最新親近數(shù)學(xué)心得體會和方法大全(15篇)

字號:

    寫心得體會可以加深對所學(xué)知識的理解和運用,提高學(xué)習(xí)效果。那么如何寫一篇較為完美的心得體會呢?首先,我們需要回顧所經(jīng)歷的事件、項目或?qū)W習(xí)過程,明確自己的目標和期望。接著,我們可以對自己的表現(xiàn)進行客觀評價,分析成績、困難和收獲。在寫作過程中,我們要注重真實性和思考性,不僅僅是簡單地描述經(jīng)歷,更要反思其中的意義和價值。此外,我們還可以結(jié)合相關(guān)理論知識、個人見解和實際應(yīng)用,提出自己的獨特觀點和建議。最后,在語言表達上要清晰明了、準確流暢,注意篇章結(jié)構(gòu)和段落銜接,使讀者能夠更好地理解和領(lǐng)悟我們的心得體會。以下是小編為大家收集的心得體會范文,供大家參考。其中包括了不同領(lǐng)域的心得體會,有學(xué)習(xí)心得、工作心得、生活心得等等,希望能給大家提供一些靈感和借鑒。讓我們一起來讀一讀吧,相信會有不少收獲和啟發(fā)。
    親近數(shù)學(xué)心得體會和方法篇一
    數(shù)學(xué)作為一門科學(xué),既神秘又晦澀。很多時候,學(xué)生對數(shù)學(xué)產(chǎn)生抗拒情緒,在考試時也是常見的“忘”得一干二凈。然而,通過一定的引導(dǎo)和方法,我逐漸克服了這種困惑,甚至發(fā)現(xiàn)了數(shù)學(xué)的迷人之處。
    第二段:數(shù)學(xué)學(xué)習(xí)的艱難和困惑
    我剛開始學(xué)習(xí)數(shù)學(xué)的時候,并不像其他科目那樣容易掌握。公式、定理、證明、推理等都讓我感到寒心。這種無從下手的心情讓我感到無望,甚至對數(shù)學(xué)產(chǎn)生了一些抵觸情緒。每次考試時,老師布置的任何單元和題目都會讓我十分不安。
    第三段:如何克服困難并慢慢喜歡上數(shù)學(xué)
    為了克服這種局面,我努力尋找方法。我通過閱讀數(shù)學(xué)教材、看視頻、找老師請教和上網(wǎng)搜索資料,不斷了解和學(xué)習(xí)數(shù)學(xué)的思維方式和知識點。我也通過多做練習(xí),不斷地鞏固和提高我的數(shù)學(xué)能力。逐漸地,我開始喜歡上數(shù)學(xué),感到數(shù)學(xué)是一門有趣的學(xué)科,這樣也使得我的數(shù)學(xué)成績逐漸提高。
    第四段:數(shù)學(xué)對人們的好處和得益
    其實,在一個人的生活中,數(shù)學(xué)的印跡無處不在。我們不時地接觸科技和數(shù)字,而這些事情離不開數(shù)學(xué)。當(dāng)我們學(xué)習(xí)物理、化學(xué)、生物等科學(xué)時,也要通過數(shù)學(xué)來分析和描述實驗結(jié)果。數(shù)學(xué)也是我們通往理工科院校的大門之一,而這個領(lǐng)域還有許多需要解決的問題,例如用于保密、天氣預(yù)報、金融領(lǐng)域等。數(shù)學(xué)中的邏輯思維和分析方式也能增強我們的思考和閱讀能力,使我們成為更好的決策者。
    第五段:結(jié)論
    總之,數(shù)學(xué)的學(xué)習(xí)需要耐心和技巧。當(dāng)我們認真分析和學(xué)習(xí)時,數(shù)學(xué)是一門迷人的學(xué)科,也能夠給我們帶來很多好處。我希望學(xué)習(xí)數(shù)學(xué)的同學(xué)們能克服學(xué)習(xí)難題,學(xué)會喜歡上數(shù)學(xué),從而在生活中受益。
    親近數(shù)學(xué)心得體會和方法篇二
    在當(dāng)今科技日新月異的時代,現(xiàn)代數(shù)學(xué)方法在各個領(lǐng)域的應(yīng)用越發(fā)廣泛。從工程學(xué)到經(jīng)濟學(xué),從計算機科學(xué)到物理學(xué),數(shù)學(xué)方法被用于解決實際問題和推動科學(xué)研究。作為一名學(xué)習(xí)數(shù)學(xué)的學(xué)生,我深切體會到現(xiàn)代數(shù)學(xué)方法對于我們的學(xué)習(xí)和思維能力的重要性。在這篇文章中,我將分享我在學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法的過程中所獲得的體會和心得。
    段落二:抽象思維的培養(yǎng)
    現(xiàn)代數(shù)學(xué)方法非常注重抽象思維的培養(yǎng)。在傳統(tǒng)的數(shù)學(xué)教育中,我們往往通過解決具體問題來學(xué)習(xí)數(shù)學(xué)知識。然而,在現(xiàn)代數(shù)學(xué)方法中,我們需要從更抽象和一般的層面思考和表述問題。這種抽象思維的培養(yǎng)不僅使我們能夠更好地理解數(shù)學(xué)概念和定理,還能訓(xùn)練我們在解決實際問題時進行抽象問題建模和分析的能力。我發(fā)現(xiàn),通過學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法,我的思維變得更加靈活和深入,我能夠更好地理解和解決復(fù)雜的問題。
    段落三:邏輯推理的重要性
    現(xiàn)代數(shù)學(xué)方法注重邏輯推理的訓(xùn)練。在數(shù)學(xué)中,邏輯推理是解決問題的基礎(chǔ),決定了解題的正確性和有效性。通過學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法,我鍛煉了邏輯推理的能力,學(xué)會了合理地運用證明方法來解決問題。這使我能夠更好地分析問題,搭建推導(dǎo)框架,并有效地推理出結(jié)論。邏輯推理的重要性不僅體現(xiàn)在數(shù)學(xué)學(xué)科中,也是我們?nèi)粘I詈推渌麑W(xué)科中必備的思維方法。
    段落四:團隊合作的重要性
    在學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法的過程中,我意識到團隊合作的重要性。雖然數(shù)學(xué)學(xué)科通常被認為是個體競爭的領(lǐng)域,但在解決復(fù)雜問題時,團隊合作是必不可少的。通過和同學(xué)們一起討論和合作,我發(fā)現(xiàn)不同的人有不同的思考方式和見解,這對于豐富我們的思維和擴展我們的視野非常重要。團隊合作還能幫助我們更好地理解和應(yīng)用數(shù)學(xué)知識,將數(shù)學(xué)方法與其他學(xué)科進行交叉和融合,加強我們的綜合能力。
    段落五:應(yīng)用價值的提升
