來說起步較緩慢,以黑龍江賽區(qū)為例,參加全國大學生數學建模競賽的院校和參賽隊雖然逐年增加,20xx年達到了34所參賽院校共444支參賽隊,但是高職學院參賽的少,僅占全省高職學院的1/3,有的高職學院長期徘徊在競賽之外,有的斷斷續(xù)續(xù),今年參賽明年休息。分析其原因主要有兩個:一是部分高職學院對大學生數學建模競賽十分陌生,對競賽的意義缺乏認識,沒有配套的實施辦法和有效的激勵機制;二是競賽的指導教師匱乏,能力有限,目前高職數學教師隊伍嚴重萎縮,有的學院數學教研室只剩一兩個人。
    參加數學建模競賽需要扎實的數學功底和良好的應用意識。而高職的課程體系突出專業(yè)技能的培養(yǎng),通常只在一年級開設一個學期的“高等數學”課程,總學時一般僅有30學時,有的甚至不開數學課。教學內容以一元微積分的基本概念和簡單算法為主。大多數參賽的高職院校,僅僅是為競賽而競賽,極少關注數學建模思想和方法在深化數學教學改革、促進課程建設等方面的作用。
    高職學生總體水平較差,但對從未接觸過的數學建模充滿好奇。然而數學建模競賽對學生的知識和能力要求都比較高,同時因高職學生二年級末就要面臨頂崗實習和就業(yè)問題,參賽學生通常只能在一年級中選拔,他們的基礎和能力顯然都沒有本科生扎實,因此賽前培訓的工作量非常大。
    通過數學建模競賽可以提高學生的綜合素質,是培養(yǎng)學生綜合能力的有效途徑。數學建模競賽可以培養(yǎng)團隊精神與合理表達自己思想和綜合運用知識的能力等,所有這些對提高學生的素質都是很有幫助的,且非常符合當今提倡素質教育精神。
    數學建模競賽不同于其它各種具有單個學科如:數學競賽,物理競賽,計算機程序設計競賽等的競賽,因為這些競賽只涉及到一門學科,甚至一門課程的知識,而數學建模競賽涉及到數學學科,計算機學科等其他許多學科的知識,僅數學學科就涉及到高等數學,線性代數,概率統(tǒng)計,計算方法,運籌學,圖論,數學軟件等方面的知識。學生要想在數學建模競賽中取得好成績,除了具有以上數學知識外,還要有較好的計算機編程能力,網上查閱資料的能力及論文寫作能力等,此外,他們還應有接觸各種新知識的環(huán)境和喜好。因為數學建模的競賽題遠非只是一個數學題目,而更多是一個初看起來與數學沒有聯(lián)系的實際問題,它涉及到很多知識,有些還是當前尚未解決的問題,如:飛行管理問題,dna排序問題等就是較有代表性的數學建模考試題目。通常數學建模題目只給出問題的描述和要達到的目的,參賽學生要做的事情是將問題用數學語言轉化成數學問題,然后在數學的背景下使用計算機或數學軟件來求解,最后再根據所得的解來解釋和檢驗所給的實際問題。與數學競賽不同的是,數學建模賽題沒有標準的正確答案,試卷的評分標準是看學生解決問題和創(chuàng)新的能力.因此要做好一個數學建模問題并不是一件容易的事情,需要學生很多的知識以及對所學各種知識的綜合運用,對學生是一個挑戰(zhàn)。
    數學建模競賽的題目由工程技術、經濟管理、社會生活等領域中的實際問題簡化加工而成,沒有事先設定的標準答案,但留有充分余地供參賽者發(fā)揮其聰明才智和創(chuàng)造精神。競賽以通訊形式進行,三名大學生組成一隊,在三天時間內可以自由地收集資料、調查研究,使用計算機、軟件和互聯(lián)網,但不得與隊外任何人(包括指導教師在內)以任何方式討論賽題。競賽要求每個隊完成一篇用數學建模方法解決實際問題的科技論文。競賽評獎以假設的合理性、建模的創(chuàng)造性、結果的正確性以及文字表述的清晰程度為主要標準??梢钥闯?,這項競賽從內容到形式與傳統(tǒng)的數學競賽不同,是大學階段除畢業(yè)設計外難得的一次“真刀真槍”的訓練,相當程度上模擬了學生畢業(yè)后工作時的情況,既豐富、活躍了廣大同學的課外生活,也為優(yōu)秀學生脫穎而出創(chuàng)造了條件。
    競賽讓學生面對一個從未接觸過的實際問題,運用數學方法和計算機技術加以分析、解決,他們必須開動腦筋、拓寬思路,充分發(fā)揮創(chuàng)造力和想象力,從而培養(yǎng)了學生的創(chuàng)新意識及主動學習、獨立研究的能力。
    通過數學建模競賽可以推動高校的教育教學改革。十幾年來在競賽的推動下許多高校相繼開設了數學建模課程以及與此密切相關的數學實驗課程,出版了兩百多本相關的教材,一些教師正在進行將數學建模的思想和方法融入數學主干課程的研究和試驗。
    數學教育本質上是一種素質教育,要體現(xiàn)素質教育的要求,數學的教學不能完全和外部世界隔離開來,關起門來在數學的概念、方法和理論中打圈子,處于自我封閉狀態(tài),以致學生在學了許多據說是非常重要、十分有用的數學知識以后,卻不怎么會應用或無法應用。開設數學建模和數學實驗課程,舉辦數學建模競賽,為數學與外部世界的聯(lián)系打開了一個通道,提高了學生學習數學的積極性和主動性,是對數學教學體系和內容改革的一個成功的嘗試。
    數學建模教學和競賽活動中經常用到計算機和數學軟件,普遍采取案例教學和課堂討論,豐富了數學教學的形式和方法。經過幾年來參加數學建模競賽和教學方法和手段的改革,一方面教師的'知識面拓寬了,知識結構改善了,利用數學工具和計算機找出解決實際問題的意識和能力提高了,另一方面,由于理論與實際的結合多,學生的動手能力增強了,學習的主動性和積極性有了很大的提高,同時也培養(yǎng)了學生的創(chuàng)新意識和解決實際問題的能力。
    近年來,我校一直有序地組織學生參加數學建模競賽,學校領導和教務處等有關部門非常重視和支持學生參加數學建模競賽,逐步探索完善了一套合理的激勵機制,激發(fā)指導教師的工作積極性和學生的參賽榮譽感及學習積極性。
    我校開展的數學建模競賽活動是采用第二課堂課余活動的形式進行的。由數學教研室負責每學期對學生進行集體強化培訓,以提高建模水平,培養(yǎng)學生之間的團隊協(xié)作精神。通常我們在每年四月份組織校級競賽,然后評選出五個代表隊的優(yōu)秀論文參加東三省數學建模聯(lián)賽的評獎。通過校級的比賽在全校范圍內選拔出隊員,再進行深入的培訓,最后參加全國比賽。
