編寫好教案可以幫助教師合理布置教學(xué)內(nèi)容,保證教學(xué)的系統(tǒng)性和有序性。教案的編寫需要遵循教學(xué)內(nèi)容的邏輯順序,合理安排教學(xué)步驟。以下是一些優(yōu)秀教師編寫的教案分享給大家,供大家參考。
高二下數(shù)學(xué)教案版電子書篇一
1.了解分式、有理式的概念.
2.理解分式有意義的條件,能熟練地求出分式有意義的條件.
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):理解分式有意義的條件.
2.難點(diǎn):能熟練地求出分式有意義的條件.
三、課堂引入
1.讓學(xué)生填寫p127[思考],學(xué)生自己依次填出:,,,.
請(qǐng)同學(xué)們跟著教師一起設(shè)未知數(shù),列方程.
設(shè)江水的流速為v /h.
輪船順流航行90 所用的時(shí)間為小時(shí),逆流航行60 所用時(shí)間小時(shí),所以=.
3. 以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?
四、例題講解
p128例1. 當(dāng)下列分式中的字母為何值時(shí),分式有意義.
[分析]已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解
出字母的取值范圍.
[補(bǔ)充提問(wèn)]如果題目為:當(dāng)字母為何值時(shí),分式無(wú)意義.你知道怎么解題嗎?這樣可以使學(xué)生一題二用,也可以讓學(xué)生更全面地感受到分式及有關(guān)概念.
(補(bǔ)充)例2. 當(dāng)為何值時(shí),分式的值為0?
(1) (2) (3)
[分析] 分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類題目的解.
[答案] (1)=0 (2)=2 (3)=1
五、隨堂練習(xí)
1.判斷下列各式哪些是整式,哪些是分式?
9x+4, , , , ,
2. 當(dāng)x取何值時(shí),下列分式有意義?
(1) (2) (3)
3. 當(dāng)x為何值時(shí),分式的值為0?
(1) (2) (3)
六、課后練習(xí)
1.下列代數(shù)式表示下列數(shù)量關(guān)系,并指出哪些是正是?哪些是分式?
(1)甲每小時(shí)做x個(gè)零件,則他8小時(shí)做零件 個(gè),做80個(gè)零件需 小時(shí).
(2)輪船在靜水中每小時(shí)走a千米,水流的速度是b千米/時(shí),輪船的順流速度是 千米/時(shí),輪船的逆流速度是 千米/時(shí).
(3)x與的差于4的商是 .
2.當(dāng)x取何值時(shí),分式 無(wú)意義?
3. 當(dāng)x為何值時(shí),分式 的值為0?
高二下數(shù)學(xué)教案版電子書篇二
一、指導(dǎo)思想:
全面貫徹教育方針,深入實(shí)施素質(zhì)教育,使學(xué)生在高一學(xué)習(xí)的基礎(chǔ)上,進(jìn)一步體會(huì)數(shù)學(xué)對(duì)發(fā)展自己思維能力的作用,體會(huì)數(shù)學(xué)對(duì)推動(dòng)社會(huì)進(jìn)步和科學(xué)發(fā)展的意義以及數(shù)學(xué)的文化價(jià)值,提高數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。
二、教學(xué)具體目標(biāo)
1、期中考前完成必修3、選修2-3第一章
2、提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3、提高數(shù)學(xué)地提出、分析和解決問(wèn)題(包括簡(jiǎn)單的實(shí)際問(wèn)題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。
三、教材特點(diǎn):
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書》,它在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,強(qiáng)調(diào)了問(wèn)題提出,抽象概括,分析理解,思考交流等研究性學(xué)習(xí)過(guò)程。具體特點(diǎn)如下:
1、“親和力”:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2、“問(wèn)題性”:專門安排了“課題學(xué)習(xí)”和“探究活動(dòng)”,培養(yǎng)問(wèn)題意識(shí),孕育創(chuàng)新精神。
3、“科學(xué)性”與“思想性”:通過(guò)不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問(wèn)題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4、“時(shí)代性”與“應(yīng)用性”:教材中有“信息技術(shù)建議”和“信息技術(shù)應(yīng)用”,以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí)。
5、“人文應(yīng)用價(jià)值性”:編寫了一些閱讀材料,開拓學(xué)生視野,從數(shù)學(xué)史的發(fā)展足跡中獲取營(yíng)養(yǎng)和動(dòng)力,全面感受數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值。
四、教法分析:
1、選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語(yǔ)言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個(gè)究竟”的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。
2、通過(guò)“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
3、在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
五、教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說(shuō)明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問(wèn)題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問(wèn)題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問(wèn)題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法
6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
六、教學(xué)進(jìn)度安排(略)?
高二下數(shù)學(xué)教案版電子書篇三
style="color:#125b86">
教材分析
因式分解是代數(shù)式的一種重要恒等變形?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對(duì)因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個(gè)公式,但絲毫沒(méi)有否定因式分解的教育價(jià)值及其在代數(shù)運(yùn)算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來(lái)的,事實(shí)上,它是整式乘法的逆向運(yùn)用,與整式乘法運(yùn)算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡(jiǎn)、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個(gè)教材中起到了承上啟下的作用。本章的教育價(jià)值還體現(xiàn)在使學(xué)生接受對(duì)立統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問(wèn)題的能力。
學(xué)情分析
通過(guò)探究平方差公式和運(yùn)用平方差公式分解因式的活動(dòng)中,讓學(xué)生發(fā)表自己的觀點(diǎn),從交流中獲益,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志建立自信心。
教學(xué)目標(biāo)
1、在分解因式的過(guò)程中體會(huì)整式乘法與因式分解之間的聯(lián)系。
2、通過(guò)公式a -b =(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語(yǔ)言表達(dá)能力。
3、能運(yùn)用提公因式法、公式法進(jìn)行綜合運(yùn)用。
4、通過(guò)活動(dòng)4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn): 靈活運(yùn)用平方差公式進(jìn)行分解因式。
難點(diǎn):平方差公式的推導(dǎo)及其運(yùn)用,兩種因式分解方法(提公因式法、平方差公式)的綜合運(yùn)用。
高二下數(shù)學(xué)教案版電子書篇四
掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。
向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。
(一)主要知識(shí):
掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。
(二)例題分析:略
1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的'知識(shí)解決有關(guān)應(yīng)用問(wèn)題,
2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問(wèn)題的能力。
高二下數(shù)學(xué)教案版電子書篇五
重點(diǎn)與難點(diǎn)分析:
本節(jié)課教學(xué)方法主要是“自學(xué)輔導(dǎo)與發(fā)現(xiàn)探究法”。力求體現(xiàn)知識(shí)結(jié)構(gòu)完整、知識(shí)理解完整;注重學(xué)生的參與度,在師生共同參與下,探索問(wèn)題、動(dòng)手試驗(yàn)、發(fā)現(xiàn)規(guī)律、做出歸納。讓學(xué)生直接參加課堂活動(dòng),將教與學(xué)融為一體。具體說(shuō)明如下:
(1)由“先教后學(xué)”轉(zhuǎn)向“先學(xué)后教
本節(jié)課開始,讓同學(xué)們自己思考問(wèn)題:判定三角形全等的方法有四種,如果這兩個(gè)三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠?學(xué)生展開討論,初步形成意見,然后由教師答疑。這樣促進(jìn)了學(xué)生學(xué)習(xí),體現(xiàn)了以“學(xué)生為主體”的教育思想。
(2)在層次教學(xué)中培養(yǎng)學(xué)生的思維能力
本節(jié)課的層次主要表現(xiàn)為兩個(gè)方面:一是對(duì)公理的多層次理解;二是綜合練習(xí)的多層次變化。
公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語(yǔ)言、圖形語(yǔ)言、符號(hào)語(yǔ)言的理解及掌握;公理的作用。這里特別強(qiáng)調(diào)三個(gè)方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。
綜合練習(xí)的多層次變化:首先給出直接應(yīng)用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應(yīng)用題目。這里注意兩點(diǎn):一是給出題目后先讓學(xué)生獨(dú)立思考,并按教材的形式嚴(yán)格書寫。二是給出的綜合題目有一定的難度,教學(xué)時(shí),要注意引導(dǎo)學(xué)生分析問(wèn)題解決問(wèn)題的思考方法。
教法建議:
由“先教后學(xué)”轉(zhuǎn)向“先學(xué)后教”
本節(jié)課開始,讓同學(xué)們自己思考問(wèn)題:判定三角形全等的方法有四種,如果這兩個(gè)三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠?學(xué)生展開討論,初步形成意見,然后由教師答疑。這樣促進(jìn)了學(xué)生學(xué)習(xí),體現(xiàn)了以“學(xué)生為主體”的教育思想。
(2)在層次教學(xué)中培養(yǎng)學(xué)生的思維能力
本節(jié)課的層次主要表現(xiàn)為兩個(gè)方面:一是對(duì)公理的多層次理解;二是綜合練習(xí)的多層次變化。
公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語(yǔ)言、圖形語(yǔ)言、符號(hào)語(yǔ)言的理解及掌握;公理的作用。這里特別強(qiáng)調(diào)三個(gè)方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。
綜合練習(xí)的.多層次變化:首先給出直接應(yīng)用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應(yīng)用題目。
這里注意兩點(diǎn):
一是給出題目后先讓學(xué)生獨(dú)立思考,并按教材的形式嚴(yán)格書寫。
二是給出的綜合題目有一定的難度,教學(xué)時(shí),要注意引導(dǎo)學(xué)生分析問(wèn)題解決問(wèn)題的思考方法。
高二下數(shù)學(xué)教案版電子書篇六
1.掌握常用基本不等式,并能用之證明不等式和求最值;
2.掌握含絕對(duì)值的不等式的性質(zhì);
本章知識(shí)點(diǎn)
幾類常見的問(wèn)題
(一) 含參數(shù)的不等式的解法
例1解關(guān)于x的不等式 .
例2解關(guān)于x的不等式 .
例3解關(guān)于x的不等式 .
例4解關(guān)于x的不等式
例5 滿足 的x的集合為a;滿足 的x
的集合為b 1 若ab 求a的取值范圍 2 若ab 求a的取值范圍 3 若ab為僅含一個(gè)元素的集合,求a的值.
(二)函數(shù)的最值與值域
例6 求函數(shù) 的最大值,下列解法是否正確?為什么?
解一: ,
解二: 當(dāng) 即 時(shí),
例7 若 ,求 的最值。
例8 已知x , y為正實(shí)數(shù),且 成等差數(shù)列, 成等比數(shù)列,求 的取值范圍.
例9 設(shè) 且 ,求 的最大值
例10 函數(shù) 的最大值為9,最小值為1,求a,b的值。
1.
2. , 若 ,求a的取值范圍
3.
4.
5.當(dāng)a在什么范圍內(nèi)方程: 有兩個(gè)不同的負(fù)根
6.若方程 的兩根都對(duì)于2,求實(shí)數(shù)m的范圍
7.求下列函數(shù)的最值:
1
2
8.1 時(shí)求 的最小值, 的最小值
2設(shè) ,求 的最大值
3若 , 求 的最大值
4若 且 ,求 的最小值
9.若 ,求證: 的最小值為3
10.制作一個(gè)容積為 的圓柱形容器(有底有蓋),問(wèn)圓柱底半徑和
高各取多少時(shí),用料最省?(不計(jì)加工時(shí)的損耗及接縫用料)
高二下數(shù)學(xué)教案版電子書篇七
熟練掌握三角函數(shù)式的求值
熟練掌握三角函數(shù)式的求值
【知識(shí)點(diǎn)精講】
三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形
三角函數(shù)式的求值的類型一般可分為:
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
注意點(diǎn):靈活角的變形和公式的變形重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論
【課堂小結(jié)】
三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形
三角函數(shù)式的求值的類型一般可分為:
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
三角函數(shù)式常用化簡(jiǎn)方法:切割化弦、高次化低次
注意點(diǎn):靈活角的變形和公式的變形
重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論
高二下數(shù)學(xué)教案版電子書篇八
(1)了解周期現(xiàn)象在現(xiàn)實(shí)中廣泛存在;(2)感受周期現(xiàn)象對(duì)實(shí)際工作的意義;(3)理解周期函數(shù)的概念;(4)能熟練地判斷簡(jiǎn)單的實(shí)際問(wèn)題的周期;(5)能利用周期函數(shù)定義進(jìn)行簡(jiǎn)單運(yùn)用。
2、過(guò)程與方法
通過(guò)創(chuàng)設(shè)情境:?jiǎn)螖[運(yùn)動(dòng)、時(shí)鐘的圓周運(yùn)動(dòng)、潮汐、波浪、四季變化等,讓學(xué)生感知周期現(xiàn)象;從數(shù)學(xué)的角度分析這種現(xiàn)象,就可以得到周期函數(shù)的定義;根據(jù)周期性的定義,再在實(shí)踐中加以應(yīng)用。
3、情感態(tài)度與價(jià)值觀
通過(guò)本節(jié)的學(xué)習(xí),使同學(xué)們對(duì)周期現(xiàn)象有一個(gè)初步的認(rèn)識(shí),感受生活中處處有數(shù)學(xué),從而激發(fā)學(xué)生的學(xué)習(xí)積極性,培養(yǎng)學(xué)生學(xué)好數(shù)學(xué)的信心,學(xué)會(huì)運(yùn)用聯(lián)系的觀點(diǎn)認(rèn)識(shí)事物。
高二下數(shù)學(xué)教案版電子書篇九
1.把握菱形的判定.