    現(xiàn)代數(shù)學(xué)方法的學(xué)習(xí)使我意識到數(shù)學(xué)不再僅僅是一門理論學(xué)科,更是一種在實際問題中解決難題、促進科學(xué)發(fā)展的有效工具。通過學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法,我了解到數(shù)學(xué)在各個學(xué)科和行業(yè)的廣泛應(yīng)用,從金融市場的風(fēng)險管理到物理學(xué)中的量子力學(xué),數(shù)學(xué)方法都發(fā)揮著巨大的作用。因此,我堅信學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法對于我未來的發(fā)展是非常重要的,它不僅能提升我在數(shù)學(xué)學(xué)科中的能力,還可以為我在其他領(lǐng)域的學(xué)習(xí)和研究提供有力支持。
    結(jié)論:
    通過學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法,我不斷深化對數(shù)學(xué)知識的理解,培養(yǎng)了抽象思維和邏輯推理的能力,提升了團隊合作和綜合應(yīng)用的能力。數(shù)學(xué)的魅力正在于其無處不在的應(yīng)用性和深刻的智力挑戰(zhàn)。通過不斷學(xué)習(xí)和探索,我相信我能在數(shù)學(xué)學(xué)科中有所成就,并為推動科學(xué)進步做出自己的貢獻。
    親近數(shù)學(xué)心得體會和方法篇三
    數(shù)學(xué)作為一門科學(xué),既豐富又深奧。在學(xué)習(xí)數(shù)學(xué)的過程中,我們不僅需要掌握一定的理論知識,還要學(xué)會運用各種數(shù)學(xué)方法。數(shù)學(xué)的方法不僅僅是解題的工具,更是思維的鍛煉,培養(yǎng)我們的邏輯思維和分析能力。在我學(xué)習(xí)數(shù)學(xué)的過程中,我深深地體會到了數(shù)學(xué)方法的重要性,并且總結(jié)了一些心得體會。
    第二段:嚴謹?shù)耐评?BR>    數(shù)學(xué)方法的第一要素就是嚴謹?shù)耐评怼T跀?shù)學(xué)中,每一步的推理都必須具備合理性和準確性,任何無法證明的結(jié)論都是不被接受的。因此,學(xué)習(xí)數(shù)學(xué)的過程中,我們要養(yǎng)成一種嚴密的思維方式,不能輕易地得出結(jié)論,而是要經(jīng)過邏輯推理和證明。嚴謹?shù)耐评碜屛艺J識到了思考問題時的慎重和深入,這也是數(shù)學(xué)方法給我的一個重要啟示。
    第三段:抽象和歸納
    數(shù)學(xué)的另一個重要方法就是抽象和歸納。抽象是將復(fù)雜的問題簡化成易于理解和解決的形式,可以幫助我們更好地理解事物的本質(zhì)。歸納是通過觀察和總結(jié)規(guī)律,從而得出普遍性結(jié)論的方法。在數(shù)學(xué)中,我們經(jīng)常通過觀察一些特殊情況,然后歸納出一般規(guī)律。這種方法讓我明白了從問題的具體情況出發(fā),逐漸拓展到一般規(guī)律,可以幫助我們更好地解決問題。
    第四段:創(chuàng)造性解題
    數(shù)學(xué)的魅力之一就是創(chuàng)造性解題。在數(shù)學(xué)中,有些問題可能沒有明確的解決方法,需要我們發(fā)揮想象力和創(chuàng)造力去探索。通過找到不同的解題方法,我們可以提高解決問題的能力和思維的靈活性。在學(xué)習(xí)數(shù)學(xué)的過程中,我發(fā)現(xiàn)不同的解題方法可以帶給不同的思路和視角,從而讓我更好地理解數(shù)學(xué)的本質(zhì)和應(yīng)用。創(chuàng)造性解題讓我明白了數(shù)學(xué)方法的靈活性和多樣性。
    第五段:實踐和應(yīng)用
    數(shù)學(xué)方法的學(xué)習(xí)并不僅僅停留在課本知識的掌握,更需要運用到實際問題中去。通過實際問題的解決,我們可以發(fā)現(xiàn)數(shù)學(xué)方法的實際用途和價值。實踐和應(yīng)用不僅能鞏固數(shù)學(xué)的知識,還可以培養(yǎng)我們的分析和解決問題的能力。在實踐中,我們也會發(fā)現(xiàn)數(shù)學(xué)方法的不足之處和需要完善的地方,這也是我們不斷提高的機會。因此,將數(shù)學(xué)方法應(yīng)用到實踐中去,既是對數(shù)學(xué)學(xué)習(xí)的一種檢驗,也是對數(shù)學(xué)思維能力的一次鍛煉。
    結(jié)尾
    總結(jié)起來,數(shù)學(xué)的方法是數(shù)學(xué)學(xué)習(xí)不可或缺的一部分。嚴謹?shù)耐评?、抽象和歸納、創(chuàng)造性解題以及實踐和應(yīng)用是數(shù)學(xué)方法的重要組成部分。通過學(xué)習(xí)和運用這些方法,我們可以提高自己的思維能力和解決問題的能力,更好地理解和運用數(shù)學(xué)。希望在今后的學(xué)習(xí)中能夠不斷探索數(shù)學(xué)方法的奧秘,提升自己的數(shù)學(xué)水平。
    親近數(shù)學(xué)心得體會和方法篇四
    數(shù)學(xué)是一門需要運用邏輯推理和抽象思維的學(xué)科,對于大多數(shù)學(xué)生來說是一門難以捉摸和掌握的科目。為了幫助學(xué)生提高數(shù)學(xué)成績,各種數(shù)學(xué)培優(yōu)方法層出不窮。在我的學(xué)習(xí)中,我嘗試過多種方法,并總結(jié)出一些心得和體會。首先,找到適合自己的學(xué)習(xí)方法是提高數(shù)學(xué)成績的關(guān)鍵;其次,充分理解基礎(chǔ)知識,并進行有針對性的鞏固;最后,注重解題技巧的訓(xùn)練和實踐。經(jīng)過這些方法的實踐和總結(jié),我的數(shù)學(xué)成績有了明顯的提高。
    首先,找到適合自己的學(xué)習(xí)方法是提高數(shù)學(xué)成績的關(guān)鍵。每個人的學(xué)習(xí)方式都有所不同,只有找到適合自己的方法才能事半功倍。我發(fā)現(xiàn),對我來說,輔導(dǎo)學(xué)習(xí)是最有效的方法之一。通過與老師或同學(xué)的交流,我能夠更加深入地理解和掌握數(shù)學(xué)知識。此外,刷題也是我提高數(shù)學(xué)成績的重要途徑。通過大量的練習(xí)題,我能夠加深對知識點的理解,并鍛煉自己的解題能力。因此,找到適合自己的學(xué)習(xí)方法是成功的關(guān)鍵之一。