    我校歷年來在大學生數學建模競賽活動中保持優(yōu)秀成績,涌現(xiàn)了一批優(yōu)秀的指導教師和學生。20xx年黑龍江交通職業(yè)職業(yè)技術學院第一次組隊參加東北三省大學生數學建模競賽,由于領導重視,工作扎實,平時訓練重過程、重細節(jié),競賽中隊員們表現(xiàn)出了良好的意志品質和團隊精神,最終取得了不俗的成績:5個參賽隊中,1個隊榮獲省一等獎,另有1個隊獲省二等獎。20xx年參加東北三省數學建模聯(lián)賽,四個隊獲得二等獎;20xx年參加全國大學生數學建模競賽,一個隊獲得省級二等獎,一個隊獲得省級三等獎;20xx年參加東北三省數學建模聯(lián)賽,一個隊獲得一等獎,三個隊獲得二等獎。事實證明:通過自身的努力,高職學院可以在全國大學生數學建模競賽中取得較好成績,而高職學生也必定會在艱苦的培訓和競賽過程中得到鍛煉和提高。
    盡管目前高職學院開展大學生數學建模競賽活動仍有不少困難,但是我們有理由相信,在社會各界的關心和支持下,這一項能使高職學生、教師和學院全面受益的競賽不僅值得我們?yōu)橹?而且一定能越辦越好。
    大學生數學建模論文篇九
    數學建模是銜接數學與應用問題的橋梁,該課程主要培養(yǎng)學生的綜合素質要求。本文針對于數學建模的課程考核問題進行探討,分析數學建模課程考核存在問題,改革思路,并提出多層次綜合考核方式,應用于數學建模的課程考核,效果良好。
    數學建模;課程考核;創(chuàng)新能力
    數學建模是一門介紹數學知識應用于解決實際問題的方法課程,該課程主要講授如何針對日常生活中的實際問題,做假設簡化并進行抽象提取,然后用數學表達式或者數學公式等將該問題表達出來,并求解該問題,從而達到解決實際問題的目的。數學建模的教學內容包含常見數學模型的介紹、數學軟件編程和處理實際問題的數學方法。即數學建模是一門銜接數學與實際問題的應用型課程,其教學、考核等都與其他數學課程不同。中共中央國務院《關于深化教育改革全面推進素質教育的決定》明確指出:“高等教育要重視培養(yǎng)大學生的創(chuàng)新能力、實踐能力和創(chuàng)業(yè)精神,普遍提高大學生的人文素養(yǎng)和科學素質?!碧貏e對于當前處于經濟結構調整期,“中國制造”向“中國創(chuàng)造”轉型,國家需要大量的高素質創(chuàng)新型人才。而高校是培養(yǎng)高素質創(chuàng)新型人才的重要基地,需要改變原有的人才培養(yǎng)模式,提高學生的動手能力和綜合素質,培養(yǎng)適合經濟發(fā)展需要的高素質創(chuàng)新型人才。因此,本科教學中越來越重視培養(yǎng)學生收集處理信息的能力、獲取新知識的能力、分析和解決問題的能力、語言文字表達能力以及團結協(xié)作和社會活動的能力。數學建模競賽是利用數學知識解決實際問題的競賽活動,要求參賽學生利用三天三夜的時間完成數學建模競賽,整個競賽過程中學生需要分析問題、查找資料、建立模型、編程求解、撰寫建模論文等步驟。這些步驟要求參賽學生具有較強的信息收集、知識獲取、分析、編程、論文撰寫、團隊協(xié)作等能力。因此,數學建模競賽活動是培養(yǎng)學生各方面能力的競賽,也是全國參與人數最多、受益面最廣、舉辦時間最長的競賽活動之一。數學建模是信息與計算科學和應用數學專業(yè)的專業(yè)必修課,參加數學建模競賽的必須培訓課程,數學建模的考核不僅僅是給出該課程的成績,更重要的承擔為數學建模競賽選拔參賽人員的任務。本文針對數學建模的考核問題進行討論。
    (1)考核手段和目的存在誤區(qū)。傳統(tǒng)的考核方法注重于理論知識的檢驗,忽略了對學生創(chuàng)新意識、實踐能力的培養(yǎng)。同時,教育主管部門對于該課程的考核要求與其他課程類似,僅僅考核知識點的.掌握,忽視了該課程的開設目地,從而使得部分學生的利用數學方法解決實際問題的能力未能提高,沒有達到學習此課程的目的。(2)考核重結果,輕過程。目前,數學建模是考查課程,該課程的考核存在兩個極端:簡單根據學生的數學建模論文給予成績或試卷考試成績??己私Y果忽略了對學生的各方面能力的考察,導致開卷考試變成了學生的簡單應付了事;而且部分考核只看最后的結果,而忽略了數學建模的整個訓練過程。(3)考核方式單一。數學建模課程牽涉數學方法、編程能力、論文的寫作能力、及其綜合動手能力等。單純從試卷或最終數學建模論文不能體現(xiàn)學生的各種能力。導致學生的某一種能力掩蓋了其他能力的展現(xiàn),導致數學建模競賽學生選拔過程中存在一種現(xiàn)象:通過各種方式選拔的“優(yōu)秀”學生,真正參加數學建模競賽時,根本無法動手。(4)教學改革需要。隨著大數據、人工智能、深度學習等領域的興起,數學知識是解決此類實際問題的必須工具,解決該類問題的過程其實就是數學建模的過程。隨著“新工科”培養(yǎng)計劃的興起,數學、編程、寫作能力成為衡量人才的重要指標。數學建模是銜接數學和實際問題的橋梁,設置合理的考核方式,體現(xiàn)學生多方面能力是數學建模課程考核改革的動力。
    (1)轉變教育觀念,樹立科學考核。數學建模是一門利用數學方法、計算機編程、論文寫作等方面知識解決實際問題的課程。該課程主要培養(yǎng)學生利用數學建模方法解決實際問題的能力。因此,任課教師改變課程考核等同于考試的觀念,將考核過程貫穿學生的學習階段,學習階段融入整個考核過程。從而避免教、考脫節(jié)的現(xiàn)象,形成教考相互融合,提高學生的積極性。(2)實施多元化考核,提高學生的動手能力。數學建模課程是綜合利用各種能力解決實際問題的方法論型課程,該課程的最終目的是培養(yǎng)學生的各種能力及其解決實際問題的綜合能力。包含多個知識點的試卷測試是應試教育的體現(xiàn),不足以反映學生的動手能力。多元化的考核方式能促進教學過程逐步向以訓練學生的解決實際問題能力為導向,激發(fā)學生的創(chuàng)新意識、鍛煉學生的實踐能力。(3)實施多元化考核,促進學生學風。多元化考核將教學和考核的過程相互融合,學生的學習和考核交替進行,能夠促使學生、自我反省,發(fā)現(xiàn)自己學習的不足,及時改進。同時,教考融合能夠促使學生自發(fā)學習,調到學生的學習積極性,避免出現(xiàn)“平時送、考前緊、考后忘”的現(xiàn)象。