2.通過(guò)運(yùn)用菱形知識(shí)解決具體問(wèn)題,提高分析能力和觀察能力.
3.通過(guò)教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)愛好.
4.根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過(guò)畫圖向?qū)W生滲透集合思想.
觀察分析討論相結(jié)合的.方法
1.教學(xué)重點(diǎn):菱形的判定方法.
2.教學(xué)難點(diǎn):菱形判定方法的綜合應(yīng)用.
1課時(shí)
教具(做一個(gè)短邊可以運(yùn)動(dòng)的平行四邊形)、投影儀和膠片,常用畫圖工具
教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時(shí)點(diǎn)撥
復(fù)習(xí)提問(wèn)
1.敘述菱形的定義與性質(zhì).
2.菱形兩鄰角的比為1:2,較長(zhǎng)對(duì)角線為,則對(duì)角線交點(diǎn)到一邊距離為xxxxxxxx.
引入新課
師問(wèn):要判定一個(gè)四邊形是不是菱形最基本的判定方法是什么方法?
生答:定義法.
此外還有別的兩種判定方法,下面就來(lái)學(xué)習(xí)這兩種方法.
講解新課
菱形判定定理1:四邊都相等的四邊形是菱形.
菱形判定定理2:對(duì)角錢互相垂直的'平行四邊形是菱形.圖1
分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.
分析判定2:
師問(wèn):本定理有幾個(gè)條件?
生答:兩個(gè).
師問(wèn):哪兩個(gè)?
生答:(1)是平行四邊形(2)兩條對(duì)角線互相垂直.
師問(wèn):再需要什么條件可證該平行四邊形是菱形?
生答:再證兩鄰邊相等.
(由學(xué)生口述證實(shí))
證實(shí)時(shí)讓學(xué)生注重線段垂直平分線在這里的應(yīng)用,
師問(wèn):對(duì)角線互相垂直的四邊形是菱形嗎?為什么?
可畫出圖,顯然對(duì)角線,但都不是菱形.
菱形常用的判定方法歸納為(學(xué)生討論歸納后,由教師板書):
注重:(2)與(4)的題設(shè)也是從四邊形出發(fā),和矩形一樣它們的題沒(méi)條件都包含有平行四邊形的判定條件.
例4已知:的對(duì)角錢的垂直平分線與邊、分別交于、,如圖.
求證:四邊形是菱形(按教材講解).
總結(jié)、擴(kuò)展
1.小結(jié):
(1)歸納判定菱形的四種常用方法.
(2)說(shuō)明矩形、菱形之間的區(qū)別與聯(lián)系.
2.思考題:已知:如圖4△中,,平分,,,交于.
求證:四邊形為菱形.
教材p159中9、10、11、13
高二下數(shù)學(xué)教案版電子書篇十
根據(jù)本學(xué)期學(xué)校教務(wù)處工作方針與計(jì)劃,以提高數(shù)學(xué)學(xué)科教學(xué)質(zhì)量為核心,全面提高自身業(yè)務(wù)水平,努力做到:求真務(wù)實(shí)、保質(zhì)高效,力求突破,促進(jìn)自身的全面發(fā)展。
具體工作計(jì)劃如下:
1、認(rèn)真學(xué)習(xí)新課標(biāo),轉(zhuǎn)變教學(xué)理念加強(qiáng)自身教育教學(xué)的理論學(xué)習(xí)。以學(xué)習(xí)新課標(biāo)為主要的學(xué)習(xí)內(nèi)容,組織切實(shí)有效的學(xué)習(xí)活動(dòng),用先進(jìn)的教育理念支撐深化教育改革,改變傳統(tǒng)的教學(xué)模式。
2、轉(zhuǎn)變教學(xué)方式轉(zhuǎn)變學(xué)生的學(xué)習(xí)方式教師要以新理念指導(dǎo)自己的教學(xué)工作,牢固樹立學(xué)生是學(xué)習(xí)的主人,以平等、寬容的態(tài)度對(duì)待學(xué)生,在溝通和"對(duì)話"中實(shí)現(xiàn)師生的共同發(fā)展,努力建立互動(dòng)的師生關(guān)系。本學(xué)期要繼續(xù)以改變學(xué)生的學(xué)習(xí)方式為主,提倡發(fā)現(xiàn)性學(xué)習(xí)、參與性學(xué)習(xí)和實(shí)踐性學(xué)習(xí)。
3、改變備課方式,提高備課質(zhì)量
例題的選擇,習(xí)題的配備與要求,可根據(jù)每個(gè)班級(jí)學(xué)生的實(shí)際,靈活處理。重視教學(xué)過(guò)程的反思,盡可能做到每節(jié)課后教師要反思教學(xué)過(guò)程,及時(shí)地把教學(xué)中點(diǎn)點(diǎn)滴滴的感受寫下來(lái),重視"二備"和反思,要從深層次上去考慮自己的教學(xué)工作。同時(shí),根據(jù)班級(jí)的具體情況,適當(dāng)進(jìn)行調(diào)整,以適應(yīng)學(xué)生的實(shí)際。
情況為標(biāo)準(zhǔn),讓學(xué)生學(xué)會(huì)并且掌握,不搞教條主義和形式主義。教案應(yīng)體現(xiàn)知識(shí)體系、思維方法、訓(xùn)練應(yīng)用,以及滲透運(yùn)用等,要對(duì)重點(diǎn)、難點(diǎn)有分析和解決方法。作業(yè)要求分組,學(xué)生可根據(jù)自己的情況完成相應(yīng)的作業(yè),并注重作業(yè)反饋。
教學(xué)工作計(jì)劃的制定能有效提升自己的.教學(xué)能力,改良教學(xué)方法和掌握學(xué)生的學(xué)習(xí)情況,從而實(shí)現(xiàn)本學(xué)期的教學(xué)目的。
高二下數(shù)學(xué)教案版電子書篇十一
【自主梳理】
1.函數(shù)單調(diào)性的定義:
(1)一般地,設(shè)函數(shù)的定義域?yàn)閍,區(qū)間.
如果對(duì)于區(qū)間i內(nèi)的任意兩個(gè)值,當(dāng)時(shí),都有_______________,那么就說(shuō)在區(qū)間i上是單調(diào)增函數(shù),i稱為的___________________.
如果對(duì)于區(qū)間i內(nèi)的任意兩個(gè)值,當(dāng)時(shí),都有_______________,那么就說(shuō)在區(qū)間i上是單調(diào)減函數(shù),i稱為的___________________.
(2)如果函數(shù)在區(qū)間i上是單調(diào)增函數(shù)或單調(diào)減函數(shù),那么就說(shuō)在區(qū)間i上具有___________性,單調(diào)增區(qū)間或單調(diào)減區(qū)間統(tǒng)稱為____________________.
2.復(fù)合函數(shù)的單調(diào)性:
對(duì)于函數(shù)如果當(dāng)在區(qū)間上和在區(qū)間上同時(shí)具有單調(diào)性,則復(fù)合函數(shù)在區(qū)間上具有__________,并且具有這樣的規(guī)律:___________________________.
3.求函數(shù)單調(diào)區(qū)間或證明函數(shù)單調(diào)性的方法:
(1)______________;(2)____________________;(3)__________________.
【自我檢測(cè)】
1.函數(shù)在r上是減函數(shù),則的取值范圍是___________.
2.函數(shù)在上是_____函數(shù)(填增或減).
3.函數(shù)的單調(diào)區(qū)間是_____________________.
4.函數(shù)在定義域r上是單調(diào)減函數(shù),且,則實(shí)數(shù)a的取值范圍是________________________.
5.已知函數(shù)在區(qū)間上是增函數(shù),則的大小關(guān)系是_______.
6.函數(shù)的單調(diào)減區(qū)間是___________________.
【例1】填空題:
(1)若函數(shù)的單調(diào)增區(qū)間是,則的遞增區(qū)間是_________.
(2)函數(shù)的單調(diào)減區(qū)間是________________.
(3)若上是增函數(shù),則a的取值范圍是_____________.
(4)若是r上的減函數(shù),則a的取值范圍是_________.
【例2】求證:函數(shù)在區(qū)間上是減函數(shù).
【例3】已知函數(shù)對(duì)任意的,都有,且當(dāng)時(shí),.
(1)求證:是r上的增函數(shù);
(2)若,解不等式.
1.函數(shù)單調(diào)減區(qū)間是_________________.
2.若函數(shù)在區(qū)間上具有單調(diào)性,則實(shí)數(shù)a的取值范圍是______.
3.已知函數(shù)是定義在上的'增函數(shù),且,則實(shí)數(shù)x的取值范圍是_________________________.
4.已知在內(nèi)是減函數(shù),,且,設(shè),,則a,b的大小關(guān)系是_________________.
5.若函數(shù)上都是減函數(shù),則上是______.(填增函數(shù)或減函數(shù))
6.函數(shù)的遞減區(qū)間是________________.
7.已知函數(shù)上單調(diào)遞減,則a的取值范圍是_________.
8.已知函數(shù)滿足對(duì)任意的,都有成立,則a的取值范圍是_________.
9.確定函數(shù)的單調(diào)性.
10.已知函數(shù)是定義在上的減函數(shù),且滿足,,若,求的取值范圍.
錯(cuò)題卡題號(hào)錯(cuò)題原因分析
高二數(shù)學(xué)教案:數(shù)的單調(diào)性教案(答案)
一、課前準(zhǔn)備:
【自主梳理】
1.(1),單調(diào)增區(qū)間,,單調(diào)減區(qū)間,
(2)單調(diào),單調(diào)區(qū)間
2.單調(diào)性,同則增異則減
3.(1)定義法(2)圖象法(3)導(dǎo)函數(shù)法
【自我檢測(cè)】
1.2.增3.和4.
5.6.
二、課堂活動(dòng):
【例1】
(1)(2)(3)(4)
【例2】證明:設(shè)
【例3】(1)證明:
(2)解:
三、課后作業(yè)
1.2.3.4.
5.減函數(shù)6.7.8.