    其次,充分理解基礎(chǔ)知識,并進行有針對性的鞏固。數(shù)學(xué)是一門累計性很強的學(xué)科,基礎(chǔ)知識的掌握將會對后續(xù)的學(xué)習(xí)產(chǎn)生深遠的影響。因此,我意識到充分理解和鞏固基礎(chǔ)知識的重要性。我通過認真聽講、做筆記和背誦公式等方式,加深對基礎(chǔ)知識的理解,并進行有針對性的鞏固練習(xí)。此外,我還積極解答課堂上的問題,并請教老師和同學(xué),以便更好地理解和掌握知識。經(jīng)過這樣的努力,我對數(shù)學(xué)的基礎(chǔ)知識有了更深刻的理解,為后續(xù)的學(xué)習(xí)打下了堅實的基礎(chǔ)。
    最后,注重解題技巧的訓(xùn)練和實踐。解題技巧是提高數(shù)學(xué)成績的重要因素之一。在解題過程中,掌握一些技巧可以減少錯誤的概率,提高解題效率。為了培養(yǎng)解題的技巧,我積極參加一些數(shù)學(xué)培訓(xùn)班,學(xué)習(xí)一些解題技巧和方法。在課外時間,我還通過刷題來加深對解題方法的理解和掌握。通過不斷的訓(xùn)練和實踐,我的解題能力得到了極大的提高,解題速度和準確率都有了明顯的進步。
    綜上所述,提高數(shù)學(xué)成績的關(guān)鍵在于找到適合自己的學(xué)習(xí)方法,充分理解基礎(chǔ)知識,并進行有針對性的鞏固,以及注重解題技巧的訓(xùn)練和實踐。通過這些方法的實踐和總結(jié),我的數(shù)學(xué)成績有了顯著的提升。數(shù)學(xué)的學(xué)習(xí)需要耐心和堅持,只有通過不斷的努力和實踐,才能取得好的成績。未來,我將繼續(xù)保持學(xué)習(xí)的熱情,不斷探索和嘗試更多有效的數(shù)學(xué)學(xué)習(xí)方法,以期取得更好的成績。
    親近數(shù)學(xué)心得體會和方法篇五
    第一段:引言(引入主題)
    如今,數(shù)學(xué)已經(jīng)演變成一門涵蓋廣泛領(lǐng)域的學(xué)科,其應(yīng)用范圍逐漸擴大。而現(xiàn)代數(shù)學(xué)方法作為一種新的學(xué)習(xí)方式,極大地改變了傳統(tǒng)的數(shù)學(xué)學(xué)習(xí)方式。通過我自己的學(xué)習(xí)體驗,我開始認識到現(xiàn)代數(shù)學(xué)方法的優(yōu)點和重要性。在接下來的文章中,我將分享我的心得和體會。
    第二段:感受效益(介紹現(xiàn)代數(shù)學(xué)方法的效益)
    現(xiàn)代數(shù)學(xué)方法注重培養(yǎng)學(xué)生的邏輯思維能力,將數(shù)學(xué)與現(xiàn)實生活相結(jié)合,通過實例讓學(xué)生更好地理解和應(yīng)用知識。與傳統(tǒng)的死記硬背不同,現(xiàn)代數(shù)學(xué)方法強調(diào)學(xué)生的主動參與和探索,培養(yǎng)學(xué)生的創(chuàng)造力和解決問題的能力。在實踐中,我發(fā)現(xiàn)現(xiàn)代數(shù)學(xué)方法讓我在解題過程中更注重思考,不再依賴公式和模板解題,能夠獨立思考和發(fā)現(xiàn)解決問題的方法。這種學(xué)習(xí)方式不僅提高了我的數(shù)學(xué)成績,同時也增強了我的自信心。
    第三段:拓寬視野(介紹現(xiàn)代數(shù)學(xué)方法的拓寬視野能力)
    傳統(tǒng)數(shù)學(xué)教學(xué)往往停留在基礎(chǔ)知識的講授上,而現(xiàn)代數(shù)學(xué)方法更注重數(shù)學(xué)的深度和廣度。通過引入不同領(lǐng)域的應(yīng)用和發(fā)展,現(xiàn)代數(shù)學(xué)方法使我對數(shù)學(xué)本身的認識更加全面。例如,統(tǒng)計學(xué)在現(xiàn)代社會中的重要性不斷提升,而傳統(tǒng)數(shù)學(xué)教育中對統(tǒng)計學(xué)的教學(xué)往往薄弱。而通過現(xiàn)代數(shù)學(xué)方法,我了解到了統(tǒng)計學(xué)在保險、金融、醫(yī)療等領(lǐng)域的應(yīng)用,這不僅開闊了我的視野,也提供了更多的學(xué)習(xí)動力。
    第四段:團隊合作(介紹現(xiàn)代數(shù)學(xué)方法的團隊合作能力)
    在實踐中,現(xiàn)代數(shù)學(xué)方法注重培養(yǎng)學(xué)生的團隊合作意識和能力。通過小組討論、合作解題等方式,學(xué)生可以相互交流、碰撞思維、分享經(jīng)驗,從而更好地解決問題。這種合作學(xué)習(xí)的方式提高了我和同學(xué)之間的互動和交流,促進了我們的團隊合作能力的培養(yǎng)。通過與他人討論,我不僅可以更深入地理解一些問題,也能夠從他人的觀點中獲得啟迪和靈感。
    第五段:總結(jié)(總結(jié)并強調(diào)現(xiàn)代數(shù)學(xué)方法的重要性)
    在我實踐的過程中,現(xiàn)代數(shù)學(xué)方法給我?guī)砹嗽S多好處。它不僅提高了我的學(xué)習(xí)成績,也拓寬了我的視野,增強了我的團隊合作意識。通過學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法,我開始認識到,數(shù)學(xué)不僅是一種學(xué)科,更是一種思維方式和解決問題的方法。我將繼續(xù)通過現(xiàn)代數(shù)學(xué)方法來培養(yǎng)自己的數(shù)學(xué)思維能力,并將其運用到其他學(xué)科和實際生活中。因此,現(xiàn)代數(shù)學(xué)方法是我學(xué)習(xí)數(shù)學(xué)過程中的重要組成部分,也是我在學(xué)術(shù)生涯中的重要啟示。
    親近數(shù)學(xué)心得體會和方法篇六
    近年來,隨著科技的不斷發(fā)展與數(shù)學(xué)研究的深入,現(xiàn)代數(shù)學(xué)方法變得越來越重要。相較于傳統(tǒng)數(shù)學(xué),現(xiàn)代數(shù)學(xué)方法更加抽象、推理更為嚴密且應(yīng)用范圍更廣。在學(xué)習(xí)過程中,我深感現(xiàn)代數(shù)學(xué)方法的重要性和應(yīng)用性。本文將從數(shù)學(xué)模型、證明的方法、問題解決思維、創(chuàng)新能力以及現(xiàn)代技術(shù)的發(fā)展等角度,對現(xiàn)代數(shù)學(xué)方法進行總結(jié)體會。