    鑒于數學建模是利用計算機、數學解決實際問題的方法論文課程。該課程的教學過程包含介紹數學建模所用知識點和綜合利用各個知識點解決實際問題兩個階段。該課程考核改革主要訓練學生綜合利用知識解決實際問題的能力,過程的訓練是教學的重點。考試改革需貫穿于該課程的具體教學過程,因此將考核分為階段考核、綜合考核、結課考核、參賽考核四種方式。(1)階段考核。數學建模的教學內容包括編程語言介紹、數學建模方法介紹和數學論文寫作介紹幾個主要的方面。相應地,編程能力、應用數學建模能力和論文寫作能力的訓練是數學建模的根本目的。因此,本項目擬根據數學建模的教學大綱安排,對每種能力進行單獨考核,結合每種能力的特點,設置不同的題目,考核每種能力的得分。根據教學進度發(fā)布測試題目,初步擬定每種能力的測試成績各占總成績的10%,共占總成績的30%。(2)綜合考核。數學建模是綜合運用各種能力的解決實際問題。在各種能力訓練的基礎上,強化訓練學生的綜合運用各種知識的能力。在此階段,從歷年數學建模題目和日常生活中挑出2~3個題目,進行適當簡化處理,促使學生利用3~5天的時間完成一篇論文,進行點評評分,挑選部分典型論文進行講解;然后要求學生繼續(xù)完善論文,再次點評評分,如此循環(huán)多次。每個題目的成績約占總成績的10%,該階段共占總成績的30%。(3)結課考核。針對數學建模授課期間的知識點訓練和綜合訓練,最后仿照數學建模的參賽組織形式,從實際生活中挑選2個側重點不同的題目;同時,建議選課學生自由組合,3人一組,共同完成數學建模論文。該階段對前期訓練的檢測,同時考核學生的團隊精神,最終論文的成績占總成績的40%。(4)參賽考核。數學建模課程可作為數學建模競賽的前期培訓,從選課選手中選取部分成績優(yōu)秀的學生,組織他們參加全國大學生數學建模競賽,競賽獲國家級獎,最終成績直接評為優(yōu)秀;廣西區(qū)級獎最終成績可直接評為良好。
    該考核方案在信息與計算科學專業(yè)的數學建模課程試用。教學中將考核過程融入教學過程,教學過程穿插考核,這樣能夠防止“考核型學習現(xiàn)象”,促使學生逐步向“學習型考核”轉變。同時,數學建模是應用型課程,多元化考試能夠訓練學生的應用數學、計算機編程和論文書寫能力,單一考核不再適應,多元化考核能夠發(fā)現(xiàn)學生的優(yōu)點,促進教學過程轉變?yōu)椤耙阅芰閷颉?,符合當前的教育改革理念。數學建模講授的內容有:線性規(guī)劃模型、非線性規(guī)劃模型、圖論模型(最短路模型、生成樹模型、網絡圖模型)、微分方程模型、差分方程模型、插值模型、擬合模型、回歸分析模型、因子分析模型、統(tǒng)計檢驗模型、綜合評價模型、模擬仿真模型等模型及其相關算法的軟件編程。在教學安排中,對于數學模型部分盡可能講解數學建模中常見模型的建模方法、模型特點及其適應范圍、該模型的求解算法等。對于涉及模型求解算法的理論及其具體的求解步驟略講或者不講解,對于調用軟件的算法集成命令及其調用方法等詳細介紹。對于數學建模論文寫作方面,通過閱讀優(yōu)秀論文,特別是我校20xx年的“matlab創(chuàng)新獎”論文。同時,選取部分簡單例題,根據完整數學建模論文的章節(jié)要求布置任務,要求完成相應論文。然后根據學生的完成情況,進行詳細點評,特別數學建模論文的寫作及其注意事項。學生主動完成平時練習的積極性高,80%的同學能夠按時完成布置的任務。剩下部分同學再經過多次提醒之后也補交了布置的任務。從提交的作業(yè)發(fā)現(xiàn),大部分同學的作業(yè)都是自己認真完成,少數同學是在參考他人的基礎之上完成。在課程結束后,參照數學建模的形式,要求同學們可以自由組隊,隊員人數為1~3人,根據人數的多少,設置不同的評價標準。為考查學生的學習情況,本人給出幾道歷年真題或類真題,這些題目是根據當前的熱點新聞等經過加工而提出。從學生提交的結課論文來看,已經達到了預期效果,大部分同學具備了數學建模的基本素質,掌握了數學建模技巧,能夠完成數學建模論文。通過兩年的試用,信息與計算科學專業(yè)參加數學建模競賽的人數比往年增加20%,而獲得?。▍^(qū))級獎以上的獎項比往年增加40%。因此,說明數學建??己朔桨笇W生的評價具備一定的準確性。
    為配合考核方案的實施,特擬定考核改革調查問卷,本人共做了兩次問卷調查,共收到近八十分問卷。問卷包括數學學習興趣、參加數學建模的積極性、考核嚴厲與否、考核方案認同度等內容。統(tǒng)計調查問卷發(fā)現(xiàn),學生對數學知識的學習興趣明顯提高,參加數學建模競賽的積極性也大幅度提高。并且大部分學生認同考核方案,也贊成將考核過程與教學過程相結合。從調查問卷的統(tǒng)計結果看:有近70%的學生認為該課程應該嚴格考核;76%的學生認同該考核方案。由此可見,數學建??己朔绞礁母锞哂幸欢ǖ耐茝V和實施價值(見圖1)。
    根據實施《數學建?!房己烁母锓桨傅膶W生反饋情況,總的來看,學生對考核方案比較認同,也同意嚴格考核。從學生的參賽人數和獲獎比例也說明了該考核方案能有效提升學生的學習興趣,提高學生的各方面能力。
    [2]謝發(fā)忠,楊彩霞,馬修水.創(chuàng)新人才培養(yǎng)與高校課程考試改革[j].合肥工業(yè)大學學報,20xx.24(2):21-4.
    [3]李紅枝,毛建文,古宏標,黃榕波,邢德剛.創(chuàng)新意識和創(chuàng)新能力培養(yǎng)中高??荚嚫母锏奶剿鱗j].山西醫(yī)科大學學報,20xx.13(4):397-400.
    [5]蒲俊,張朝倫,李順初,付曉艦.地方綜合性大學理工科學生數學建模創(chuàng)新培養(yǎng)改革的探討[j].中國大學教學,20xx.7:56-8.