9.解:定義域?yàn)椋稳?,?BR> 10.解:
高二下數(shù)學(xué)教案版電子書篇十二
理解并掌握雙曲線的幾何性質(zhì),并能從雙曲線的標(biāo)準(zhǔn)方程出發(fā),推導(dǎo)出這些性質(zhì),并能具體估計(jì)雙曲線的形狀特征。
二、預(yù)習(xí)內(nèi)容
1、雙曲線的幾何性質(zhì)及初步運(yùn)用。
類比橢圓的幾何性質(zhì)。
2。雙曲線的漸近線方程的導(dǎo)出和論證。
觀察以原點(diǎn)為中心,2a、2b長(zhǎng)為鄰邊的'矩形的兩條對(duì)角線,再論證這兩條對(duì)角線即為雙曲線的漸近線。
三、提出疑惑
同學(xué)們,通過(guò)你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中
課內(nèi)探究
1、橢圓與雙曲線的幾何性質(zhì)異同點(diǎn)分析
2、描述雙曲線的漸進(jìn)線的作用及特征
3、描述雙曲線的離心率的作用及特征
4、例、練習(xí)嘗試訓(xùn)練:
例1。求雙曲線9y2—16x2=144的實(shí)半軸長(zhǎng)和虛半軸長(zhǎng)、焦點(diǎn)坐標(biāo)、離心率、漸近線方程。
解:
解:
5、雙曲線的第二定義
1)。定義(由學(xué)生歸納給出)
2)。說(shuō)明
(七)小結(jié)(由學(xué)生課后完成)
將雙曲線的幾何性質(zhì)按兩種標(biāo)準(zhǔn)方程形式列表小結(jié)。
作業(yè):
1。已知雙曲線方程如下,求它們的兩個(gè)焦點(diǎn)、離心率e和漸近線方程。
(1)16x2—9y2=144;
(2)16x2—9y2=—144。
2。求雙曲線的標(biāo)準(zhǔn)方程:
(1)實(shí)軸的長(zhǎng)是10,虛軸長(zhǎng)是8,焦點(diǎn)在x軸上;
(2)焦距是10,虛軸長(zhǎng)是8,焦點(diǎn)在y軸上;
曲線的方程。
點(diǎn)到兩準(zhǔn)線及右焦點(diǎn)的距離。
高二下數(shù)學(xué)教案版電子書篇十三
教學(xué)目標(biāo):
1、進(jìn)一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì);
2、在對(duì)一個(gè)數(shù)列的探究過(guò)程中,提高提出問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力;
3、進(jìn)一步提高問(wèn)題探究意識(shí)、知識(shí)應(yīng)用意識(shí)和同伴合作意識(shí)。
教學(xué)重點(diǎn):
問(wèn)題的提出與解決
教學(xué)難點(diǎn):
如何進(jìn)行問(wèn)題的探究
教學(xué)方法:
啟發(fā)探究式
教學(xué)過(guò)程:
研究方向提示:
1、數(shù)列{an}是一個(gè)等比數(shù)列,可以從等比數(shù)列角度來(lái)進(jìn)行研究;
2、研究所給數(shù)列的項(xiàng)之間的關(guān)系;
3、研究所給數(shù)列的子數(shù)列;
4、研究所給數(shù)列能構(gòu)造的新數(shù)列;
5、數(shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來(lái)進(jìn)行研究;
6、研究所給數(shù)列與其它知識(shí)的聯(lián)系(組合數(shù)、復(fù)數(shù)、圖形、實(shí)際意義等)。
針對(duì)學(xué)生的研究情況,對(duì)所提問(wèn)題進(jìn)行歸類,選擇部分類型問(wèn)題共同進(jìn)行研究、分析與解決。
課堂小結(jié):
1、研究一個(gè)數(shù)列可以從哪些方面提出問(wèn)題并進(jìn)行研究?
2、你最喜歡哪位同學(xué)的研究?為什么?
高二下數(shù)學(xué)教案版電子書篇十四
【自主梳理】
1.對(duì)數(shù):
(1)一般地,如果,那么實(shí)數(shù)叫做________________,記為________,其中叫做對(duì)數(shù)的_______,叫做________.
(2)以10為底的對(duì)數(shù)記為________,以為底的對(duì)數(shù)記為_______.
(3),.
2.對(duì)數(shù)的運(yùn)算性質(zhì):
(1)如果,那么,
.
(2)對(duì)數(shù)的換底公式:.
3.對(duì)數(shù)函數(shù):
一般地,我們把函數(shù)____________叫做對(duì)數(shù)函數(shù),其中是自變量,函數(shù)的定義域是______.
4.對(duì)數(shù)函數(shù)的圖像與性質(zhì):
a10
圖象性
質(zhì)定義域:___________
值域:_____________
過(guò)點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0
x(0,1)時(shí)_________
x(1,+)時(shí)________x(0,1)時(shí)_________
x(1,+)時(shí)________
在___________上是增函數(shù)在__________上是減函數(shù)
【自我檢測(cè)】
1.的定義域?yàn)開________.
2.化簡(jiǎn):.
3.不等式的解集為________________.
4.利用對(duì)數(shù)的換底公式計(jì)算:.
5.函數(shù)的奇偶性是____________.
6.對(duì)于任意的,若函數(shù),則與的大小關(guān)系是___________________________.
【例1】填空題:
(1).
(2)比較與的大小為___________.
(3)如果函數(shù),那么的最大值是_____________.
(4)函數(shù)的奇偶性是___________.
【例2】求函數(shù)的定義域和值域.
【例3】已知函數(shù)滿足.
(1)求的解析式;
(2)判斷的奇偶性;
(3)解不等式.
課堂小結(jié)
1..略
2.函數(shù)的定義域?yàn)開______________.
3.函數(shù)的值域是_____________.
4.若,則的取值范圍是_____________.
5.設(shè)則的大小關(guān)系是_____________.
6.設(shè)函數(shù),若,則的取值范圍為_________________.
7.當(dāng)時(shí),不等式恒成立,則的取值范圍為______________.
8.函數(shù)在區(qū)間上的值域?yàn)?,則的最小值為____________.
9.已知.
(1)求的定義域;
(2)判斷的奇偶性并予以證明;
(3)求使的的.取值范圍.
10.對(duì)于函數(shù),回答下列問(wèn)題:
(1)若的定義域?yàn)椋髮?shí)數(shù)的取值范圍;
(2)若的值域?yàn)?,求?shí)數(shù)的取值范圍;
(3)若函數(shù)在內(nèi)有意義,求實(shí)數(shù)的取值范圍.
四、糾錯(cuò)分析
錯(cuò)題卡題號(hào)錯(cuò)題原因分析
【自主梳理】
1.對(duì)數(shù)
(1)以為底的的對(duì)數(shù),,底數(shù),真數(shù).
(2),.
(3)0,1.
2.對(duì)數(shù)的運(yùn)算性質(zhì)
(1),,.
(2).
3.對(duì)數(shù)函數(shù)
,.
4.對(duì)數(shù)函數(shù)的圖像與性質(zhì)
a10
圖象性質(zhì)定義域:(0,+)
值域:r
過(guò)點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0
x(0,1)時(shí)y0
x(1,+)時(shí)y0x(0,1)時(shí)y0
x(1,+)時(shí)y0
在(0,+)上是增函數(shù)在(0,+)上是減函數(shù)
1.2.3.
4.5.奇函數(shù)6..
【例1】填空題:
(1)3.
(2).
(3)0.
(4)奇函數(shù).
【例2】解:由得.所以函數(shù)的定義域是(0,1).
因?yàn)椋裕?dāng)時(shí),,函數(shù)的值域?yàn)?當(dāng)時(shí),,函數(shù)的值域?yàn)?
【例3】解:(1),所以.
(2)定義域(-3,3)關(guān)于原點(diǎn)對(duì)稱,所以
,所以為奇函數(shù).
(3),所以當(dāng)時(shí),解得
當(dāng)時(shí),解得.
高二下數(shù)學(xué)教案版電子書篇十五
本節(jié)內(nèi)容為人教版高一數(shù)學(xué)必修3模塊第一章算法初步第1.1.2節(jié)第一課時(shí),
主要包括程序框圖的圖形符號(hào)、算法的程序框圖表示、算法的的邏輯結(jié)構(gòu)等三部分內(nèi)容。
算法就是解決問(wèn)題的步驟,算法也是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計(jì)算機(jī)科學(xué)的基礎(chǔ),利用計(jì)算機(jī)解決問(wèn)需要算法,在日常生活中做任何事情也都有算法,當(dāng)然我們更關(guān)心的是計(jì)算機(jī)的算法,計(jì)算機(jī)可以解決多類信息處理問(wèn)題,直接寫出解決該問(wèn)題的程序是困難的,因此,我們要首先研究解決問(wèn)題的算法,再把算法轉(zhuǎn)化為程序,所以算法設(shè)計(jì)是使用計(jì)算機(jī)解決具體問(wèn)題的一個(gè)極為重要的環(huán)節(jié)。
通過(guò)對(duì)解決具體問(wèn)題的過(guò)程與步驟的分析,體會(huì)算法的思想,了解算法的含義。理解程序框圖的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。進(jìn)一步體會(huì)算法的另一種表達(dá)方式。
本章節(jié)的重點(diǎn)是體會(huì)算法的思想,通過(guò)模仿、操作、探索,通過(guò)設(shè)計(jì)程序框圖解決實(shí)際生活問(wèn)題的過(guò)程。通過(guò)解決具體問(wèn)題,理解三種基本邏輯結(jié)構(gòu)中順序和條件結(jié)構(gòu),經(jīng)歷將具體問(wèn)題用程序框圖來(lái)表示,在實(shí)際問(wèn)題中能設(shè)計(jì)相關(guān)程序框圖解決實(shí)際問(wèn)題。
關(guān)于本節(jié)內(nèi)容,相對(duì)學(xué)生來(lái)說(shuō),全是新知識(shí),因它涉及到計(jì)算機(jī)科學(xué)相關(guān)內(nèi)容,也是數(shù)學(xué)及其應(yīng)用的重要組成部分。大部分學(xué)生并沒(méi)有學(xué)習(xí)過(guò)程序框圖的設(shè)計(jì),在編寫程序方面基本上都是“零起點(diǎn)”,而且認(rèn)為程序框圖設(shè)計(jì)是一件困難的事情,因此本課的舉例和任務(wù)都適當(dāng)降低難度,讓學(xué)生能在實(shí)踐中體會(huì)成功的喜悅,領(lǐng)略程序設(shè)計(jì)之算法程序框圖表示的樂(lè)趣。另一方面要充分利用課外資料和實(shí)例,設(shè)置問(wèn)題情景,激發(fā)學(xué)生的學(xué)習(xí)興趣,通過(guò)建構(gòu)模型,化抽象為具體,教師在整個(gè)學(xué)習(xí)過(guò)程中進(jìn)行指導(dǎo)、啟發(fā)、補(bǔ)充與完善。
(一)知識(shí)與技能
2、理解并掌握算法的三種基本邏輯結(jié)構(gòu),培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力;
3、培養(yǎng)學(xué)生在實(shí)際現(xiàn)實(shí)生活中,能正確運(yùn)用相關(guān)邏輯結(jié)構(gòu)分析、解決實(shí)際問(wèn)題;
(二)過(guò)程與方法
2、在具體問(wèn)題的解決過(guò)程中理解程序流程圖的三種基本邏輯結(jié)構(gòu)之順序結(jié)構(gòu)、條件結(jié)構(gòu),尋找解決實(shí)際問(wèn)題的規(guī)律與方法。
(三)情感態(tài)度與價(jià)值觀
1:通過(guò)本節(jié)的學(xué)習(xí),使學(xué)生對(duì)計(jì)算機(jī)的算法語(yǔ)言有一個(gè)基本的了解,明確算法的要求,認(rèn)識(shí)計(jì)算機(jī)是人類征服自然的一種有力工具,進(jìn)一步提高探索、認(rèn)識(shí)世界的能力。
2:培養(yǎng)學(xué)生迎難而上,戰(zhàn)勝困難的大無(wú)畏精神,克服畏難情緒,培養(yǎng)嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣、塑造認(rèn)真、細(xì)致的做事態(tài)度。
教學(xué)重點(diǎn):程序框圖的圖形符號(hào)、算法的基本邏輯結(jié)構(gòu)及應(yīng)用
教學(xué)難點(diǎn):算法的條件結(jié)構(gòu)在實(shí)際生活中的運(yùn)用
3、競(jìng)爭(zhēng)機(jī)制策略:據(jù)本章節(jié)中部分內(nèi)容,合理設(shè)置分組競(jìng)爭(zhēng),小組賽形式激發(fā)學(xué)生高漲的.學(xué)習(xí)熱情,不僅引導(dǎo)學(xué)生將所學(xué)知識(shí)應(yīng)用于解決實(shí)際問(wèn)題,且培養(yǎng)學(xué)生團(tuán)隊(duì)合作探究精神。
任務(wù)驅(qū)動(dòng)法、啟發(fā)引導(dǎo)式、小組合作探究學(xué)習(xí)法、模仿建構(gòu)學(xué)習(xí)法
多媒體課件、生活中具體實(shí)例、同步學(xué)案
課時(shí)1
教學(xué)程序教師組織與引導(dǎo)學(xué)生活動(dòng)設(shè)計(jì)意圖
發(fā)放“任務(wù)”紙質(zhì)
1、把任務(wù)學(xué)案發(fā)給學(xué)生
2、查閱、收集有關(guān)實(shí)際生活中實(shí)例,用于本節(jié)教學(xué)
1、預(yù)習(xí)
2、查閱相關(guān)資料學(xué)生是學(xué)習(xí)主體,自主合作、探究式學(xué)習(xí)
回顧舊知,引入新課
改進(jìn):生活中的問(wèn)題,描述解決步驟(1)算法的描述:要交換兩杯不同液體的方法、步驟;(自然語(yǔ)言描述法,復(fù)習(xí))
穿插經(jīng)典算法在教學(xué)中,激趣導(dǎo)學(xué)
1:雞兔同籠、2:誰(shuí)在說(shuō)謊
(2)你還知道有什么渠道能使算法描述得更直觀、高效、準(zhǔn)確嗎?引導(dǎo)學(xué)生看書自學(xué)
學(xué)生思考、回答,
學(xué)生看書自學(xué)本節(jié)程序框圖相關(guān)知識(shí):程序框圖圖形符號(hào)
激發(fā)學(xué)生對(duì)本節(jié)課內(nèi)容的關(guān)注
探究不同程序框圖符號(hào)表示的不同含義,初步探討程序框圖的畫法
重點(diǎn)部分強(qiáng)記據(jù)教材設(shè)疑,并逐一提出下列問(wèn)題:
(1)程序框圖共有哪些圖形符號(hào)?