    首先,現(xiàn)代數(shù)學(xué)方法具有強大的建模能力。在實際問題中,我們往往需要將抽象的數(shù)學(xué)理論與具體的問題相結(jié)合?,F(xiàn)代數(shù)學(xué)方法能夠?qū)栴}通過模型的形式進行描述,將復(fù)雜的問題簡化并去除無關(guān)因素,使問題更易于理解和解決。例如,在工程領(lǐng)域中,我們可以利用微分方程、線性代數(shù)等現(xiàn)代數(shù)學(xué)方法,將實際問題轉(zhuǎn)化為數(shù)學(xué)模型,從而定量地分析問題,預(yù)測系統(tǒng)的行為。通過對模型的研究,我們可以得到對實際問題的深入理解,進而為實際生產(chǎn)和科學(xué)研究提供有效的指導(dǎo)。
    其次,現(xiàn)代數(shù)學(xué)方法注重證明的嚴謹性和精確性。在傳統(tǒng)數(shù)學(xué)學(xué)科中,學(xué)生主要通過記憶公式和運算法則來解題。而在現(xiàn)代數(shù)學(xué)方法中,證明成為了一項重要的技能。學(xué)生需要通過推理和邏輯思維,辯證地論證問題的解決思路和結(jié)果的正確性。通過學(xué)習(xí)證明的方法,我深感到數(shù)學(xué)推理的嚴謹性和優(yōu)雅性。證明不僅能夠鞏固我們對知識的理解,更能夠培養(yǎng)我們思考問題的能力和判斷問題的準確性。在實際生活中,很多問題需要通過推理和證明來解決,現(xiàn)代數(shù)學(xué)方法能夠培養(yǎng)我們的邏輯思維能力,使我們在處理問題時更加有條理和準確。
    另外,現(xiàn)代數(shù)學(xué)方法注重培養(yǎng)學(xué)生的問題解決思維。在學(xué)習(xí)過程中,我們常常面臨各種難題和困惑。現(xiàn)代數(shù)學(xué)方法鼓勵學(xué)生通過自主思考和探索,尋找問題解決的方法和策略。引導(dǎo)學(xué)生從不同的角度看待問題,從而找到解決問題的思路。學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法,我們不僅學(xué)習(xí)到了具體的知識,更培養(yǎng)了一種探索精神和解決問題的能力。這種思維方式不僅在數(shù)學(xué)領(lǐng)域中有用,在其他學(xué)科和實際生活中也同樣適用。通過現(xiàn)代數(shù)學(xué)方法的學(xué)習(xí),我深感到自己的思維能力得到了鍛煉和提升。
    此外,現(xiàn)代數(shù)學(xué)方法還能夠培養(yǎng)學(xué)生的創(chuàng)新能力。在學(xué)習(xí)過程中,我們常常會遇到一些復(fù)雜、未解決的問題。這些問題要求我們自主思考、獨立研究,并提出新的解決方法或思路。通過解決這些問題,學(xué)生能夠培養(yǎng)創(chuàng)新意識和創(chuàng)造性思維?,F(xiàn)代數(shù)學(xué)方法的教學(xué)注重培養(yǎng)學(xué)生的創(chuàng)新能力,鼓勵學(xué)生提出新的解決方法,拓展數(shù)學(xué)研究的邊界。通過學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法,我對數(shù)學(xué)研究的廣度和深度有了更深刻的認識,同時也對自己的創(chuàng)新能力有了更多的自信。
    最后,現(xiàn)代數(shù)學(xué)方法與現(xiàn)代技術(shù)的發(fā)展形成了良好的互動關(guān)系。隨著計算機技術(shù)的快速發(fā)展,我們能夠利用計算機來進行復(fù)雜的數(shù)值計算,并通過數(shù)值試驗驗證推測的結(jié)論?,F(xiàn)代數(shù)學(xué)方法的理論和計算手段與計算機技術(shù)的發(fā)展相結(jié)合,為數(shù)學(xué)研究提供了更多的工具和方法。通過計算機的輔助,我們能夠更深入地研究數(shù)學(xué)的各個分支,并得到更準確的結(jié)果。現(xiàn)代數(shù)學(xué)方法不僅為計算機技術(shù)的發(fā)展提供了理論基礎(chǔ),同時也能夠從計算機技術(shù)中獲得更多的支持和推動。這種互動關(guān)系使現(xiàn)代數(shù)學(xué)方法和現(xiàn)代技術(shù)能夠共同促進數(shù)學(xué)研究的發(fā)展,并在實際應(yīng)用中起到重要的作用。
    綜上所述,現(xiàn)代數(shù)學(xué)方法是一種強大的工具和方法,在數(shù)學(xué)研究和實踐中發(fā)揮著重要的作用。通過學(xué)習(xí)現(xiàn)代數(shù)學(xué)方法,我們可以具備更強大的數(shù)學(xué)建模能力,更嚴密的證明和推理能力,更靈活的問題解決思維,更富有創(chuàng)新的能力,同時也能夠與現(xiàn)代技術(shù)的發(fā)展互相促進,共同推動數(shù)學(xué)研究的發(fā)展和應(yīng)用。因此,我們應(yīng)當(dāng)重視現(xiàn)代數(shù)學(xué)方法的學(xué)習(xí)與應(yīng)用,不斷提升自己的數(shù)學(xué)素質(zhì)與能力。
    親近數(shù)學(xué)心得體會和方法篇七
    高中數(shù)學(xué)學(xué)習(xí)是中學(xué)階段承前啟后的關(guān)鍵時期,高中數(shù)學(xué)與初中數(shù)學(xué)存在很大差異,初中數(shù)學(xué)在教材表達上通俗易懂,研究對象多是常量,側(cè)重于模仿和定量計算,學(xué)生往往只要多模仿做題就能考高分,而高中數(shù)學(xué)語言表達抽象,解題方法多樣,沒有一定量的積累與理解很難考高分。同學(xué)們要意識到自己已經(jīng)是高中生了,不能用學(xué)習(xí)初中數(shù)學(xué)的心態(tài)對待高中數(shù)學(xué),要轉(zhuǎn)變觀念、提高認識和改進學(xué)法,在此,我們就學(xué)習(xí)高中數(shù)學(xué)談點看法。
    1、和數(shù)學(xué)老師交朋友
    我們之所以把這條放在首位,因為它確實對數(shù)學(xué)學(xué)習(xí)具有舉足輕重的作用。人的感情具有傳遞性的,與老師的距離近了,也就離數(shù)學(xué)更近了。如何與老師成為朋友,很簡單,經(jīng)常在課堂上提問或者經(jīng)常跑去請教老師,你們自然就是朋友了。
    2、提高課堂聽課效率