    大學生數學建模論文篇十
    摘要:數學作為很多學科的計算工具,可以說是現(xiàn)代科學的基礎,要想利用數學來解決實際問題,首先要建立相應的數學模型,本文在數學建模思想概念和特點的基礎上,從計算機軟件、實際生活中的應用等方面,對其應用的發(fā)展進行了分析,最后從分析問題、建立模型、校驗模型三個階段,對數學建模的方法,進行了深入的研究。
    關鍵詞:數學建模;思想;應用;方法;分析
    引言
    隨著自然科學的發(fā)展,利用數學等思想來解決實際問題,越來越受到人們的重視,數學作為一門歷史悠久的自然科學,是在實際應用的基礎上發(fā)展起來,但是隨著理論研究的深入,現(xiàn)在數學理論已經非常先進,很多理論都無法付諸實踐,在這種背景下,如何利用現(xiàn)有的數學理論來解決實際問題,成為了很多專家和學者研究的問題。通過實際的調查發(fā)現(xiàn),要想利用數學來解決實際問題,首先要建立相應的數學模型,將實際的問題轉化成數學符號的表達方式,這樣才能夠通過數學計算,來解決一些實際問題,從某種意義上來說,計算機就是由若干個數學模型組成的,計算機軟件之所以能夠解決實際問題,就是根據實際應用的需要,建立了一個相應的數學模型,這樣才能夠讓計算機來解決。
    1數學建模思想分析
    1.1數學建模思想的概念
    數學是一門歷史悠久的自然科學,在古時候,由于實際應用的需要,人們就已經開始使用數學來解決實際問題,但是受到當時技術條件的限制,數學理論的水平比較低,只是利用數學來進行計數等,隨著經濟和科技水平的提高,尤其是在工業(yè)革命之后,自然科學得到了極大的發(fā)展,對于利用自然科學來解決實際問題,也成為了人們研究的重點,在市場經濟的推動下,人們將這些理論知識轉化成為產品。計算機就是在這種背景下產生的,在數學理論的基礎上,將電路的通和不通兩種狀態(tài),與數學的二進制相結合,這樣就能夠讓計算機來處理實際問題,從本質上來說,這就是數學建模思想的范疇,但是在計算機出現(xiàn)的早期,數學建模的理論還沒有形成,隨著計算機軟件技術的發(fā)展,人們逐漸的意識到數學建模的重要性,發(fā)現(xiàn)利用數學建模思想,可以解決很多實際的問題,而數學建模的概念,就是將遇到的實際問題,利用特定的數學符號進行描述,這樣實際問題就轉化為數學問題,可以利用數學的計算方法來解決。
    1.2數學建模思想的特點
    如何解決實際問題,從有人類文明開始,就成為了人們研究的重點,隨著自然科學的發(fā)展,出現(xiàn)了很多具體的學科,利用這些不同的學科,可以解決不同的實際問題,而數學就是其中最重要的一門學科,而且是其他學科的基礎,如物理學科中,數學就是一個計算的工具,由此可以看出數學的重要性,進入到信息時代后,計算機得到了普及應用,無論是日常生活中還是工作中,計算機都有非常重要的應用,而在信息時代,注重的是解決問題的效率。與其他解決問題的方式相比,數學建模顯然更加科學,現(xiàn)在數學建模已經成為了一門獨立的學科,很多高校中都開設了這門課程,為了培養(yǎng)學生們利用數學解決實際問題的能力,我國每年都會舉辦全國性的數學建模大賽,采用開放式的參賽方式,對學生們的數學建模能力進行考驗,而大賽的題目,很多都是一些實際問題,對于比賽的結果,每個參賽隊伍的建模方式都有一定的差異,其中選出一個最有效的方式成為冠軍。由此可以看出,對于一個實際的問題,可以建立多個數學模型進行解決,但是執(zhí)行的效率具有一定的差異,如有些計算的步驟較少,而有些計算的過程比較簡單,而如何評價一個模型的效率,必須從各個方面進行綜合的考慮。
    2數學建模思想的應用
    2.1計算機軟件中數學建模思想的應用
    通過深入的分析可以知道,計算機之所以能夠解決實際問題,很大程度上依賴與計算機軟件,而計算機軟件自身就是一個或幾個數學模型,在軟件開發(fā)的過程中,首先要進行需求的分析,這其實就是數學建模的第一個環(huán)節(jié),對問題進行分析,在了解到問題之后,就要通過計算機語言,對問題進行描述,而計算機語言是人與計算機進行溝通的語言,最終這些語言都要轉化成0和1二進制的方式,這樣計算機才能夠進行具體的計算。由此可以看出,計算機就是依靠數學來解決實際問題,而每個計算機軟件,都可以認為是一個數學模型,如在早期的計算機程序設計中,受到當時計算機技術水平的限制,采用的還是低級語言,由于低級語言人們很難理解,因此在程序編寫之前,都會先建立一個數學模型,然后將這個模型轉化成相應的計算機語言,這樣計算機就可以解決實際的問題,由于計算機能夠自行計算的特點,只要輸入相應的參數后,就可以直接得到結果,不再需要人為的計算。
    2.2數學建模思想直接解決實際問題
    經過了多年的發(fā)展,現(xiàn)在數學建模自身已經非常完善,為了培養(yǎng)我國的數學建模人才,從1992年開始,每年我國都會舉辦一屆全國數學建模大賽,所有的高校學生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對于題目設置的也比較靈活,會有多個題目提供給隊員選擇,學生可以根據自己的實際情況,來選擇一個最適合自己的問題。而數學建模大賽舉辦的主要目的,就是讓學生們掌握如何利用數學理論,來解決實際問題,在學習數學知識的過程中,很多學生會認為,數學與實踐的距離很遠,學習的都是純理論的知識,學習的興趣很低,與一些實踐密切相關的學科相比,選擇數學專業(yè)的學生很少,而數學建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數學,并利用數學來解決復雜的問題。受到特殊的歷史因素影響,我國自然科學發(fā)展的起步較晚,在建國后經歷了很長一段時間封,閉發(fā)展,與西方發(fā)達國家之間的交流比較少,因此對于數學建模等現(xiàn)代科學,研究的時間比較短,導致目前我國很少會利用數學建模來解決實際問題,相比之下,發(fā)達國家在很多領域中,經常會用到數學建模的知識,如在企業(yè)日常運營中,需要進行市場調研等工作,而對于這些調研工作的處理,在進行之前都會建立一個數學模型,然后按照這個建立的模型來處理。
    2.3數學建模思想應用的發(fā)展
    從本質上來說,數學是在實際應用的基礎上,逐漸形成的一門學科,但是受到當時技術水平的限制,雖然人們已經懂得去計算,卻并知道自己使用的是數學知識,隨著自然科學的發(fā)展,對數學的應用越來越多,而數學自身理論的發(fā)展速度很快,遠遠超過了實際應用的范圍,同時隨著其他學科的發(fā)展,數學變成了一種計算的工具,因此數學應用的第一個階段中,主要是作為一種工具。隨著電子計算機的出現(xiàn),對數學的應用達到了一個極限,人們在數學和物理的基礎上,制作出了能夠自動計算的機器,在計算機出現(xiàn)的早期,受到性能和體積上的限制,只能進行一些簡單的數學計算,還不能解決實際的問題,但是計算機語言和軟件技術的.發(fā)展,使其在很多領域得到了應用,在計算的基礎上,能夠解決很多問題,而軟件程序的開發(fā),其實就是建立數學模型的過程,由此可以看出,數學建模思想應用的第二階段中,主要是以現(xiàn)代計算機等電子設備的方式,來解決實際的問題。
    3數學建模思想應用的方法
    3.1分析問題
    數學模型的應用都是為了解決實際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,因此在遇到實際問題時,首先要對問題進行具體的分析,首先就是看是否能夠轉化成數學符號,如果能夠直接用數學語言來進行描述,那么就可以容易的建立相應的數學模型,但是通過實際的調查發(fā)現(xiàn),隨著經濟和科技的發(fā)展,遇到的問題越來越復雜,其中很多都無法直接用數學語言來描述,這就增加了數學建模的難度。由此可以看出,分析問題作為數學建模的第一個環(huán)節(jié),也是最重要的一個環(huán)節(jié),如果問題分析的不夠具體,那么將無法建立出數學模型,同時對數學模型的建立也具有非常重要的影響,通過實際的調查發(fā)現(xiàn),能夠建立高效率的數學模型,都是對問題分析的比較徹底,甚至有些獨特的理解,只有這樣才能夠采用建立一個最簡單的模型,而隨著數學建模自身的發(fā)展,現(xiàn)在建立模型的過程中,對于一個實際的問題,經常需要建立多個模型,這樣通過多個數學模型協(xié)同來解決一個問題。