改進(jìn):同學(xué)們,你們所常見的圖形有哪些??學(xué)生回答
現(xiàn)在,從這些常用圖形中,我們選出幾中種來(lái)用于表示“算法”中的含義
(2)不同符號(hào)所表示的什么含義?
(3)具體應(yīng)用,實(shí)例列舉,老師在黑板上“補(bǔ)”畫“長(zhǎng)方形面積”流程圖
(4)要求學(xué)生結(jié)合上述老師所講實(shí)例,模仿“補(bǔ)充”畫出,改進(jìn):
a:圓的面積、周長(zhǎng)的流程圖(老師完成)
b:正方形面積、周長(zhǎng)的流程圖(師生共同完成)
c:三角形面積、周長(zhǎng)的流程圖(學(xué)生自己完成)
d:求學(xué)生語(yǔ)、數(shù)、英三科成績(jī)平均分的程序框圖(學(xué)生自己完成)
(5)例3.已知三角形三邊長(zhǎng),求三角形面積的程序框圖(老師提示公式,學(xué)生自己理解)
(6)判別整數(shù)n是否為質(zhì)數(shù)后面學(xué)
老師引導(dǎo)學(xué)生說(shuō)出程序框圖特征并作簡(jiǎn)要?dú)w納學(xué)生看書掌握
學(xué)生聯(lián)系實(shí)際,回答
看書自學(xué),回答
看書自學(xué),回答
聽講,學(xué)習(xí)
學(xué)生根據(jù)圖形特點(diǎn),找記憶方法
討論、交流、模仿、經(jīng)歷
學(xué)生思考、討論并畫圖
反復(fù)練習(xí),鞏固、加強(qiáng)記憶
學(xué)生自己設(shè)計(jì)
對(duì)照課本,檢查正誤
學(xué)生總結(jié)歸納程序框圖特點(diǎn)
學(xué)生仿做
學(xué)生仿做
學(xué)生理解
或
s=p*r^2培養(yǎng)自學(xué)能力
明確每種圖形符號(hào)的不同含義及不同應(yīng)用
培養(yǎng)學(xué)生模仿學(xué)習(xí)與制作流程圖的能力
培養(yǎng)學(xué)生善于總結(jié)歸納的習(xí)慣
重點(diǎn)突破
框圖符號(hào)
重、難點(diǎn)攻克條件結(jié)構(gòu)
總結(jié)過(guò)渡并提出問(wèn)題:
改進(jìn):聯(lián)系實(shí)際生活,結(jié)合課本,自主探究:算法的邏輯結(jié)構(gòu)應(yīng)有幾種
(1)如何用框圖符號(hào)來(lái)表示算法?
(2)算法有幾種基本邏輯結(jié)構(gòu)?
(3)你會(huì)用框圖符號(hào)表示算法的順序結(jié)構(gòu)了嗎?(前面剛講,總結(jié)歸納)
(4)你會(huì)用框圖符號(hào)表示條件結(jié)構(gòu)嗎?
老師列舉并畫實(shí)例流程圖:
引導(dǎo)學(xué)生帶著問(wèn)題邊看書邊在練習(xí)本將幾種結(jié)構(gòu)畫出來(lái),加強(qiáng)看書效果
例4:老師啟發(fā)學(xué)生,師生共同完成三數(shù)為邊是否組成三角形程序框圖
補(bǔ)充:1:求絕對(duì)值的程序框圖:
2:y=
引導(dǎo)學(xué)生思考設(shè)計(jì)分段函數(shù)的流程圖,運(yùn)用條件結(jié)構(gòu)
教師引導(dǎo)學(xué)生列舉生活中實(shí)例
學(xué)生看書
同桌間自主探究、理解掌握
討論回答問(wèn)題
學(xué)生思考、模仿、探究著畫流程圖,和課本對(duì)照判正誤
學(xué)生模仿、思考、討論與交流
設(shè)計(jì)相應(yīng)流程圖
同學(xué)上臺(tái)展示自己的流程圖,其它學(xué)同指正其正誤
學(xué)生對(duì)比條件與順序結(jié)構(gòu)的框圖,總結(jié)歸納條件結(jié)構(gòu)的框圖的繪制任務(wù)驅(qū)動(dòng),
創(chuàng)設(shè)學(xué)習(xí)情景
層層深入
引領(lǐng)學(xué)生縱向?qū)W習(xí)
模仿,思考,對(duì)照,學(xué)生有所思有所悟,
體驗(yàn)學(xué)習(xí)成功的快樂(lè)
突出學(xué)生學(xué)習(xí)的主體
培養(yǎng)學(xué)生的邏輯思維能力
教師對(duì)學(xué)生的講解進(jìn)行補(bǔ)充和完善,小結(jié)本節(jié)內(nèi)容。學(xué)生交流生活中實(shí)例及框圖解決辦法。
課堂小結(jié)引導(dǎo)學(xué)生總結(jié)本節(jié)課的知識(shí)要點(diǎn)
并談?wù)劚竟?jié)課的收獲與提高及改進(jìn)學(xué)生回顧總結(jié)本節(jié)所學(xué)梳理本節(jié)課的知識(shí)主干
布置課后作業(yè)作業(yè):p20習(xí)題1.1
a組1,3課后完成鞏固、反饋學(xué)習(xí)效果
參閱經(jīng)典算法:穿插在教學(xué)中,激趣導(dǎo)學(xué)
2:誰(shuí)在說(shuō)謊
*運(yùn)行結(jié)果
zhangsantoldalie(張三說(shuō)假話)
lisitoldatruch.(李四說(shuō)真話)
wangwutoldalie.(王五說(shuō)假話)
九、板書設(shè)計(jì)
1.1.2程序框圖及算法的基本邏輯結(jié)構(gòu)
一、程序框圖
1:程序框圖又名_______
二:算法的基本邏輯結(jié)構(gòu)
2:請(qǐng)你表示出條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)的框圖形式:
3:請(qǐng)仿照寫出求長(zhǎng)方形的面積的框圖,類似正方形面積框圖、圓面積、三角形面積等程序框圖(順序結(jié)構(gòu))
4:設(shè)計(jì)給定三角形任意三邊長(zhǎng)a,b,c,試表示出三角形面積相應(yīng)程序框圖
(對(duì)照p9例3,檢查正誤)
三:算法的條件框圖
1:試畫條件結(jié)構(gòu)框圖的2種形式
2:例4會(huì)了嗎?試試看
3:試設(shè)計(jì)求絕對(duì)值的程序框圖
小結(jié)作業(yè):p20,習(xí)題:1.1a組1,3兩題
改進(jìn)效果:經(jīng)過(guò)斟酌改進(jìn)實(shí)踐后的算法,方式更適宜中學(xué)生個(gè)性特點(diǎn),更易被中學(xué)生接受,效果更好。
高二下數(shù)學(xué)教案版電子書篇十六
1.掌握二項(xiàng)式定理和性質(zhì)以及推導(dǎo)過(guò)程。
2.利用二項(xiàng)式定理求二項(xiàng)展開式中的項(xiàng)的系數(shù)及相關(guān)問(wèn)題。
3.使學(xué)生能把握數(shù)學(xué)問(wèn)題中的整體與局部的關(guān)系,掌握分析與綜合,特殊和一般的數(shù)學(xué)思想。
教學(xué)重點(diǎn);二項(xiàng)展開式中項(xiàng)的系數(shù)的計(jì)算。
1、復(fù)習(xí)引入:
1.的展開式,項(xiàng)數(shù),通項(xiàng);
2.二項(xiàng)式系數(shù)的四個(gè)性質(zhì)。
2、例題
1.二項(xiàng)式定理及二項(xiàng)式系數(shù)性質(zhì)的簡(jiǎn)單應(yīng)用:
例1(1)除以9的余數(shù)是_____________________
(2)=_______________
a.b.c.d.
(3)已知
則____________________
(4)如果展開式中奇數(shù)項(xiàng)的系數(shù)和為512,則這個(gè)展開式的第8項(xiàng)是()
a.b.c.d.
(5)若則等于()
a.b.c.d.
小結(jié)1.(1)注意二項(xiàng)式定理的正逆運(yùn)用;
(2)注意二項(xiàng)式系數(shù)的四個(gè)性質(zhì)的運(yùn)用。
2.二項(xiàng)展開式中項(xiàng)的系數(shù)計(jì)算:
例2(1)展開式中常數(shù)項(xiàng)等于_____________.
(2)在的展開式中x的系數(shù)為()
a.160b.240c.360d.800
(3)已知求:
小結(jié)2.(1)局部問(wèn)題抓通項(xiàng);
(2)整體系數(shù)賦值法。
三、課堂練習(xí)
(1)展開式中,各系數(shù)之和是()
a.0b.1c.d.
(2)已知的.展開式中的系數(shù)為,常數(shù)的值是_________
(3)的展開式中的系數(shù)為______________-(用數(shù)字作答)
(4)若,則
a.1b.0c.2d.
四、課堂小結(jié)
五、作業(yè)
高二下數(shù)學(xué)教案版電子書篇十七
1.理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫點(diǎn)的位置的方法。
2.掌握坐標(biāo)法解決幾何問(wèn)題的步驟;體會(huì)坐標(biāo)系的作用。
體會(huì)直角坐標(biāo)系的作用。
能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問(wèn)題。
新授課
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).
多媒體、實(shí)物投影儀
一、復(fù)習(xí)引入:
情境1:為了確保宇宙飛船在預(yù)定的軌道上運(yùn)行,并在按計(jì)劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時(shí)刻開始,需要隨時(shí)測(cè)定飛船在空中的.位置機(jī)器運(yùn)動(dòng)的軌跡。
情境2:運(yùn)動(dòng)會(huì)的開幕式上常常有大型團(tuán)體操的表演,其中不斷變化的背景圖案是由看臺(tái)上座位排列整齊的人群不斷翻動(dòng)手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點(diǎn)不同的畫布所在的位置。
問(wèn)題1:如何刻畫一個(gè)幾何圖形的位置?
問(wèn)題2:如何創(chuàng)建坐標(biāo)系?
二、學(xué)生活動(dòng)
學(xué)生回顧
刻畫一個(gè)幾何圖形的位置,需要設(shè)定一個(gè)參照系
1、數(shù)軸它使直線上任一點(diǎn)p都可以由惟一的實(shí)數(shù)x確定
2、平面直角坐標(biāo)系
在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(duì)(x,y)確定。
3、空間直角坐標(biāo)系
在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(duì)(x,y,z)確定。
三、講解新課:
1、建立坐標(biāo)系是為了確定點(diǎn)的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:
任意一點(diǎn)都有確定的坐標(biāo)與其對(duì)應(yīng);反之,依據(jù)一個(gè)點(diǎn)的坐標(biāo)就能確定這個(gè)點(diǎn)的位置
2、確定點(diǎn)的位置就是求出這個(gè)點(diǎn)在設(shè)定的坐標(biāo)系中的坐標(biāo)
四、數(shù)學(xué)運(yùn)用
例1選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長(zhǎng)為1的正六邊形的頂點(diǎn)。
變式訓(xùn)練
思考
通過(guò)平面變換可以把曲線變?yōu)橹行脑谠c(diǎn)的單位圓,請(qǐng)求出該復(fù)合變換?
五、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.平面直角坐標(biāo)系的意義。
2.利用平面直角坐標(biāo)系解決相應(yīng)的數(shù)學(xué)問(wèn)題。
六、課后作業(yè):
高二下數(shù)學(xué)教案版電子書篇一
1.了解分式、有理式的概念.