    (1)科學(xué)預(yù)習(xí)。預(yù)習(xí)中發(fā)現(xiàn)的難點,就是聽課的重點;對預(yù)習(xí)中遇到的沒有掌握好的有關(guān)的舊知識,可進行補缺,以減少聽課過程中的困難;有助于提高思維能力,預(yù)習(xí)后把自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;預(yù)習(xí)后將課本的例題及老師要講授的習(xí)題提前完成,還可以培養(yǎng)自己的自學(xué)能力,與老師的方法進行比較,可以發(fā)現(xiàn)更多的方法與技巧??傊?,這樣會使你的聽課更加有的放矢,你會知道哪些該重點聽,哪些該重點記。
    (2)科學(xué)聽課。聽課的過程不是一個被動參預(yù)的過程,要全身心地投入課堂學(xué)習(xí),耳到、眼到、心到、口到、手到。還要想在老師前面,不斷思考:面對這個問題我會怎么想?當(dāng)老師講解時,又要思考:老師為什么這樣想?這里用了什么思想方法?這樣做的目的是什么?這個題有沒有更好的方法?問題多了,思路自然就開闊了。
    (3)科學(xué)筆記。聽數(shù)學(xué)課要不要記筆記?當(dāng)然要。不僅要記,而且要記好。當(dāng)然,什么都記就不是記筆記了,應(yīng)該針對自身聽課的情況選擇性記錄。
    記問題——將課堂上未聽懂的問題及時記下來,便于課后請教同學(xué)或老師,把問題弄懂弄通。記疑點——對老師在課堂上講的內(nèi)容有疑問應(yīng)及時記下,這類疑點,有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后與老師商榷。
    記方法——勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對提高解題水平大有益處。
    記總結(jié)——注意記住老師的課后總結(jié),這對于濃縮一堂課的內(nèi)容,找出重點及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找存在問題、找到規(guī)律,融會貫通課堂內(nèi)容都很有作用。
    3、必須用好你的數(shù)學(xué)筆記。如果記下的筆記只停留在紙上那永遠不會成為你的思維,要成為你自己的東西,必須用心去獨立體會筆記里的每一個典型例題,每一個經(jīng)典方法,每一個想法思路,完全理解并且會熟練運用才是根本。
    4、加強課內(nèi)課外練習(xí)。做數(shù)學(xué)題一定要養(yǎng)成良好的審題習(xí)慣,提高閱讀能力。審題是解題的關(guān)鍵,數(shù)學(xué)題是由文字語言、符號語言和圖形語言構(gòu)成的,拿到目要“寧停三分”,“不搶一秒”,要在已有知識和解題經(jīng)驗基礎(chǔ)上,譯字逐句仔細審題,細心推敲,切忌題意不清,倉促上陣,審數(shù)學(xué)題有時須對題意逐句“翻譯”,將隱含條件轉(zhuǎn)化為明顯條件;有時需聯(lián)系題設(shè)與結(jié)論,前后呼應(yīng)挖掘構(gòu)建題設(shè)與目標的橋梁,尋找突破點,從而形成解題思路。
    5、要養(yǎng)成良好的演算、驗算習(xí)慣,提高運算能力。學(xué)習(xí)數(shù)學(xué)離不開運算,初中老師往往一步一步在黑板上演算,因時間有限,運算量大,高中老師常把計算留給學(xué)生,這就要同學(xué)們多動腦,勤動手,不僅能筆算,而且也能口算和心算,對復(fù)雜運算,要有耐心,掌握算理,注重簡便方法。
    6、要養(yǎng)成良好的解題習(xí)慣,提高自己的思維能力。數(shù)學(xué)是思維的體操,是一門邏輯性強、思維嚴謹?shù)膶W(xué)科。而訓(xùn)練并規(guī)范解題習(xí)慣是提高用文字、符號和圖形三種數(shù)學(xué)語言表達的有效途徑,而數(shù)學(xué)語言又是發(fā)展思維能力的基礎(chǔ)。因此,只有以本為本,夯實基礎(chǔ),才能逐步提高自己的思維能力。
    7、要養(yǎng)成解后反思的習(xí)慣,提高分析問題的能力。解完題目之后,要養(yǎng)成不失時機地回顧下述問題:解題過程中是如何分析聯(lián)想探索出解題途徑的?使問題獲得解決的關(guān)鍵是什么?在解決問題的過程中遇到了哪些困難?又是怎樣克服的?這樣,通過解題后的回顧與反思,就有利于發(fā)現(xiàn)解題的關(guān)鍵所在,并從中提煉出數(shù)學(xué)思想和方法,如果忽視了對它的挖掘,解題能力就得不到提高。因此,在解題后,要經(jīng)??偨Y(jié)題目及解法的規(guī)律,只有勤反思,才能“站得高山,看得遠,駕馭全局”,才能提高自己分析問題的能力。
    8、要養(yǎng)成糾錯訂正的習(xí)慣,提高自我評判能力。要養(yǎng)成積極進取,不屈不撓,耐挫折,不自卑的心理品質(zhì),對做錯的題要反復(fù)琢磨,尋找錯因,進行更正,整理歸納成為錯題集,養(yǎng)成良好的習(xí)慣,不少問題就會茅塞頓開,割然開朗,迎刃而解,從而提高自我評判能力。
    9、要養(yǎng)成善于交流的習(xí)慣,提高表達能力。在數(shù)學(xué)學(xué)習(xí)過程中,對一些典型問題,同學(xué)們應(yīng)善于合作,各抒己見,互相討論,取人之長,補己之短,也可主動與老師交流,說出自己的見解和看法,在老師的點撥中,他的思想方法會對你產(chǎn)生潛移默化的影響。因此,只有不斷交流,才能相互促進、共同發(fā)展,提高表達能力。如果固步自封,就會造成鉆牛角尖,浪費不必要的時間。
    10、要養(yǎng)成歸納總結(jié)的習(xí)慣,提高概括能力。每學(xué)完一節(jié)一章后,要按知識的邏輯關(guān)系進行歸納總結(jié),使所學(xué)知識系統(tǒng)化、條理化、專題化,這也是再認識的過程,對進一步深化知識積累資料,靈活應(yīng)用知識,提高概括能力將起到很好的促進作用。
    總之,同學(xué)們要養(yǎng)成良好的學(xué)習(xí)習(xí)慣,勤奮的學(xué)習(xí)態(tài)度,科學(xué)的學(xué)習(xí)方法,充分發(fā)揮自身的主體作用,不僅學(xué)會,而且會學(xué),只有這樣,才能取得事半功倍的效果。
    親近數(shù)學(xué)心得體會和方法篇八
    1、重視課堂的學(xué)習(xí)效率
    新知識的接受和數(shù)學(xué)能力的培養(yǎng),主要是在課堂上進行,所以要特別重視課堂的學(xué)習(xí)效率,上課時要緊跟老師的思路,積極開展思維,預(yù)測下面的步驟,比較自己的解題思路與老師所講的有哪些不同。課后要及時復(fù)習(xí),不留疑點,對不懂的地方要及時請教老師或同學(xué),切忌不懂將懂,或?qū)⒉欢牡胤教^。課后還要注重基礎(chǔ)知識的學(xué)習(xí)和基本技能的培養(yǎng),要多記公式、定理,因為它們是學(xué)好數(shù)學(xué)的關(guān)鍵和必備條件。