    3.2數學模型的建立
    在分析實際問題后,就要用數學符號來描述要解決的問題,這是建立數學模型的準備環(huán)節(jié),要想利用數學來解決實際問題,無論采用哪種方式,都要轉化成數學語言,然后才能夠通過計算的方式解決,而數學模型的過程,就是在描述完成后,建立相應的數學表達式,通常情況下,在分析問題時,都能夠發(fā)現(xiàn)某種內在的規(guī)律,這個規(guī)律是數學建模的基礎。如果無法找到這個規(guī)律,顯然就不能利用現(xiàn)有的一些數學定律,從而建立相應的表達式,最后解決相應的問題,由此可以看出,分析問題的內在規(guī)律,是影響數學建模的重要因素,而這個規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數學知識外,也可以結合其他學科的知識,尤其是現(xiàn)在遇到的問題越來越復雜,對于以往簡單的問題,只需要建立一個簡單的模型即可解決,而現(xiàn)在復雜的問題,經常需要建立多個模型。因此現(xiàn)在數學建模的難度越來越大,從近些年全國數學建模大賽的題目就可以看出,對于問題的描述越來越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學生根據自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實際問題的解決提供了良好的參考,目前我國對數學建模的研究有限,尤其是與西方發(fā)達國家相比,實踐的機會還比較少。
    3.3數學模型的校驗
    在數學模型建立之后,對于這個模型是否能夠解決實際問題,具體的執(zhí)行效率如何,都需要進行校驗,因此檢驗是數學模型建立最后的一個環(huán)節(jié),也是非常重要的一個步驟,通常情況下,經過校驗都能夠發(fā)現(xiàn)模型中存在的一些問題,從而進行完善,這樣才能夠保證嚴謹性,在實際校驗的過程中,要對數學模型的每個部分進行驗證,通過輸入特定的數據,看得到的結果是否符合理論值,如果沒有問題,就說明該模型可以解決實際問題。除了檢驗模型的準確外,校驗還有另外一個作用,就是優(yōu)化模型,在選定數據后,能夠看到數學模型計算的整個過程,這時就可以對具體的細節(jié)進行優(yōu)化,如哪部分可以減少計算的步驟,或者簡化計算的方式等,這樣可以使整個模型更加科學、合理,由此可以看出,校驗工作對于數學模型的建立,具有非常重要的意義。
    4結語
    通過全文的分析可以知道,對于數學理論的應用,從很久之前就已經開始了,但是數學建模思想的出現(xiàn),卻是隨著計算機技術的發(fā)展,逐漸形成的一門學科,電子計算機的出現(xiàn),在很大程度上改變了處理事情的方式,利用計算機軟件,只要輸入相應的參數,就可以直接得到結果,這正是數學模型完成的任務,只是計算機的出現(xiàn),省略了中間的計算過程,因此計算機軟件的方式,是數學建模思想最好的應用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應的程序。
    大學生數學建模論文篇十一
    為了培養(yǎng)小學生良好的數學學習興趣,激發(fā)他們的數學潛能,教師需要采取必要的措施注重數學建模思想的有效培養(yǎng),促進學生的全面發(fā)展。在制定相關培養(yǎng)策略的過程中,教師應充分考慮小學生的性格特點,提高數學建模思想培養(yǎng)的有效性?;诖耍恼聦牟煌姆矫鎸πW生數學建模思想的培養(yǎng)策略進行初步的探討。
    作為小學數學教學中的重要組成部分,數學建模思想的滲透及相關教學活動的順利開展,有利于提高復雜數學問題的處理效率,保持數學課堂教學的高效性。要實現(xiàn)這樣的發(fā)展目標,增強小學生數學建模思想的實際培養(yǎng)效果,需要加強對學生動手實踐能力的培養(yǎng),激發(fā)學生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗證,在這四個環(huán)節(jié)中,可能會存在一定的問題,影響著數學教學計劃的實施。因此,教師需要利用學生動手實踐能力的作用,實現(xiàn)數學建模思想的有效培養(yǎng),促使小學生能夠在數學建模過程中享受到更多的快樂。比如,在講解“認識角”知識的過程中,某些學生認為邊越長角度也越大。為了使學生能夠對其中的知識點有更加正確而全面的認識,教師可以通過在黑板上設置一些能夠活動的三角板,讓學生親自動手操作,以此得出角與邊長的正確關系,為后續(xù)教學計劃的實施打下堅實的基礎。通過這種教學方法的合理運用,可以激發(fā)出學生們在數學建模學習中的更高興趣,豐富他們的想象力,從而使他們對數學建模思想有一定的了解,在未來學習過程中能夠保持良好的`數學建模能力。
    通過對小學階段各種數學實踐教學活動實際概況的深入分析,可知構建良好的數學模型有利于加深學生對各知識(福建省莆田市秀嶼區(qū)東嶠前江小學,福建莆田351164)點的深入理解,增強其主動參與數學建模教學活動的積極性。因此,為了使小學生數學建模思想培養(yǎng)能夠達到預期的效果,教師需要結合實際的教學內容,建立必要的數學參考模型,提升學生對數學建模思想的整體認知水平。比如,在講授“異分母分數加減法”這部分知識的過程中,可以設置“0.8千克+300克”“1.6千克-400克”等問題,向學生提問是否可以直接計算,并說出原因。當學生通過對問題的深入思考,總結出“單位不同不能直接計算”的結論后,繼續(xù)向學生提問小數計算中為什么每一位都要對齊,實現(xiàn)“計數單位統(tǒng)一后才能計算”這一數學模型的構建。在這樣的教學過程中,學生可以加深對知識點的理解,實現(xiàn)數學建模思想的有效培養(yǎng)。
    加強小學生數學建模思想的有效培養(yǎng),需要在具體的教學活動開展中注重對數學思想的靈活運用,增強相關模型構建的可靠性,促使學生在長期的數學學習中能夠不斷提高自身的數學能力,運用各種數學知識處理實際問題。比如,在“角的度量”這部分內容講解的過程中,為了提高學生對角的分類及畫角相關知識點的深入理解,教師可以將所有的學生分為不同的小組,讓學生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時,教師可以通過對多媒體教學設備的合理運用,利用動態(tài)化的文字與圖片對其中的知識要點進行展示,確保學生們能夠在良好的教學模式中提升自身的認知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強化自身的創(chuàng)新意識。比如,在講解“圖形變換”中的軸對稱、旋轉知識點的過程中,教師應通過對學生的正確引導,運用三角板、圓柱等教學輔助工具,讓學生從不同的角度對各種軸對稱圖形、旋轉后得到的圖形進行深入思考,提高自身數學建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對這部分內容有更多的了解。因此,教師應注重小學生數學建模思想培養(yǎng)中多方位思考方式的針對性培養(yǎng),提高學生的創(chuàng)新能力,優(yōu)化學生的思維方式,全面提升小學數學建模教學水平。
    總之,加強小學生數學建模思想培養(yǎng)策略的制定與實施,有利于滿足素質教育的更高要求,實現(xiàn)對小學生數學能力的有效鍛煉,確保相關的教學計劃能夠在規(guī)定的時間內順利地完成。與此同時,結合當前小學數學教育教學的實際發(fā)展概況,可知靈活運用各種科學的數學建模思想培養(yǎng)策略,有利于滿足學生數學建模學習中的多樣化需求,為相關教學目標的順利實現(xiàn)提供可靠的保障。
    [1]童小艷.小學數學教學中培養(yǎng)學生建模思想的策略[j].學子(教育新理念),20xx(6).