2.理解分式有意義的條件,能熟練地求出分式有意義的條件.
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):理解分式有意義的條件.
2.難點(diǎn):能熟練地求出分式有意義的條件.
三、課堂引入
1.讓學(xué)生填寫p127[思考],學(xué)生自己依次填出:,,,.
請(qǐng)同學(xué)們跟著教師一起設(shè)未知數(shù),列方程.
設(shè)江水的流速為v /h.
輪船順流航行90 所用的時(shí)間為小時(shí),逆流航行60 所用時(shí)間小時(shí),所以=.
3. 以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?
四、例題講解
p128例1. 當(dāng)下列分式中的字母為何值時(shí),分式有意義.
[分析]已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解
出字母的取值范圍.
[補(bǔ)充提問(wèn)]如果題目為:當(dāng)字母為何值時(shí),分式無(wú)意義.你知道怎么解題嗎?這樣可以使學(xué)生一題二用,也可以讓學(xué)生更全面地感受到分式及有關(guān)概念.
(補(bǔ)充)例2. 當(dāng)為何值時(shí),分式的值為0?
(1) (2) (3)
[分析] 分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類題目的解.
[答案] (1)=0 (2)=2 (3)=1
五、隨堂練習(xí)
1.判斷下列各式哪些是整式,哪些是分式?
9x+4, , , , ,
2. 當(dāng)x取何值時(shí),下列分式有意義?
(1) (2) (3)
3. 當(dāng)x為何值時(shí),分式的值為0?
(1) (2) (3)
六、課后練習(xí)
1.下列代數(shù)式表示下列數(shù)量關(guān)系,并指出哪些是正是?哪些是分式?
(1)甲每小時(shí)做x個(gè)零件,則他8小時(shí)做零件 個(gè),做80個(gè)零件需 小時(shí).
(2)輪船在靜水中每小時(shí)走a千米,水流的速度是b千米/時(shí),輪船的順流速度是 千米/時(shí),輪船的逆流速度是 千米/時(shí).
(3)x與的差于4的商是 .
2.當(dāng)x取何值時(shí),分式 無(wú)意義?
3. 當(dāng)x為何值時(shí),分式 的值為0?
高二下數(shù)學(xué)教案版電子書篇二
一、指導(dǎo)思想:
全面貫徹教育方針,深入實(shí)施素質(zhì)教育,使學(xué)生在高一學(xué)習(xí)的基礎(chǔ)上,進(jìn)一步體會(huì)數(shù)學(xué)對(duì)發(fā)展自己思維能力的作用,體會(huì)數(shù)學(xué)對(duì)推動(dòng)社會(huì)進(jìn)步和科學(xué)發(fā)展的意義以及數(shù)學(xué)的文化價(jià)值,提高數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。
二、教學(xué)具體目標(biāo)
1、期中考前完成必修3、選修2-3第一章
2、提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3、提高數(shù)學(xué)地提出、分析和解決問(wèn)題(包括簡(jiǎn)單的實(shí)際問(wèn)題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。
三、教材特點(diǎn):
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書》,它在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,強(qiáng)調(diào)了問(wèn)題提出,抽象概括,分析理解,思考交流等研究性學(xué)習(xí)過(guò)程。具體特點(diǎn)如下:
1、“親和力”:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2、“問(wèn)題性”:專門安排了“課題學(xué)習(xí)”和“探究活動(dòng)”,培養(yǎng)問(wèn)題意識(shí),孕育創(chuàng)新精神。
3、“科學(xué)性”與“思想性”:通過(guò)不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問(wèn)題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4、“時(shí)代性”與“應(yīng)用性”:教材中有“信息技術(shù)建議”和“信息技術(shù)應(yīng)用”,以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí)。
5、“人文應(yīng)用價(jià)值性”:編寫了一些閱讀材料,開拓學(xué)生視野,從數(shù)學(xué)史的發(fā)展足跡中獲取營(yíng)養(yǎng)和動(dòng)力,全面感受數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值。
四、教法分析:
1、選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語(yǔ)言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個(gè)究竟”的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。
2、通過(guò)“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
3、在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
五、教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說(shuō)明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問(wèn)題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問(wèn)題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問(wèn)題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法
6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
六、教學(xué)進(jìn)度安排(略)?
高二下數(shù)學(xué)教案版電子書篇三
style="color:#125b86">
教材分析
因式分解是代數(shù)式的一種重要恒等變形?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對(duì)因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個(gè)公式,但絲毫沒(méi)有否定因式分解的教育價(jià)值及其在代數(shù)運(yùn)算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來(lái)的,事實(shí)上,它是整式乘法的逆向運(yùn)用,與整式乘法運(yùn)算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡(jiǎn)、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個(gè)教材中起到了承上啟下的作用。本章的教育價(jià)值還體現(xiàn)在使學(xué)生接受對(duì)立統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問(wèn)題的能力。
學(xué)情分析
通過(guò)探究平方差公式和運(yùn)用平方差公式分解因式的活動(dòng)中,讓學(xué)生發(fā)表自己的觀點(diǎn),從交流中獲益,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志建立自信心。
教學(xué)目標(biāo)
1、在分解因式的過(guò)程中體會(huì)整式乘法與因式分解之間的聯(lián)系。
2、通過(guò)公式a -b =(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語(yǔ)言表達(dá)能力。
3、能運(yùn)用提公因式法、公式法進(jìn)行綜合運(yùn)用。
4、通過(guò)活動(dòng)4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn): 靈活運(yùn)用平方差公式進(jìn)行分解因式。
難點(diǎn):平方差公式的推導(dǎo)及其運(yùn)用,兩種因式分解方法(提公因式法、平方差公式)的綜合運(yùn)用。
高二下數(shù)學(xué)教案版電子書篇四
掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。
向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。
(一)主要知識(shí):
掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。
(二)例題分析:略
1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的'知識(shí)解決有關(guān)應(yīng)用問(wèn)題,
2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問(wèn)題的能力。
高二下數(shù)學(xué)教案版電子書篇五
重點(diǎn)與難點(diǎn)分析:
本節(jié)課教學(xué)方法主要是“自學(xué)輔導(dǎo)與發(fā)現(xiàn)探究法”。力求體現(xiàn)知識(shí)結(jié)構(gòu)完整、知識(shí)理解完整;注重學(xué)生的參與度,在師生共同參與下,探索問(wèn)題、動(dòng)手試驗(yàn)、發(fā)現(xiàn)規(guī)律、做出歸納。讓學(xué)生直接參加課堂活動(dòng),將教與學(xué)融為一體。具體說(shuō)明如下:
(1)由“先教后學(xué)”轉(zhuǎn)向“先學(xué)后教
本節(jié)課開始,讓同學(xué)們自己思考問(wèn)題:判定三角形全等的方法有四種,如果這兩個(gè)三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠?學(xué)生展開討論,初步形成意見,然后由教師答疑。這樣促進(jìn)了學(xué)生學(xué)習(xí),體現(xiàn)了以“學(xué)生為主體”的教育思想。
(2)在層次教學(xué)中培養(yǎng)學(xué)生的思維能力
本節(jié)課的層次主要表現(xiàn)為兩個(gè)方面:一是對(duì)公理的多層次理解;二是綜合練習(xí)的多層次變化。
公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語(yǔ)言、圖形語(yǔ)言、符號(hào)語(yǔ)言的理解及掌握;公理的作用。這里特別強(qiáng)調(diào)三個(gè)方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。
綜合練習(xí)的多層次變化:首先給出直接應(yīng)用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應(yīng)用題目。這里注意兩點(diǎn):一是給出題目后先讓學(xué)生獨(dú)立思考,并按教材的形式嚴(yán)格書寫。二是給出的綜合題目有一定的難度,教學(xué)時(shí),要注意引導(dǎo)學(xué)生分析問(wèn)題解決問(wèn)題的思考方法。
教法建議:
由“先教后學(xué)”轉(zhuǎn)向“先學(xué)后教”
本節(jié)課開始,讓同學(xué)們自己思考問(wèn)題:判定三角形全等的方法有四種,如果這兩個(gè)三角形是直角三角形,那么判定它們?nèi)鹊姆椒ㄓ心男┠?學(xué)生展開討論,初步形成意見,然后由教師答疑。這樣促進(jìn)了學(xué)生學(xué)習(xí),體現(xiàn)了以“學(xué)生為主體”的教育思想。
(2)在層次教學(xué)中培養(yǎng)學(xué)生的思維能力
本節(jié)課的層次主要表現(xiàn)為兩個(gè)方面:一是對(duì)公理的多層次理解;二是綜合練習(xí)的多層次變化。
公理的多層次理解包括:明確公理的條件及結(jié)論;公理的文字語(yǔ)言、圖形語(yǔ)言、符號(hào)語(yǔ)言的理解及掌握;公理的作用。這里特別強(qiáng)調(diào)三個(gè)方面:1、特殊三角形的特殊性;2、歸納總結(jié)判定直角三角形全等的方法。
綜合練習(xí)的.多層次變化:首先給出直接應(yīng)用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應(yīng)用題目。
這里注意兩點(diǎn):
一是給出題目后先讓學(xué)生獨(dú)立思考,并按教材的形式嚴(yán)格書寫。
二是給出的綜合題目有一定的難度,教學(xué)時(shí),要注意引導(dǎo)學(xué)生分析問(wèn)題解決問(wèn)題的思考方法。
高二下數(shù)學(xué)教案版電子書篇六
1.掌握常用基本不等式,并能用之證明不等式和求最值;
2.掌握含絕對(duì)值的不等式的性質(zhì);
本章知識(shí)點(diǎn)
幾類常見的問(wèn)題
(一) 含參數(shù)的不等式的解法
例1解關(guān)于x的不等式 .
例2解關(guān)于x的不等式 .
例3解關(guān)于x的不等式 .
例4解關(guān)于x的不等式
例5 滿足 的x的集合為a;滿足 的x
的集合為b 1 若ab 求a的取值范圍 2 若ab 求a的取值范圍 3 若ab為僅含一個(gè)元素的集合,求a的值.
(二)函數(shù)的最值與值域
例6 求函數(shù) 的最大值,下列解法是否正確?為什么?
解一: ,
解二: 當(dāng) 即 時(shí),
例7 若 ,求 的最值。
例8 已知x , y為正實(shí)數(shù),且 成等差數(shù)列, 成等比數(shù)列,求 的取值范圍.
例9 設(shè) 且 ,求 的最大值
例10 函數(shù) 的最大值為9,最小值為1,求a,b的值。
1.
2. , 若 ,求a的取值范圍
3.
4.
5.當(dāng)a在什么范圍內(nèi)方程: 有兩個(gè)不同的負(fù)根
6.若方程 的兩根都對(duì)于2,求實(shí)數(shù)m的范圍
7.求下列函數(shù)的最值:
1
2
8.1 時(shí)求 的最小值, 的最小值
2設(shè) ,求 的最大值
3若 , 求 的最大值
4若 且 ,求 的最小值
9.若 ,求證: 的最小值為3
10.制作一個(gè)容積為 的圓柱形容器(有底有蓋),問(wèn)圓柱底半徑和
高各取多少時(shí),用料最省?(不計(jì)加工時(shí)的損耗及接縫用料)
高二下數(shù)學(xué)教案版電子書篇七
熟練掌握三角函數(shù)式的求值
熟練掌握三角函數(shù)式的求值
【知識(shí)點(diǎn)精講】
三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形
三角函數(shù)式的求值的類型一般可分為:
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
注意點(diǎn):靈活角的變形和公式的變形重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論
【課堂小結(jié)】
三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形
三角函數(shù)式的求值的類型一般可分為:
(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。
三角函數(shù)式常用化簡(jiǎn)方法:切割化弦、高次化低次
注意點(diǎn):靈活角的變形和公式的變形
重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論
高二下數(shù)學(xué)教案版電子書篇八
(1)了解周期現(xiàn)象在現(xiàn)實(shí)中廣泛存在;(2)感受周期現(xiàn)象對(duì)實(shí)際工作的意義;(3)理解周期函數(shù)的概念;(4)能熟練地判斷簡(jiǎn)單的實(shí)際問(wèn)題的周期;(5)能利用周期函數(shù)定義進(jìn)行簡(jiǎn)單運(yùn)用。
2、過(guò)程與方法
通過(guò)創(chuàng)設(shè)情境:?jiǎn)螖[運(yùn)動(dòng)、時(shí)鐘的圓周運(yùn)動(dòng)、潮汐、波浪、四季變化等,讓學(xué)生感知周期現(xiàn)象;從數(shù)學(xué)的角度分析這種現(xiàn)象,就可以得到周期函數(shù)的定義;根據(jù)周期性的定義,再在實(shí)踐中加以應(yīng)用。
3、情感態(tài)度與價(jià)值觀
通過(guò)本節(jié)的學(xué)習(xí),使同學(xué)們對(duì)周期現(xiàn)象有一個(gè)初步的認(rèn)識(shí),感受生活中處處有數(shù)學(xué),從而激發(fā)學(xué)生的學(xué)習(xí)積極性,培養(yǎng)學(xué)生學(xué)好數(shù)學(xué)的信心,學(xué)會(huì)運(yùn)用聯(lián)系的觀點(diǎn)認(rèn)識(shí)事物。
高二下數(shù)學(xué)教案版電子書篇九
1.把握菱形的判定.