    2、多做習(xí)題,養(yǎng)成良好的解題習(xí)慣
    要想學(xué)好數(shù)學(xué),多做題是不可避免的。當(dāng)然,多做題并不等于搞題海戰(zhàn)術(shù)。做的題目要有代表性,不能胡子眉毛一把抓,碰到哪道題就做哪道題。有些題適合我們做,而有些題卻超出了我們的能力范圍,做這些題目只能是浪費我們寶貴的時間,不會達到任何效果。做的題要難易適中,通過做些有代表的題目,要力爭能舉一反三。數(shù)學(xué)是一門邏輯性很強的學(xué)科,需要縝密的思維,解題要有條理,在做題的過程中學(xué)會熟練運用正確的解題方法,掌握一些基本題型的解題規(guī)律。只有平時大量的訓(xùn)練,見多了、做多了,自然就熟能生巧,考試的時候就會應(yīng)付自如,不至于亂了陣腳。
    3、調(diào)整好心態(tài),正確對待平時的考試
    大家都知道,數(shù)學(xué)是個邏輯性極強的學(xué)科,要求有清醒的頭腦,數(shù)學(xué)運算過程中的每個解題步驟都很重要,漏掉了哪個步驟都是不行的。因此,在做數(shù)學(xué)題的時候,保持一個平靜的心態(tài)是很重要。這就要求我們平時要學(xué)會善于把握自己的情緒,要能及時地調(diào)整好自己的心態(tài),戒驕戒躁,千萬不能一遇到解不出來的題目就焦躁不安。焦躁是學(xué)習(xí)數(shù)學(xué)的大忌。
    二、高中數(shù)學(xué)的學(xué)習(xí)方法
    1、抓住重點聽講
    上課前我是一定要預(yù)習(xí)的,有時間就看的仔細些,老師要講什么內(nèi)容,有什么定義、定理和公式我先都記住,再看一些例題去理解定義和定理的應(yīng)用,腦子里會形成那些我明白了,那些不理解,記在本子上。上課的時候,老師嘴一張開我就知道老師要講什么了,會的我就看自己的書,不會的我就仔細聽講。
    我善于抓住重點去聽講,記的時候,我看其他同學(xué)是什么都記,我不是,凡是書上有的內(nèi)容我從不記,比如定義、定理和公式和書上的例題。我只記一些書上沒有的內(nèi)容,我不會的內(nèi)容,還有老師說這是重點或難點的內(nèi)容。我經(jīng)常在書上做一些紀錄,我的書看完是滿書涂鴉,不適合別人看了,以后自己一翻書,我就會從我的紀錄上回憶這一節(jié)的全部內(nèi)容,一翻書就回憶,經(jīng)常翻就記的很牢了。
    2、多看輔導(dǎo)書
    老師布置的作業(yè)我肯定都要做完,但我不會滿足于老師布置的作業(yè),我還要看一些輔導(dǎo)書籍,做一些輔導(dǎo)書籍上的作業(yè),直到我能理解定義、定理和公式的含義,一道題盡量用多種辦法去解題,做到舉一反三。我經(jīng)常買和課程有關(guān)的輔導(dǎo)書籍看,每一門課程我都有好幾本相關(guān)的輔導(dǎo)書籍。
    3、定期整理歸納
    每學(xué)完一章的內(nèi)容,我都要進行小結(jié)。把這章的內(nèi)容歸納一下,把定義、定理、公式和這個定義、定理、公式有代表行的練習(xí)題寫出來,最后就是用幾句話把這一章的內(nèi)容概括一下,目的是方便記憶。我寫在一張紙上,放在口袋里,隨時會拿出這張紙來看一下。我一般不看完,只看前面幾個字,然后去想后面的內(nèi)容,實在想不出來才再看一下的??荚嚽懊恳豢颇课叶际前褍?nèi)容歸納后,寫在紙上放在口袋里,跑到?jīng)]人的大樹底下,一會看一下歸納的紙條,背誦內(nèi)容和例題。
    親近數(shù)學(xué)心得體會和方法篇九
    通過幾年的高中數(shù)學(xué)的教學(xué),我感覺到很多學(xué)生重視數(shù)學(xué),想學(xué)好數(shù)學(xué)。也有很多家長告訴老師他的孩子在初中數(shù)學(xué)是如何的好現(xiàn)在怎么就落后了呢。作為衡量一個人能力的重要學(xué)科,從小學(xué)到高中絕大多數(shù)同學(xué)對它情有獨鐘,投入了大量的時間與精力.然而并非人人都是成功者,許多小學(xué)、初中數(shù)學(xué)學(xué)科成績的佼佼者,進入高中階段,第一個跟頭就栽在數(shù)學(xué)上。眾多初中學(xué)習(xí)的成功者淪為高中學(xué)習(xí)的失敗者,主要原因有以下幾個方面.
    1.學(xué)習(xí)被動.許多同學(xué)進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán).沒有真正理解所學(xué)內(nèi)容。在初中的數(shù)學(xué)教學(xué)中,教師講解詳細,常把許多問題的解決建立為固定的思維模式,而且各類題型反復(fù)練習(xí),學(xué)生漸漸養(yǎng)成了“依葫蘆畫瓢”的抄錄式的學(xué)習(xí)方法。而高中數(shù)學(xué)要求學(xué)生勤于思考,善于思考,掌握數(shù)學(xué)思想方法,善于歸納總結(jié)規(guī)律,在思維的靈活性、可延伸性、創(chuàng)造性方面提出了較高的要求。但學(xué)生的思維能力的發(fā)展和思維方式的轉(zhuǎn)換有一個循序漸進的過程,這就給高一數(shù)學(xué)的學(xué)習(xí)形成了思維障礙。
    2.學(xué)不得法.老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法.而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微.
    3.基礎(chǔ)重視不夠.知識是能力的基礎(chǔ),要切實抓好基礎(chǔ)知識的學(xué)習(xí)。數(shù)學(xué)基礎(chǔ)知識學(xué)習(xí)包括概念學(xué)習(xí),定理公式學(xué)習(xí)以及解題學(xué)習(xí)三個方面一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質(zhì)”,陷入題海.到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”.
    4.進一步學(xué)習(xí)條件不具備.高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進一步學(xué)習(xí)作好準備.高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高.如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等.客觀上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的.