    [2]白寧.先學而后教——小學生數學建模思想培養(yǎng)的捷徑[j].數學學習與研究,20xx(16).
    大學生數學建模論文篇十二
    圖1創(chuàng)新型人才培養(yǎng)的五大機制
    2.1、建立引導機制,激發(fā)學習動力
    2.2、建立轉化機制,促進知識向能力的轉化
    2.3、建立協(xié)作機制,增強團隊意識
    高校學生在平時的學習過程中,絕大多數情況下,基本上都是獨自學習,與他人合作研究和解決問題機會很少.而在各種層次級別的數學建模競賽中,參賽學生要3人一組,以團隊而不是個人身份參賽.在正式比賽之前,要按照學科、特長等因素尋找隊友,組成隊伍.在比賽期間,由于隊友經常是來自不同專業(yè),知識能力水平各有所長,脾氣秉性各有特點,需要在比賽時認真溝通,相互協(xié)調,合理分工,團結協(xié)作共同完成整個比賽.為了比賽,在發(fā)生矛盾時,要學會忍耐和妥協(xié),而不能意氣用事.在整個比賽期間,求同存異,取長補短,優(yōu)勢互補,最終合作完成任務.這個過程,無形中就培養(yǎng)了學生的合作意識和團隊精神,使學生親身感受到現(xiàn)代社會與人合作是大多數人成功的必要選擇.依托數學建模競賽,培養(yǎng)創(chuàng)新型人才的團隊協(xié)作意識,建立培養(yǎng)人才的.合作交流機制,這是適應社會和時代需要的人才培養(yǎng)過程中的重要環(huán)節(jié)之一。
    2.4、建立溝通表達機制,提高學生的語言及文字表達能力
    2.5、建立問題導向機制,培養(yǎng)學生主動式學習的自主學習能力
    3.1、促進了學生全面發(fā)展
    3.2、提高了學生的就業(yè)質量
    大學生數學建模論文篇十三
    數學是在實際應用的需求中產生的,要描述一個實際現(xiàn)象可以有很多種方式,為了實際問題描述的更具邏輯性、科學性、客觀性和可重復性,人們采用一種普遍認為比較嚴格的語言來描述各種現(xiàn)象,這種語言就是數學。數學建模則是架于數學理論和實際問題之間的橋梁,數學模型是對于現(xiàn)實生活中的特定對象,根據其內在的規(guī)律,做出一些必要的假設,為了一個特定目的,運用數學工具,得到的一個數學結構,用來解釋現(xiàn)實現(xiàn)象,預測未來狀況。因此,數學建模就是用數學語言描述實際現(xiàn)象的過程。
    大部分的獨立院校的數學建模工作純在一定的問題,主要體現(xiàn)在以下幾個方面:(一)學生方面的問題。獨立院校的大部分學生的數學功底差,對數學的學習興趣不大,普遍認為數學的學習對自身的專業(yè)的幫助不大。從而更不愿意接觸與數學有關的數學建模,對數學建模競賽的興趣不大。在獨立院校中,參加數學建模競賽的大都是低年級的學生,而這些學生的數學知識結構還不完整,他們往往參加了一屆數學競賽并未獲得獎項后就不愿意再次參加。而高年級的同學忙于其他的就業(yè)、考研等壓力,無暇參加數學建模競賽的培訓。(二)教資方面的問題。首先。傳統(tǒng)的教學是知識為中心、以教師的講解為中心。數學建模的教學要求教師以學生為中心,培養(yǎng)學生學會學習的能力,發(fā)展學生的創(chuàng)新能力和創(chuàng)造能力。獨立院校外聘的老師常常對獨立院校的學生不夠了解,這直接影響到教學成果。其次,數學建模涉及的知識面廣,不但包括數學的各個分支,還包含了其他背景的專業(yè)知識。獨立院校的教師一部分是才從大學畢業(yè)不久的研究生,他們對于數學建模教學和競賽的培訓經驗不足,科研能力不是很強,對數學的各個分支的把控能力不強,對其他專業(yè)的了解不夠全面。(三)教學實施方面的問題。大學生數學建模競賽的目的決不僅僅是獲獎,更重要的是通過參加大學生數學建模競賽活動,促進高校數學教學改革,起到培養(yǎng)全體學生能力、提高全體學生素質的作用。獨立院校數學建模教學存在很多的問題。首先,大學數學建模教育在獨立院校中的普及性不夠。數學建模的宣傳力度不大,課程大多開在大一和大二的跨選課,這個時候學生的數學知識結構還不完整。其次就是教材的選取,數學建模的相關教材大都是為了數學建模競賽而編寫的,對于獨立院校的學生來說,這些教材的難度系數大,涉及的知識面廣,遠遠超過了學生的接受能力。