2.通過(guò)運(yùn)用菱形知識(shí)解決具體問(wèn)題,提高分析能力和觀察能力.
3.通過(guò)教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)愛好.
4.根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過(guò)畫圖向?qū)W生滲透集合思想.
觀察分析討論相結(jié)合的.方法
1.教學(xué)重點(diǎn):菱形的判定方法.
2.教學(xué)難點(diǎn):菱形判定方法的綜合應(yīng)用.
1課時(shí)
教具(做一個(gè)短邊可以運(yùn)動(dòng)的平行四邊形)、投影儀和膠片,常用畫圖工具
教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時(shí)點(diǎn)撥
復(fù)習(xí)提問(wèn)
1.敘述菱形的定義與性質(zhì).
2.菱形兩鄰角的比為1:2,較長(zhǎng)對(duì)角線為,則對(duì)角線交點(diǎn)到一邊距離為xxxxxxxx.
引入新課
師問(wèn):要判定一個(gè)四邊形是不是菱形最基本的判定方法是什么方法?
生答:定義法.
此外還有別的兩種判定方法,下面就來(lái)學(xué)習(xí)這兩種方法.
講解新課
菱形判定定理1:四邊都相等的四邊形是菱形.
菱形判定定理2:對(duì)角錢互相垂直的'平行四邊形是菱形.圖1
分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.
分析判定2:
師問(wèn):本定理有幾個(gè)條件?
生答:兩個(gè).
師問(wèn):哪兩個(gè)?
生答:(1)是平行四邊形(2)兩條對(duì)角線互相垂直.
師問(wèn):再需要什么條件可證該平行四邊形是菱形?
生答:再證兩鄰邊相等.
(由學(xué)生口述證實(shí))
證實(shí)時(shí)讓學(xué)生注重線段垂直平分線在這里的應(yīng)用,
師問(wèn):對(duì)角線互相垂直的四邊形是菱形嗎?為什么?
可畫出圖,顯然對(duì)角線,但都不是菱形.
菱形常用的判定方法歸納為(學(xué)生討論歸納后,由教師板書):
注重:(2)與(4)的題設(shè)也是從四邊形出發(fā),和矩形一樣它們的題沒(méi)條件都包含有平行四邊形的判定條件.
例4已知:的對(duì)角錢的垂直平分線與邊、分別交于、,如圖.
求證:四邊形是菱形(按教材講解).
總結(jié)、擴(kuò)展
1.小結(jié):
(1)歸納判定菱形的四種常用方法.
(2)說(shuō)明矩形、菱形之間的區(qū)別與聯(lián)系.
2.思考題:已知:如圖4△中,,平分,,,交于.
求證:四邊形為菱形.
教材p159中9、10、11、13
高二下數(shù)學(xué)教案版電子書篇十
根據(jù)本學(xué)期學(xué)校教務(wù)處工作方針與計(jì)劃,以提高數(shù)學(xué)學(xué)科教學(xué)質(zhì)量為核心,全面提高自身業(yè)務(wù)水平,努力做到:求真務(wù)實(shí)、保質(zhì)高效,力求突破,促進(jìn)自身的全面發(fā)展。
具體工作計(jì)劃如下:
1、認(rèn)真學(xué)習(xí)新課標(biāo),轉(zhuǎn)變教學(xué)理念加強(qiáng)自身教育教學(xué)的理論學(xué)習(xí)。以學(xué)習(xí)新課標(biāo)為主要的學(xué)習(xí)內(nèi)容,組織切實(shí)有效的學(xué)習(xí)活動(dòng),用先進(jìn)的教育理念支撐深化教育改革,改變傳統(tǒng)的教學(xué)模式。
2、轉(zhuǎn)變教學(xué)方式轉(zhuǎn)變學(xué)生的學(xué)習(xí)方式教師要以新理念指導(dǎo)自己的教學(xué)工作,牢固樹立學(xué)生是學(xué)習(xí)的主人,以平等、寬容的態(tài)度對(duì)待學(xué)生,在溝通和"對(duì)話"中實(shí)現(xiàn)師生的共同發(fā)展,努力建立互動(dòng)的師生關(guān)系。本學(xué)期要繼續(xù)以改變學(xué)生的學(xué)習(xí)方式為主,提倡發(fā)現(xiàn)性學(xué)習(xí)、參與性學(xué)習(xí)和實(shí)踐性學(xué)習(xí)。
3、改變備課方式,提高備課質(zhì)量
例題的選擇,習(xí)題的配備與要求,可根據(jù)每個(gè)班級(jí)學(xué)生的實(shí)際,靈活處理。重視教學(xué)過(guò)程的反思,盡可能做到每節(jié)課后教師要反思教學(xué)過(guò)程,及時(shí)地把教學(xué)中點(diǎn)點(diǎn)滴滴的感受寫下來(lái),重視"二備"和反思,要從深層次上去考慮自己的教學(xué)工作。同時(shí),根據(jù)班級(jí)的具體情況,適當(dāng)進(jìn)行調(diào)整,以適應(yīng)學(xué)生的實(shí)際。
情況為標(biāo)準(zhǔn),讓學(xué)生學(xué)會(huì)并且掌握,不搞教條主義和形式主義。教案應(yīng)體現(xiàn)知識(shí)體系、思維方法、訓(xùn)練應(yīng)用,以及滲透運(yùn)用等,要對(duì)重點(diǎn)、難點(diǎn)有分析和解決方法。作業(yè)要求分組,學(xué)生可根據(jù)自己的情況完成相應(yīng)的作業(yè),并注重作業(yè)反饋。
教學(xué)工作計(jì)劃的制定能有效提升自己的.教學(xué)能力,改良教學(xué)方法和掌握學(xué)生的學(xué)習(xí)情況,從而實(shí)現(xiàn)本學(xué)期的教學(xué)目的。
高二下數(shù)學(xué)教案版電子書篇十一
【自主梳理】
1.函數(shù)單調(diào)性的定義:
(1)一般地,設(shè)函數(shù)的定義域?yàn)閍,區(qū)間.
如果對(duì)于區(qū)間i內(nèi)的任意兩個(gè)值,當(dāng)時(shí),都有_______________,那么就說(shuō)在區(qū)間i上是單調(diào)增函數(shù),i稱為的___________________.
如果對(duì)于區(qū)間i內(nèi)的任意兩個(gè)值,當(dāng)時(shí),都有_______________,那么就說(shuō)在區(qū)間i上是單調(diào)減函數(shù),i稱為的___________________.
(2)如果函數(shù)在區(qū)間i上是單調(diào)增函數(shù)或單調(diào)減函數(shù),那么就說(shuō)在區(qū)間i上具有___________性,單調(diào)增區(qū)間或單調(diào)減區(qū)間統(tǒng)稱為____________________.
2.復(fù)合函數(shù)的單調(diào)性:
對(duì)于函數(shù)如果當(dāng)在區(qū)間上和在區(qū)間上同時(shí)具有單調(diào)性,則復(fù)合函數(shù)在區(qū)間上具有__________,并且具有這樣的規(guī)律:___________________________.
3.求函數(shù)單調(diào)區(qū)間或證明函數(shù)單調(diào)性的方法:
(1)______________;(2)____________________;(3)__________________.
【自我檢測(cè)】
1.函數(shù)在r上是減函數(shù),則的取值范圍是___________.
2.函數(shù)在上是_____函數(shù)(填增或減).
3.函數(shù)的單調(diào)區(qū)間是_____________________.
4.函數(shù)在定義域r上是單調(diào)減函數(shù),且,則實(shí)數(shù)a的取值范圍是________________________.
5.已知函數(shù)在區(qū)間上是增函數(shù),則的大小關(guān)系是_______.
6.函數(shù)的單調(diào)減區(qū)間是___________________.
【例1】填空題:
(1)若函數(shù)的單調(diào)增區(qū)間是,則的遞增區(qū)間是_________.
(2)函數(shù)的單調(diào)減區(qū)間是________________.
(3)若上是增函數(shù),則a的取值范圍是_____________.
(4)若是r上的減函數(shù),則a的取值范圍是_________.
【例2】求證:函數(shù)在區(qū)間上是減函數(shù).
【例3】已知函數(shù)對(duì)任意的,都有,且當(dāng)時(shí),.
(1)求證:是r上的增函數(shù);
(2)若,解不等式.
1.函數(shù)單調(diào)減區(qū)間是_________________.
2.若函數(shù)在區(qū)間上具有單調(diào)性,則實(shí)數(shù)a的取值范圍是______.
3.已知函數(shù)是定義在上的'增函數(shù),且,則實(shí)數(shù)x的取值范圍是_________________________.
4.已知在內(nèi)是減函數(shù),,且,設(shè),,則a,b的大小關(guān)系是_________________.
5.若函數(shù)上都是減函數(shù),則上是______.(填增函數(shù)或減函數(shù))
6.函數(shù)的遞減區(qū)間是________________.
7.已知函數(shù)上單調(diào)遞減,則a的取值范圍是_________.
8.已知函數(shù)滿足對(duì)任意的,都有成立,則a的取值范圍是_________.
9.確定函數(shù)的單調(diào)性.
10.已知函數(shù)是定義在上的減函數(shù),且滿足,,若,求的取值范圍.
錯(cuò)題卡題號(hào)錯(cuò)題原因分析
高二數(shù)學(xué)教案:數(shù)的單調(diào)性教案(答案)
一、課前準(zhǔn)備:
【自主梳理】
1.(1),單調(diào)增區(qū)間,,單調(diào)減區(qū)間,
(2)單調(diào),單調(diào)區(qū)間
2.單調(diào)性,同則增異則減
3.(1)定義法(2)圖象法(3)導(dǎo)函數(shù)法
【自我檢測(cè)】
1.2.增3.和4.
5.6.
二、課堂活動(dòng):
【例1】
(1)(2)(3)(4)
【例2】證明:設(shè)
【例3】(1)證明:
(2)解:
三、課后作業(yè)
1.2.3.4.
5.減函數(shù)6.7.8.