    高中學(xué)生不僅僅要“想學(xué)”,還必須“會學(xué)”,要講究科學(xué)的學(xué)習(xí)方法,提高學(xué)習(xí)效率,才能變被動為主動.針對學(xué)生學(xué)習(xí)中出現(xiàn)的上述情況,我有些建議:
    1、 樹立學(xué)好高中數(shù)學(xué)的信心。
    進入高中就必須樹立正確的學(xué)習(xí)目標和遠大的理想。學(xué)生可以閱讀一些數(shù)學(xué)歷史,體會數(shù)學(xué)家的創(chuàng)造所經(jīng)歷的種種挫折、數(shù)學(xué)家成長的故事和他們在科學(xué)技術(shù)進步中的卓越貢獻,也可請高二、高三的優(yōu)秀學(xué)生講講他們學(xué)習(xí)數(shù)學(xué)的方法,以此激勵自己積極思維,勇于進取,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心。
    2、培養(yǎng)良好學(xué)習(xí)習(xí)慣。
    良好的學(xué)習(xí)習(xí)慣包括制定計劃、課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面.
    制定計劃使學(xué)習(xí)目的明確,時間安排合理,不慌不忙,穩(wěn)扎穩(wěn)打,它是推動學(xué)生主動學(xué)習(xí)和克服困難的內(nèi)在動力.但計劃一定要切實可行,既有長遠打算,又有短期安排,執(zhí)行過程中嚴格要求自己,磨煉學(xué)習(xí)意志.
    課前自學(xué)是學(xué)生上好新課,取得較好學(xué)習(xí)效果的基礎(chǔ).課前自學(xué)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)主動權(quán).自學(xué)不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,盡可能把問題解決在課堂上.
    上課是理解和掌握基本知識、基本技能和基本方法的關(guān)鍵環(huán)節(jié).“學(xué)然后知不足”,課前自學(xué)過的同學(xué)上課更能專心聽課,他們知道什么地方該詳,什么地方可略;什么地方該精雕細刻,什么地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼.
    及時復(fù)習(xí)是高效率學(xué)習(xí)的重要一環(huán),通過反復(fù)閱讀教材,多方查閱有關(guān)資料,強化對基本概念知識體系的理解與記憶,將所學(xué)的新知識與有關(guān)舊知識聯(lián)系起來,進行分析比較,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記上,使對所學(xué)的新知識由“懂”到“會”.
    獨立作業(yè)是學(xué)生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學(xué)新知識的理解和對新技能的掌握過程.這一過程是對學(xué)生意志毅力的考驗,通過運用使學(xué)生對所學(xué)知識由“會”到“熟”.
    解決疑難是指對獨立完成作業(yè)過程中暴露出來對知識理解的錯誤,或由于思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程.解決疑難一定要有鍥而不舍的精神,做錯的作業(yè)再做一遍.對錯誤的地方?jīng)]弄清楚要反復(fù)思考,實在解決不了的要請教老師和同學(xué),并要經(jīng)常把易錯的地方拿出來復(fù)習(xí)強化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把求老師問同學(xué)獲得的東西消化變成自己的知識,長期堅持使對所學(xué)知識由“熟”到“活”.
    系統(tǒng)小結(jié)是學(xué)生通過積極思考,達到全面系統(tǒng)深刻地掌握知識和發(fā)展認識能力的重要環(huán)節(jié).小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與有關(guān)資料,通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系.以達到對所學(xué)知識融會貫通的目的.經(jīng)常進行多層次小結(jié),能對所學(xué)知識由“活”到“悟”.
    課外學(xué)習(xí)包括閱讀課外書籍與報刊,參加學(xué)科競賽與講座,走訪高年級同學(xué)或老師交流學(xué)習(xí)心得等.課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補充和繼續(xù),它不僅能豐富學(xué)生的文化科學(xué)知識,加深和鞏固課內(nèi)所學(xué)的知識,而且能滿足和發(fā)展他們的興趣愛好,培養(yǎng)獨立學(xué)習(xí)和工作能力,激發(fā)求知欲與學(xué)習(xí)熱情.
    3、培養(yǎng)優(yōu)秀的數(shù)學(xué)思維品質(zhì),提高數(shù)學(xué)解決問題的能力
    與初中數(shù)學(xué)相比高中數(shù)學(xué)在思維形式的靈活性、可拓展性等方面的要求較高。所以學(xué)習(xí)中加強思維訓(xùn)練,積極開展思維活動,努力克服思維惰性,提高自身的分析問題解決問題的能力。
    4.循序漸進,防止急躁
    由于學(xué)生年齡較小,閱歷有限,為數(shù)不少的高中學(xué)生容易急躁,有的同學(xué)貪多求快,囫圇吞棗,有的同學(xué)想靠幾天“沖刺”一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振.針對這些情況,教師要讓學(xué)生懂得學(xué)習(xí)是一個長期的鞏固舊知識、發(fā)現(xiàn)新知識的積累過程,決非一朝一夕可以完成,為什么高中要上三年而不是三天!許多優(yōu)秀的同學(xué)能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度。
    5.研究學(xué)科特點,尋找最佳學(xué)習(xí)方法
    數(shù)學(xué)學(xué)科擔(dān)負著培養(yǎng)學(xué)生運算能力、邏輯思維能力、空間想象能力,以及運用所學(xué)知識分析問題、解決問題的能力的重任.它的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高.學(xué)習(xí)數(shù)學(xué)一定要講究“活”,只看書不做題不行,埋頭做題不總結(jié)積累不行,對課本知識既要能鉆進去,又要能跳出來,結(jié)合自身特點,尋找最佳學(xué)習(xí)方法.華羅庚先生倡導(dǎo)的“由薄到厚”和“由厚到薄”的學(xué)習(xí)過程就是這個道理.方法因人而異,但學(xué)習(xí)的四個環(huán)節(jié)(預(yù)習(xí)、上課、整理、作業(yè))和一個步驟(復(fù)習(xí)總結(jié))是少不了的.