    (一)讓學生了解數學建模,培養(yǎng)學習數學建模的興趣。數學建模課程的開設有利于培養(yǎng)學生運用數學具體解決實際問題的能力,讓學生發(fā)現(xiàn)學習數學的用處,改變學生學習數學的態(tài)度,提高學習數學的能力,認識到數學的意義和價值。獨立院校學生的數學基礎雖然比較差,但是學生的動手能力強。學校可以在多開展數學建模的講座和課程,讓學生了解數學建模。同時多向學生宣傳數學建模的成果。(二)在教學內容中滲透數學建模思想和方法。1.在日常數學教學中滲透數學建模的思想方法。傳統(tǒng)的數學教學重視的是知識的培養(yǎng)和傳輸,而忽視的是實際應用能力。教師的教學目標是使學生掌握數學理論知識。一般的教學方法是:教師引入相關的的基本概念,證明定理,推導公式,列舉例題,學生記住公式,套用公式,掌握解題方法與技巧。學生往往學習了不少的純粹的數學理論知識,卻不知道如何應用到實際問題中。數學建模課程與傳統(tǒng)數學課程相比差別較大,學校開設的數學建??邕x課及數學建模培訓班,對培養(yǎng)學生觀察能力、分析能力、想象力、邏輯能力、解決實際問題的能力起到了很好的作用。由于學校開設的數學建模課程大多是選修課程,課時較少,參選的學生也有限,數學建模的作用不能很好的向學生傳輸。高等數學中的很多內容都與數學建模的思想有關,因此,在大學數學課程的教學過程中,教師應有意識地結合傳統(tǒng)的數學課程的特點,將數學建模的思想和內容融入到數學課堂教學中。這樣既可以激發(fā)學生的學習興趣,又能很好的將突出數學建模的思想。2.數學建模與專業(yè)緊密聯(lián)系,發(fā)揮數學對專業(yè)知識的服務作用。數學建模與專業(yè)知識的結合,不僅可以讓學生認識到數學的重要作用,在專業(yè)知識學習中的地位,還可以培養(yǎng)學習數學知識的興趣,增強數學學習的凝聚力,同時加深對專業(yè)知識的理解。通過專業(yè)知識作為背景,學生更愿意嘗試問題的研究。在學習中遇到的專業(yè)問題也可以嘗試用數學建模的思想進行解決。這有利于提高學生的綜合能力的培養(yǎng)。3.分層次進行數學建模教育。大體說來獨立院校的數學建模課程的開設應該分成兩個階段:(1)第一階段:大學一年級,在這個階段,大部分學生對數學建模沒有了解,這時候適合開設一些數學建模的講座和活動,讓學生了解數學建模。同時,在日常的數學教學中選擇簡單的應用問題和改變后的數學建模題目,結合自身的專業(yè)知識進行講解,讓學生了解數學建模的一般含義?;痉椒ê筒襟E,讓學生具備初步的建模能力。(2)中級層次:大學二、三年級。在這個階段,學生基本具備了完整的數學結構,具有了基本的建模能力。這個時候應該開設數學建模專業(yè)課程,讓學生處理比較復雜的數學建模問題,讓學生自己去采集有用的信息,學會提出模型的假設,對數據和信息需進行整理、分析和判斷,并模型進行分析和評價,最終完成科技論文。
    (一)提高數學教師自身水平。在數學建模教學過程中,教師扮演著重要的角色。教師水平的高低決定著數學建模教學能否達到預期的目的。數學建模的教學,不僅要求教師具備較高的專業(yè)水平,還要求教師具備解決實際問題的能力和豐富的數學建模實踐經驗。而獨立院校的教師部分教師是才畢業(yè)不久的研究生,缺乏實踐經驗。這就對獨立院校的的數學建模教學工作產生了很大的障礙。為了提高教師的水平,可以多派青年教師進行專業(yè)培訓學習和學術交流,參加各種學術會議、到名校去做訪問學者等等。同時可以多請著名的數學專家教授來到校園做建模學術報告,使師生拓寬視野,增長知識,了解建模的新趨勢、新動態(tài)。青年教師還需要依據特定的教學內容、教學對象和教學環(huán)境對自己的教學工作作出計劃、實施和調整以及反思和總結。青年數學教師還必須更新教育理念,改變傳統(tǒng)的教學理念。只有不斷創(chuàng)新,努力提高自身素質,才能適應新的形勢,符合建模發(fā)展的要求。(二)選取合適的教材。數學建模教材使用也存在諸多不足之處。絕大部分高校教學建模課程采用的是理工類專業(yè)數學建模教材。這些教材主要涵蓋的數學模型的難度系數大。而獨立院校的學生的基礎薄弱,無法接收這些模型。在教學過程中,教師可以將具體的案例或是歷年的數學建模題目做為教學內容。通過具體的建模實例,講解建模的思想和方法。一邊講解,一邊讓學生分組討論,提出對問題的新的理解和對魔性的認識,嘗試提出新的模型。(三)豐富建?;顒?。全面開展數學建模活動是數學建模思想的最重要的形式,它既使課內和課外知識相互結合,又可以普及建模知識與提高建模能力結合,可以培養(yǎng)學生利用數學知識分析和解決實際問題的能力,可以有效地提升了學生的數學綜合素質。學??梢远ㄆ诘拈_展數學建模宣傳活動,擴大數學建模的知名度。學校還可以邀請有經驗的專家和獲獎學生開展建模講座,提高對數學建模的重視,積極的組織建?;顒?。實踐證明,只有根據獨立院校的自身特點和培養(yǎng)目標,對數學建模課程的教學不斷進行改革,才能解決獨立院校數學建模課程教學的問題,才能真正的讓學生喜歡上數學,喜歡上數學建模。
    [1]李大潛.將數學建模思想融入數學主干課程[j].中國大學教育.20xx.
    [2]賈曉峰等.大學生數學建模競賽與高等學校數學改革[j].工科數學.20xx:162.
    [3]融入數學建模思想的高等數學教學研究[j].科技創(chuàng)新導報.20xx:162.