9.解:定義域?yàn)椋稳?,?BR> 10.解:
高二下數(shù)學(xué)教案版電子書篇十二
理解并掌握雙曲線的幾何性質(zhì),并能從雙曲線的標(biāo)準(zhǔn)方程出發(fā),推導(dǎo)出這些性質(zhì),并能具體估計(jì)雙曲線的形狀特征。
二、預(yù)習(xí)內(nèi)容
1、雙曲線的幾何性質(zhì)及初步運(yùn)用。
類比橢圓的幾何性質(zhì)。
2。雙曲線的漸近線方程的導(dǎo)出和論證。
觀察以原點(diǎn)為中心,2a、2b長(zhǎng)為鄰邊的'矩形的兩條對(duì)角線,再論證這兩條對(duì)角線即為雙曲線的漸近線。
三、提出疑惑
同學(xué)們,通過(guò)你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中
課內(nèi)探究
1、橢圓與雙曲線的幾何性質(zhì)異同點(diǎn)分析
2、描述雙曲線的漸進(jìn)線的作用及特征
3、描述雙曲線的離心率的作用及特征
4、例、練習(xí)嘗試訓(xùn)練:
例1。求雙曲線9y2—16x2=144的實(shí)半軸長(zhǎng)和虛半軸長(zhǎng)、焦點(diǎn)坐標(biāo)、離心率、漸近線方程。
解:
解:
5、雙曲線的第二定義
1)。定義(由學(xué)生歸納給出)
2)。說(shuō)明
(七)小結(jié)(由學(xué)生課后完成)
將雙曲線的幾何性質(zhì)按兩種標(biāo)準(zhǔn)方程形式列表小結(jié)。
作業(yè):
1。已知雙曲線方程如下,求它們的兩個(gè)焦點(diǎn)、離心率e和漸近線方程。
(1)16x2—9y2=144;
(2)16x2—9y2=—144。
2。求雙曲線的標(biāo)準(zhǔn)方程:
(1)實(shí)軸的長(zhǎng)是10,虛軸長(zhǎng)是8,焦點(diǎn)在x軸上;
(2)焦距是10,虛軸長(zhǎng)是8,焦點(diǎn)在y軸上;
曲線的方程。
點(diǎn)到兩準(zhǔn)線及右焦點(diǎn)的距離。
高二下數(shù)學(xué)教案版電子書篇十三
教學(xué)目標(biāo):
1、進(jìn)一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì);
2、在對(duì)一個(gè)數(shù)列的探究過(guò)程中,提高提出問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力;
3、進(jìn)一步提高問(wèn)題探究意識(shí)、知識(shí)應(yīng)用意識(shí)和同伴合作意識(shí)。
教學(xué)重點(diǎn):
問(wèn)題的提出與解決
教學(xué)難點(diǎn):
如何進(jìn)行問(wèn)題的探究
教學(xué)方法:
啟發(fā)探究式
教學(xué)過(guò)程:
研究方向提示:
1、數(shù)列{an}是一個(gè)等比數(shù)列,可以從等比數(shù)列角度來(lái)進(jìn)行研究;
2、研究所給數(shù)列的項(xiàng)之間的關(guān)系;
3、研究所給數(shù)列的子數(shù)列;
4、研究所給數(shù)列能構(gòu)造的新數(shù)列;
5、數(shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來(lái)進(jìn)行研究;
6、研究所給數(shù)列與其它知識(shí)的聯(lián)系(組合數(shù)、復(fù)數(shù)、圖形、實(shí)際意義等)。
針對(duì)學(xué)生的研究情況,對(duì)所提問(wèn)題進(jìn)行歸類,選擇部分類型問(wèn)題共同進(jìn)行研究、分析與解決。
課堂小結(jié):
1、研究一個(gè)數(shù)列可以從哪些方面提出問(wèn)題并進(jìn)行研究?
2、你最喜歡哪位同學(xué)的研究?為什么?
高二下數(shù)學(xué)教案版電子書篇十四
【自主梳理】
1.對(duì)數(shù):
(1)一般地,如果,那么實(shí)數(shù)叫做________________,記為________,其中叫做對(duì)數(shù)的_______,叫做________.
(2)以10為底的對(duì)數(shù)記為________,以為底的對(duì)數(shù)記為_______.
(3),.
2.對(duì)數(shù)的運(yùn)算性質(zhì):
(1)如果,那么,
.
(2)對(duì)數(shù)的換底公式:.
3.對(duì)數(shù)函數(shù):
一般地,我們把函數(shù)____________叫做對(duì)數(shù)函數(shù),其中是自變量,函數(shù)的定義域是______.
4.對(duì)數(shù)函數(shù)的圖像與性質(zhì):
a10
圖象性
質(zhì)定義域:___________
值域:_____________
過(guò)點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0
x(0,1)時(shí)_________
x(1,+)時(shí)________x(0,1)時(shí)_________
x(1,+)時(shí)________
在___________上是增函數(shù)在__________上是減函數(shù)
【自我檢測(cè)】
1.的定義域?yàn)開________.
2.化簡(jiǎn):.
3.不等式的解集為________________.
4.利用對(duì)數(shù)的換底公式計(jì)算:.
5.函數(shù)的奇偶性是____________.
6.對(duì)于任意的,若函數(shù),則與的大小關(guān)系是___________________________.
【例1】填空題:
(1).
(2)比較與的大小為___________.
(3)如果函數(shù),那么的最大值是_____________.
(4)函數(shù)的奇偶性是___________.
【例2】求函數(shù)的定義域和值域.
【例3】已知函數(shù)滿足.
(1)求的解析式;
(2)判斷的奇偶性;
(3)解不等式.
課堂小結(jié)
1..略
2.函數(shù)的定義域?yàn)開______________.
3.函數(shù)的值域是_____________.
4.若,則的取值范圍是_____________.
5.設(shè)則的大小關(guān)系是_____________.
6.設(shè)函數(shù),若,則的取值范圍為_________________.
7.當(dāng)時(shí),不等式恒成立,則的取值范圍為______________.
8.函數(shù)在區(qū)間上的值域?yàn)?,則的最小值為____________.
9.已知.
(1)求的定義域;
(2)判斷的奇偶性并予以證明;
(3)求使的的.取值范圍.
10.對(duì)于函數(shù),回答下列問(wèn)題:
(1)若的定義域?yàn)椋髮?shí)數(shù)的取值范圍;
(2)若的值域?yàn)?,求?shí)數(shù)的取值范圍;
(3)若函數(shù)在內(nèi)有意義,求實(shí)數(shù)的取值范圍.
四、糾錯(cuò)分析
錯(cuò)題卡題號(hào)錯(cuò)題原因分析
【自主梳理】
1.對(duì)數(shù)
(1)以為底的的對(duì)數(shù),,底數(shù),真數(shù).
(2),.
(3)0,1.
2.對(duì)數(shù)的運(yùn)算性質(zhì)
(1),,.
(2).
3.對(duì)數(shù)函數(shù)
,.
4.對(duì)數(shù)函數(shù)的圖像與性質(zhì)
a10
圖象性質(zhì)定義域:(0,+)
值域:r
過(guò)點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0
x(0,1)時(shí)y0
x(1,+)時(shí)y0x(0,1)時(shí)y0
x(1,+)時(shí)y0
在(0,+)上是增函數(shù)在(0,+)上是減函數(shù)
1.2.3.
4.5.奇函數(shù)6..
【例1】填空題:
(1)3.
(2).
(3)0.
(4)奇函數(shù).
【例2】解:由得.所以函數(shù)的定義域是(0,1).
因?yàn)椋裕?dāng)時(shí),,函數(shù)的值域?yàn)?當(dāng)時(shí),,函數(shù)的值域?yàn)?
【例3】解:(1),所以.
(2)定義域(-3,3)關(guān)于原點(diǎn)對(duì)稱,所以
,所以為奇函數(shù).
(3),所以當(dāng)時(shí),解得
當(dāng)時(shí),解得.
高二下數(shù)學(xué)教案版電子書篇十五
本節(jié)內(nèi)容為人教版高一數(shù)學(xué)必修3模塊第一章算法初步第1.1.2節(jié)第一課時(shí),
主要包括程序框圖的圖形符號(hào)、算法的程序框圖表示、算法的的邏輯結(jié)構(gòu)等三部分內(nèi)容。
算法就是解決問(wèn)題的步驟,算法也是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計(jì)算機(jī)科學(xué)的基礎(chǔ),利用計(jì)算機(jī)解決問(wèn)需要算法,在日常生活中做任何事情也都有算法,當(dāng)然我們更關(guān)心的是計(jì)算機(jī)的算法,計(jì)算機(jī)可以解決多類信息處理問(wèn)題,直接寫出解決該問(wèn)題的程序是困難的,因此,我們要首先研究解決問(wèn)題的算法,再把算法轉(zhuǎn)化為程序,所以算法設(shè)計(jì)是使用計(jì)算機(jī)解決具體問(wèn)題的一個(gè)極為重要的環(huán)節(jié)。
通過(guò)對(duì)解決具體問(wèn)題的過(guò)程與步驟的分析,體會(huì)算法的思想,了解算法的含義。理解程序框圖的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。進(jìn)一步體會(huì)算法的另一種表達(dá)方式。
本章節(jié)的重點(diǎn)是體會(huì)算法的思想,通過(guò)模仿、操作、探索,通過(guò)設(shè)計(jì)程序框圖解決實(shí)際生活問(wèn)題的過(guò)程。通過(guò)解決具體問(wèn)題,理解三種基本邏輯結(jié)構(gòu)中順序和條件結(jié)構(gòu),經(jīng)歷將具體問(wèn)題用程序框圖來(lái)表示,在實(shí)際問(wèn)題中能設(shè)計(jì)相關(guān)程序框圖解決實(shí)際問(wèn)題。
關(guān)于本節(jié)內(nèi)容,相對(duì)學(xué)生來(lái)說(shuō),全是新知識(shí),因它涉及到計(jì)算機(jī)科學(xué)相關(guān)內(nèi)容,也是數(shù)學(xué)及其應(yīng)用的重要組成部分。大部分學(xué)生并沒(méi)有學(xué)習(xí)過(guò)程序框圖的設(shè)計(jì),在編寫程序方面基本上都是“零起點(diǎn)”,而且認(rèn)為程序框圖設(shè)計(jì)是一件困難的事情,因此本課的舉例和任務(wù)都適當(dāng)降低難度,讓學(xué)生能在實(shí)踐中體會(huì)成功的喜悅,領(lǐng)略程序設(shè)計(jì)之算法程序框圖表示的樂(lè)趣。另一方面要充分利用課外資料和實(shí)例,設(shè)置問(wèn)題情景,激發(fā)學(xué)生的學(xué)習(xí)興趣,通過(guò)建構(gòu)模型,化抽象為具體,教師在整個(gè)學(xué)習(xí)過(guò)程中進(jìn)行指導(dǎo)、啟發(fā)、補(bǔ)充與完善。
(一)知識(shí)與技能
2、理解并掌握算法的三種基本邏輯結(jié)構(gòu),培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力;
3、培養(yǎng)學(xué)生在實(shí)際現(xiàn)實(shí)生活中,能正確運(yùn)用相關(guān)邏輯結(jié)構(gòu)分析、解決實(shí)際問(wèn)題;
(二)過(guò)程與方法
2、在具體問(wèn)題的解決過(guò)程中理解程序流程圖的三種基本邏輯結(jié)構(gòu)之順序結(jié)構(gòu)、條件結(jié)構(gòu),尋找解決實(shí)際問(wèn)題的規(guī)律與方法。
(三)情感態(tài)度與價(jià)值觀
1:通過(guò)本節(jié)的學(xué)習(xí),使學(xué)生對(duì)計(jì)算機(jī)的算法語(yǔ)言有一個(gè)基本的了解,明確算法的要求,認(rèn)識(shí)計(jì)算機(jī)是人類征服自然的一種有力工具,進(jìn)一步提高探索、認(rèn)識(shí)世界的能力。
2:培養(yǎng)學(xué)生迎難而上,戰(zhàn)勝困難的大無(wú)畏精神,克服畏難情緒,培養(yǎng)嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣、塑造認(rèn)真、細(xì)致的做事態(tài)度。
教學(xué)重點(diǎn):程序框圖的圖形符號(hào)、算法的基本邏輯結(jié)構(gòu)及應(yīng)用
教學(xué)難點(diǎn):算法的條件結(jié)構(gòu)在實(shí)際生活中的運(yùn)用
3、競(jìng)爭(zhēng)機(jī)制策略:據(jù)本章節(jié)中部分內(nèi)容,合理設(shè)置分組競(jìng)爭(zhēng),小組賽形式激發(fā)學(xué)生高漲的.學(xué)習(xí)熱情,不僅引導(dǎo)學(xué)生將所學(xué)知識(shí)應(yīng)用于解決實(shí)際問(wèn)題,且培養(yǎng)學(xué)生團(tuán)隊(duì)合作探究精神。
任務(wù)驅(qū)動(dòng)法、啟發(fā)引導(dǎo)式、小組合作探究學(xué)習(xí)法、模仿建構(gòu)學(xué)習(xí)法
多媒體課件、生活中具體實(shí)例、同步學(xué)案
課時(shí)1
教學(xué)程序教師組織與引導(dǎo)學(xué)生活動(dòng)設(shè)計(jì)意圖
發(fā)放“任務(wù)”紙質(zhì)
1、把任務(wù)學(xué)案發(fā)給學(xué)生
2、查閱、收集有關(guān)實(shí)際生活中實(shí)例,用于本節(jié)教學(xué)
1、預(yù)習(xí)
2、查閱相關(guān)資料學(xué)生是學(xué)習(xí)主體,自主合作、探究式學(xué)習(xí)
回顧舊知,引入新課
改進(jìn):生活中的問(wèn)題,描述解決步驟(1)算法的描述:要交換兩杯不同液體的方法、步驟;(自然語(yǔ)言描述法,復(fù)習(xí))
穿插經(jīng)典算法在教學(xué)中,激趣導(dǎo)學(xué)
1:雞兔同籠、2:誰(shuí)在說(shuō)謊
(2)你還知道有什么渠道能使算法描述得更直觀、高效、準(zhǔn)確嗎?引導(dǎo)學(xué)生看書自學(xué)
學(xué)生思考、回答,
學(xué)生看書自學(xué)本節(jié)程序框圖相關(guān)知識(shí):程序框圖圖形符號(hào)
激發(fā)學(xué)生對(duì)本節(jié)課內(nèi)容的關(guān)注
探究不同程序框圖符號(hào)表示的不同含義,初步探討程序框圖的畫法
重點(diǎn)部分強(qiáng)記據(jù)教材設(shè)疑,并逐一提出下列問(wèn)題:
(1)程序框圖共有哪些圖形符號(hào)?