    作者:李雙單位:湖北文理學院理工學院
    大學生數學建模論文篇十四
    3.3增強選擇數學模型的能力。
    選擇數學模型是數學能力的反映。數學模型的建立有多種方法,怎樣選擇一個最佳的模型,體現(xiàn)數學能力的強弱。建立數學模型主要涉及到方程、函數、不等式、數列通項公式、求和公式、曲線方程等類型。結合教學內容,以函數建模為例,以下實際問題所選擇的數學模型列表:
    函數建模類型實際問題
    一次函數成本、利潤、銷售收入等
    二次函數優(yōu)化問題、用料最省問題、造價最低、利潤最大等
    冪函數、指數函數、對數函數細胞分裂、生物繁殖等
    三角函數測量、交流量、力學問題等
    3.4加強數學運算能力。
    數學應用題一般運算量較大、較復雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數學運算推理能力是使數學建模正確求解的關鍵所在,忽視運算能力,特別是計算能力的培養(yǎng),只重視推理過程,不重視計算過程的做法是不可取的。
    利用數學建模解數學應用題對于多角度、多層次、多側面思考問題,培養(yǎng)學生發(fā)散思維能力是很有益的,是提高學生素質,進行素質教育的一條有效途徑。同時數學建模的`應用也是科學實踐,有利于實踐能力的培養(yǎng),是實施素質教育所必須的,需要引起教育工作者的足夠重視。
    大學生數學建模論文篇十五
    在高等教育事業(yè)改革不斷深化的背景下,為了提升教育教學質量,新時期對大學數學教學提出了更高的要求。大學數學作為課堂教學的主體,教師在傳授知識的同時,要注重學生學習能力和解決問題能力的培養(yǎng)。
    數學知識來源于生活,應用于生活,如微積分作為高等數學知識中的典型代表,在各個行業(yè)中具有不可或缺的作用。為此,任課教師在大學數學教學中培養(yǎng)學生發(fā)現(xiàn)問題、分析問題和解決問題的能力十分重要,在傳授知識的過程中幫助學生利用所學知識來解決實際問題。一般情況下,教師著重介紹相關數學概念和原理,推導常用公式,促使學生能夠記住公式,學會公式的應用過程,逐漸掌握解題技巧。
    因此,如何能夠在傳授知識的同時,促使學生掌握數學學習方法,將所學知識應用到實踐中來解決數學問題是一個首要問題。從大量教學實踐中可以了解到,在大學數學教學中滲透數學建模思想十分重要,有助于激發(fā)學生的學習興趣,促使學生積極投入其中,切實提升學生的數學專業(yè)水平。
    在大學數學教學中滲透數學建模思想,應該結合實際情況,深入挖掘數學知識。在教學中,教師應該充分發(fā)揮自身引導作用,聯(lián)系學生數學知識實際學習情況,有針對性地整合數學知識,了解相關數學內容,這樣不僅可以豐富教學內容,還可以為課堂教學注入新的活力,有效激發(fā)學生的學習興趣,提升學習成效。具體表現(xiàn)在以下方面:
    (一)閉區(qū)間連續(xù)函數的性質
    閉區(qū)間連續(xù)函數的性質內容是大學數學教學中的重要組成部分,由于知識理論性較強,知識較為抽象,學習難度較大,在講解完相關理論知識后,可以引入椅子的穩(wěn)定問題,創(chuàng)建數學模型,提問學生如何在不平穩(wěn)的地面上平穩(wěn)地放置椅子。學生可以了解到這一問題同所學知識相關聯(lián),閉區(qū)間連續(xù)函數的性質可以解決這一問題。學生整合所學知識,通過對問題的分析,可以了解到利用介值定理來解決問題。通過建立數學模型,學生更加充分地掌握了閉區(qū)間連續(xù)函數的`性質,提升了學習成效,為后續(xù)知識學習打下了堅實的基礎。
    (二)定積分
    定積分是高等數學教學中的重要組成部分,在解決幾何問題時均有所應用,并且被廣泛應用在實際生活中。如,在一道全國大學生數學建模競賽題目中,計算煤矸石的堆積,煤礦采煤時所產生的煤矸石,為了處理煤矸石就需要征用土地來堆放煤矸石,根據上級主管部門的年產量計劃和經費如何堆放煤矸石?題目中的關鍵點在于堆放煤矸石的征地費用和電費的計算。征地費計算難度較小,但是煤矸石堆積的電費計算難度較高,但此項內容涉及定積分中的變力做功知識點。學生掌握這些內容后就可以建立數學模型,更加高效地了解如何根據預期開采量來堆放煤矸石。通過數學模型,學生也可以了解到定積分內容同實際生活之間的聯(lián)系,學習積極性就會大大提升。
    (三)最值問題
    在高等數學中,最值問題占比比較大,同時在實際生活中應用較為普遍,導數知識可以解決實際生活中的最值問題,這就需要提高對導數知識實際應用的重視程度。教師在為學生講解完導數的相關概念知識后,通過建立關于天空的采空模型,提問學生為什么雨后太陽出來了,雨滴還在空中,那么將為人們呈現(xiàn)出什么樣的景色?學生回答彩虹。繼續(xù)提問彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對此,學生的興趣較為濃厚,可以分為若干個小組進行討論。通過分析可以得出,雨滴可以反射太陽光,形成彩虹。結合光線的反射和折射定律,借助所學的導數知識來計算得出太陽光偏轉角度的最值,有效解決實際學習的問題,加深對知識的理解和記憶,提升數學知識學習成效。
    (四)微分方程
    微分方程知識同實際生活之間息息相關,建立微分方程可以有效解決實際生活中的問題。這就需要學生在了解微分方程知識的基礎上,進一步建立數學模型來解決問題。如,在當前社會進步和發(fā)展下,人均物質生活水平顯著提升,肥胖成為危害人們身體健康的主要問題之一,受到社會各界廣泛的關注和重視。通過問題精簡化和假設,可以得到微分方程模型,在分析方程中飲食控制和運動鍛煉兩個關鍵要素后,有助于避免人們走入減肥誤區(qū),幫助他們樹立正確的減肥理念。
    (五)矩陣
    在高等數學教學中,矩陣的概念較為抽象和復雜,在講解問題之前,應該根據知識點來創(chuàng)設教學情境,輔助教學活動。通過引入企業(yè)工廠生產總成本模型,充分描述工廠生產中需要的原材料和勞動力,并且詳細記錄管理費用。這有助于加深人們對矩陣概念的認知和理解,提升學習成效,同時幫助學生深入理解和記憶,鍛煉學生的數學解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學生的數學建模意識。
    綜上所述,在大學數學教學中,可以通過數學建模思想來引導學生養(yǎng)成良好的自主學習能力,發(fā)揮自身的主體能動性和創(chuàng)新能力,提升學生解決問題的能力,將所學知識靈活運用到實際生活中,養(yǎng)成良好的數學素養(yǎng)。
    大學生數學建模論文篇十六
    優(yōu)秀高教社杯全國大學生數學建模競賽題目
    (請先閱讀“全國大學生數學建模競賽論文格式規(guī)范”)
    a題城市表層土壤重金屬污染分析
    隨著城市經濟的快速發(fā)展和城市人口的不斷增加,人類活動對城市環(huán)境質量的影響日顯突出。對城市土壤地質環(huán)境異常的查證,以及如何應用查證獲得的海量數據資料開展城市環(huán)境質量評價,研究人類活動影響下城市地質環(huán)境的演變模式,日益成為人們關注的焦點。
    按照功能劃分,城區(qū)一般可分為生活區(qū)、工業(yè)區(qū)、山區(qū)、主干道路區(qū)及公園綠地區(qū)等,分別記為1類區(qū)、2類區(qū)、??、5類區(qū),不同的區(qū)域環(huán)境受人類活動影響的程度不同。
    現(xiàn)對某城市城區(qū)土壤地質環(huán)境進行調查。為此,將所考察的城區(qū)劃分為間距1公里左右的網格子區(qū)域,按照每平方公里1個采樣點對表層土(0~10厘米深度)進行取樣、編號,并用gps記錄采樣點的位置。應用專門儀器測試分析,獲得了每個樣本所含的多種化學元素的濃度數據。另一方面,按照2公里的間距在那些遠離人群及工業(yè)活動的自然區(qū)取樣,將其作為該城區(qū)表層土壤中元素的背景值。
    附件1列出了采樣點的位置、海拔高度及其所屬功能區(qū)等信息,附件2列出了8種主要重金屬元素在采樣點處的濃度,附件3列出了8種主要重金屬元素的背景值。
    現(xiàn)要求你們通過數學建模來完成以下任務:
    (1)給出8種主要重金屬元素在該城區(qū)的空間分布,并分析該城區(qū)內不同區(qū)域重金屬的污染程度。
    (2)通過數據分析,說明重金屬污染的主要原因。
    (3)分析重金屬污染物的傳播特征,由此建立模型,確定污染源的位置。