改進(jìn):同學(xué)們,你們所常見的圖形有哪些??學(xué)生回答
現(xiàn)在,從這些常用圖形中,我們選出幾中種來(lái)用于表示“算法”中的含義
(2)不同符號(hào)所表示的什么含義?
(3)具體應(yīng)用,實(shí)例列舉,老師在黑板上“補(bǔ)”畫“長(zhǎng)方形面積”流程圖
(4)要求學(xué)生結(jié)合上述老師所講實(shí)例,模仿“補(bǔ)充”畫出,改進(jìn):
a:圓的面積、周長(zhǎng)的流程圖(老師完成)
b:正方形面積、周長(zhǎng)的流程圖(師生共同完成)
c:三角形面積、周長(zhǎng)的流程圖(學(xué)生自己完成)
d:求學(xué)生語(yǔ)、數(shù)、英三科成績(jī)平均分的程序框圖(學(xué)生自己完成)
(5)例3.已知三角形三邊長(zhǎng),求三角形面積的程序框圖(老師提示公式,學(xué)生自己理解)
(6)判別整數(shù)n是否為質(zhì)數(shù)后面學(xué)
老師引導(dǎo)學(xué)生說(shuō)出程序框圖特征并作簡(jiǎn)要?dú)w納學(xué)生看書掌握
學(xué)生聯(lián)系實(shí)際,回答
看書自學(xué),回答
看書自學(xué),回答
聽講,學(xué)習(xí)
學(xué)生根據(jù)圖形特點(diǎn),找記憶方法
討論、交流、模仿、經(jīng)歷
學(xué)生思考、討論并畫圖
反復(fù)練習(xí),鞏固、加強(qiáng)記憶
學(xué)生自己設(shè)計(jì)
對(duì)照課本,檢查正誤
學(xué)生總結(jié)歸納程序框圖特點(diǎn)
學(xué)生仿做
學(xué)生仿做
學(xué)生理解
或
s=p*r^2培養(yǎng)自學(xué)能力
明確每種圖形符號(hào)的不同含義及不同應(yīng)用
培養(yǎng)學(xué)生模仿學(xué)習(xí)與制作流程圖的能力
培養(yǎng)學(xué)生善于總結(jié)歸納的習(xí)慣
重點(diǎn)突破
框圖符號(hào)
重、難點(diǎn)攻克條件結(jié)構(gòu)
總結(jié)過(guò)渡并提出問(wèn)題:
改進(jìn):聯(lián)系實(shí)際生活,結(jié)合課本,自主探究:算法的邏輯結(jié)構(gòu)應(yīng)有幾種
(1)如何用框圖符號(hào)來(lái)表示算法?
(2)算法有幾種基本邏輯結(jié)構(gòu)?
(3)你會(huì)用框圖符號(hào)表示算法的順序結(jié)構(gòu)了嗎?(前面剛講,總結(jié)歸納)
(4)你會(huì)用框圖符號(hào)表示條件結(jié)構(gòu)嗎?
老師列舉并畫實(shí)例流程圖:
引導(dǎo)學(xué)生帶著問(wèn)題邊看書邊在練習(xí)本將幾種結(jié)構(gòu)畫出來(lái),加強(qiáng)看書效果
例4:老師啟發(fā)學(xué)生,師生共同完成三數(shù)為邊是否組成三角形程序框圖
補(bǔ)充:1:求絕對(duì)值的程序框圖:
2:y=
引導(dǎo)學(xué)生思考設(shè)計(jì)分段函數(shù)的流程圖,運(yùn)用條件結(jié)構(gòu)
教師引導(dǎo)學(xué)生列舉生活中實(shí)例
學(xué)生看書
同桌間自主探究、理解掌握
討論回答問(wèn)題
學(xué)生思考、模仿、探究著畫流程圖,和課本對(duì)照判正誤
學(xué)生模仿、思考、討論與交流
設(shè)計(jì)相應(yīng)流程圖
同學(xué)上臺(tái)展示自己的流程圖,其它學(xué)同指正其正誤
學(xué)生對(duì)比條件與順序結(jié)構(gòu)的框圖,總結(jié)歸納條件結(jié)構(gòu)的框圖的繪制任務(wù)驅(qū)動(dòng),
創(chuàng)設(shè)學(xué)習(xí)情景
層層深入
引領(lǐng)學(xué)生縱向?qū)W習(xí)
模仿,思考,對(duì)照,學(xué)生有所思有所悟,
體驗(yàn)學(xué)習(xí)成功的快樂(lè)
突出學(xué)生學(xué)習(xí)的主體
培養(yǎng)學(xué)生的邏輯思維能力
教師對(duì)學(xué)生的講解進(jìn)行補(bǔ)充和完善,小結(jié)本節(jié)內(nèi)容。學(xué)生交流生活中實(shí)例及框圖解決辦法。
課堂小結(jié)引導(dǎo)學(xué)生總結(jié)本節(jié)課的知識(shí)要點(diǎn)
并談?wù)劚竟?jié)課的收獲與提高及改進(jìn)學(xué)生回顧總結(jié)本節(jié)所學(xué)梳理本節(jié)課的知識(shí)主干
布置課后作業(yè)作業(yè):p20習(xí)題1.1
a組1,3課后完成鞏固、反饋學(xué)習(xí)效果
參閱經(jīng)典算法:穿插在教學(xué)中,激趣導(dǎo)學(xué)
2:誰(shuí)在說(shuō)謊
*運(yùn)行結(jié)果
zhangsantoldalie(張三說(shuō)假話)
lisitoldatruch.(李四說(shuō)真話)
wangwutoldalie.(王五說(shuō)假話)
九、板書設(shè)計(jì)
1.1.2程序框圖及算法的基本邏輯結(jié)構(gòu)
一、程序框圖
1:程序框圖又名_______
二:算法的基本邏輯結(jié)構(gòu)
2:請(qǐng)你表示出條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)的框圖形式:
3:請(qǐng)仿照寫出求長(zhǎng)方形的面積的框圖,類似正方形面積框圖、圓面積、三角形面積等程序框圖(順序結(jié)構(gòu))
4:設(shè)計(jì)給定三角形任意三邊長(zhǎng)a,b,c,試表示出三角形面積相應(yīng)程序框圖
(對(duì)照p9例3,檢查正誤)
三:算法的條件框圖
1:試畫條件結(jié)構(gòu)框圖的2種形式
2:例4會(huì)了嗎?試試看
3:試設(shè)計(jì)求絕對(duì)值的程序框圖
小結(jié)作業(yè):p20,習(xí)題:1.1a組1,3兩題
改進(jìn)效果:經(jīng)過(guò)斟酌改進(jìn)實(shí)踐后的算法,方式更適宜中學(xué)生個(gè)性特點(diǎn),更易被中學(xué)生接受,效果更好。
高二下數(shù)學(xué)教案版電子書篇十六
1.掌握二項(xiàng)式定理和性質(zhì)以及推導(dǎo)過(guò)程。
2.利用二項(xiàng)式定理求二項(xiàng)展開式中的項(xiàng)的系數(shù)及相關(guān)問(wèn)題。
3.使學(xué)生能把握數(shù)學(xué)問(wèn)題中的整體與局部的關(guān)系,掌握分析與綜合,特殊和一般的數(shù)學(xué)思想。
教學(xué)重點(diǎn);二項(xiàng)展開式中項(xiàng)的系數(shù)的計(jì)算。
1、復(fù)習(xí)引入:
1.的展開式,項(xiàng)數(shù),通項(xiàng);
2.二項(xiàng)式系數(shù)的四個(gè)性質(zhì)。
2、例題
1.二項(xiàng)式定理及二項(xiàng)式系數(shù)性質(zhì)的簡(jiǎn)單應(yīng)用:
例1(1)除以9的余數(shù)是_____________________
(2)=_______________
a.b.c.d.
(3)已知
則____________________
(4)如果展開式中奇數(shù)項(xiàng)的系數(shù)和為512,則這個(gè)展開式的第8項(xiàng)是()
a.b.c.d.
(5)若則等于()
a.b.c.d.
小結(jié)1.(1)注意二項(xiàng)式定理的正逆運(yùn)用;
(2)注意二項(xiàng)式系數(shù)的四個(gè)性質(zhì)的運(yùn)用。
2.二項(xiàng)展開式中項(xiàng)的系數(shù)計(jì)算:
例2(1)展開式中常數(shù)項(xiàng)等于_____________.
(2)在的展開式中x的系數(shù)為()
a.160b.240c.360d.800
(3)已知求:
小結(jié)2.(1)局部問(wèn)題抓通項(xiàng);
(2)整體系數(shù)賦值法。
三、課堂練習(xí)
(1)展開式中,各系數(shù)之和是()
a.0b.1c.d.
(2)已知的.展開式中的系數(shù)為,常數(shù)的值是_________
(3)的展開式中的系數(shù)為______________-(用數(shù)字作答)
(4)若,則
a.1b.0c.2d.
四、課堂小結(jié)
五、作業(yè)
高二下數(shù)學(xué)教案版電子書篇十七
1.理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫點(diǎn)的位置的方法。
2.掌握坐標(biāo)法解決幾何問(wèn)題的步驟;體會(huì)坐標(biāo)系的作用。
體會(huì)直角坐標(biāo)系的作用。
能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問(wèn)題。
新授課
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).
多媒體、實(shí)物投影儀
一、復(fù)習(xí)引入:
情境1:為了確保宇宙飛船在預(yù)定的軌道上運(yùn)行,并在按計(jì)劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時(shí)刻開始,需要隨時(shí)測(cè)定飛船在空中的.位置機(jī)器運(yùn)動(dòng)的軌跡。
情境2:運(yùn)動(dòng)會(huì)的開幕式上常常有大型團(tuán)體操的表演,其中不斷變化的背景圖案是由看臺(tái)上座位排列整齊的人群不斷翻動(dòng)手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點(diǎn)不同的畫布所在的位置。
問(wèn)題1:如何刻畫一個(gè)幾何圖形的位置?
問(wèn)題2:如何創(chuàng)建坐標(biāo)系?
二、學(xué)生活動(dòng)
學(xué)生回顧
刻畫一個(gè)幾何圖形的位置,需要設(shè)定一個(gè)參照系
1、數(shù)軸它使直線上任一點(diǎn)p都可以由惟一的實(shí)數(shù)x確定
2、平面直角坐標(biāo)系
在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(duì)(x,y)確定。
3、空間直角坐標(biāo)系
在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)p都可以由惟一的實(shí)數(shù)對(duì)(x,y,z)確定。
三、講解新課:
1、建立坐標(biāo)系是為了確定點(diǎn)的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:
任意一點(diǎn)都有確定的坐標(biāo)與其對(duì)應(yīng);反之,依據(jù)一個(gè)點(diǎn)的坐標(biāo)就能確定這個(gè)點(diǎn)的位置
2、確定點(diǎn)的位置就是求出這個(gè)點(diǎn)在設(shè)定的坐標(biāo)系中的坐標(biāo)
四、數(shù)學(xué)運(yùn)用
例1選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長(zhǎng)為1的正六邊形的頂點(diǎn)。
變式訓(xùn)練
思考
通過(guò)平面變換可以把曲線變?yōu)橹行脑谠c(diǎn)的單位圓,請(qǐng)求出該復(fù)合變換?
五、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.平面直角坐標(biāo)系的意義。
2.利用平面直角坐標(biāo)系解決相應(yīng)的數(shù)學(xué)問(wèn)題。
六、課后作業(yè):