    6.重視輔導(dǎo),化解分化點
    如前所述高中數(shù)學(xué)中易分化的地方多,這些地方一般都有方法新、難度大、靈活性強等特點.對易分化的地方應(yīng)當(dāng)采取多次反復(fù)理解,重視輔導(dǎo),將出現(xiàn)的錯誤提出來和同學(xué)、老師議一議,充分理解題目的思維過程,通過變式練習(xí),提高自己的鑒賞能力,以達到靈活掌握知識、運用知識的目的。
    實際上新的學(xué)習(xí)必然會有一些障礙,高中生要學(xué)好數(shù)學(xué),須解決好兩個問題:第一是認識問題;第二是方法問題。要了解學(xué)習(xí)數(shù)學(xué)困難的原因,采取正確的措施,發(fā)揮自己的主體作用,學(xué)會分析問題、研究問題,這樣在培養(yǎng)創(chuàng)造性思維能力的同時,也提高了學(xué)習(xí)數(shù)學(xué)的興趣,使自己更有效、更順利的投入高中階段的學(xué)習(xí)。
    親近數(shù)學(xué)心得體會和方法篇十
    數(shù)學(xué)作為一門基礎(chǔ)學(xué)科在小學(xué)階段就開始學(xué)習(xí),其中最基本的就是計算方法。在學(xué)習(xí)小學(xué)數(shù)學(xué)的過程中,我們不僅僅是在掌握知識,更是在培養(yǎng)計算能力,提升思維能力。在數(shù)學(xué)計算方法的學(xué)習(xí)中,我深深地感受到了一些心得體會,以下是我對小學(xué)數(shù)學(xué)計算方法的體會和經(jīng)驗總結(jié)。
    第二段:掌握基本計算方法
    小學(xué)數(shù)學(xué)計算方法的基礎(chǔ)在于掌握基本的計算方法,如加、減、乘、除。所以,我們在學(xué)習(xí)小學(xué)數(shù)學(xué)的過程中,首先要掌握基本計算方法,好比造房子要先打好基礎(chǔ)。只有掌握了基本計算方法,才能更好地學(xué)習(xí)進階課程,如分數(shù)、小數(shù)等。
    第三段:形成自己的計算方法
    在數(shù)學(xué)計算過程中,有多種不同的計算方法,每種計算方法都有其特定的運用場景。在學(xué)習(xí)小學(xué)數(shù)學(xué)的過程中,我們需要識別不同的計算方法,掌握其使用技巧和規(guī)則。同時,我們還要在實踐中總結(jié)出適合自己的計算方法,只有形成自己的計算方法才能提高計算效率,更好地解決數(shù)學(xué)問題。
    第四段:注重細節(jié)
    在數(shù)學(xué)計算時,需要注重細節(jié),特別是在小數(shù)點、符號等方面。不同的情況,需要采用不同的計算方法,需要我們靈活運用。在計算過程中,一定要認真核對計算結(jié)果,避免出現(xiàn)小錯誤導(dǎo)致最終答案錯誤。注重細節(jié)是提高計算準確性的關(guān)鍵,也是為了更細致地處理問題。
    第五段:多思考,多練習(xí)
    最后,提高數(shù)學(xué)計算方法就需要多思考和多練習(xí)。小學(xué)數(shù)學(xué)的計算方法不是一朝一夕能夠掌握的,需要在不斷地實踐中不斷總結(jié),累積經(jīng)驗。同時,還應(yīng)該積極地思考問題,探索問題背后的原因和規(guī)律,這樣不僅能提高計算效率,還能促進思維發(fā)展。
    結(jié)語:
    總之,小學(xué)數(shù)學(xué)計算方法的學(xué)習(xí)不僅涉及到知識的掌握,更應(yīng)該注重實踐中的操作能力和思維能力的培養(yǎng),只有這樣才能更好地解決數(shù)學(xué)問題。在學(xué)習(xí)的過程中,我們要掌握基本計算方法,形成自己的計算方法,注重細節(jié),多思考、多練習(xí),相信這些經(jīng)驗總結(jié)對以后也會有很大的幫助。
    親近數(shù)學(xué)心得體會和方法篇十一
    大家好!今天我發(fā)言的題目是“學(xué)習(xí)之道在于悟”,借此機會和大家共同分享高中數(shù)學(xué)學(xué)習(xí)的心得體會。
    相信我們當(dāng)中許多老師和同學(xué)都看過《功夫之王》這部電影,它講述了一個喜愛功夫卻毫無功底的劇中人物最終練成絕世功夫,成就大業(yè)的故事。其中李連杰飾扮演的默僧在傳授杰森功夫時,有一段精彩對白:“畫家以潑墨山水為功夫,屠夫以庖丁解牛為功夫,從有形中求無形,充耳不聞,習(xí)萬招之法,從有招到無招,習(xí)萬家之變,才能自創(chuàng)一家,樂師以輾轉(zhuǎn)悠揚為功夫,詩人以天馬行空的文字傾國傾城,這也是功夫……”。
    其一,數(shù)學(xué)的學(xué)習(xí)是學(xué)會獨立思考的過程。數(shù)學(xué)學(xué)習(xí)要防止死記硬背,不求甚解的傾向,學(xué)習(xí)中多問幾個為什么,多沉下心來琢磨琢磨,做到舉一反三,融會貫通。聽課時要邊聽邊思考,思考與本節(jié)課相關(guān)的知識體系,思考教師的思路,并與自己的比較。在老師沒有作出判斷、結(jié)論之前,自己試著先判斷、下結(jié)論,看看與老師講的是否一致,并找出錯誤的原因。獨立思考能力是學(xué)習(xí)數(shù)學(xué)的基本能力。
    其二,數(shù)學(xué)學(xué)習(xí)過程是一個需要反復(fù)練習(xí)的過程,也是一個熟能生巧的過程。反復(fù)練習(xí)正是為了達到悟的結(jié)果及培養(yǎng)對數(shù)學(xué)的理解和感覺。訓(xùn)練的過程需要經(jīng)歷一個由量變到質(zhì)變,一個無形無狀的過程。當(dāng)然由于每個人知識結(jié)構(gòu)、思維水平和理解能力的差異,訓(xùn)練的過程和量是不同的,但無論如何不能“為解題而解題”。
    其三,數(shù)學(xué)的學(xué)習(xí)過程是把握數(shù)學(xué)精神的過程。數(shù)學(xué)的精神在于用數(shù)學(xué)的思想、方法、策略去思考問題。有些學(xué)生對數(shù)學(xué)無論怎樣練習(xí),也始終難以找到對數(shù)學(xué)的感覺。這就需要我們在學(xué)習(xí)過程中從問題解決形成一般的結(jié)論,領(lǐng)悟問題解決中數(shù)學(xué)思想、方法、策略的應(yīng)用。這個過程單憑老師教將很難使學(xué)生達到理念的升華。當(dāng)然,這并非削弱教師的作用,而是體現(xiàn)學(xué)生悟的重要性,將所理解的知識嵌入已有的知識結(jié)構(gòu)中才能達到真正的理解和掌握。
    其四,自信是學(xué)好數(shù)學(xué)的必要條件。自信源于對數(shù)學(xué)的熱情、對自我的認可、對數(shù)學(xué)契而不舍的執(zhí)著精神以及堅實的數(shù)學(xué)基本功。曾經(jīng)有位學(xué)生在闡述他對基本功的理解時說:“從今天起我所做的每一道題高考肯定不考,高考的每一題會做,并不保證都能做對,要關(guān)注對,而不僅僅是會,解決問題最好的方法是反復(fù),不要因為這題簡單而不去做,不要因為這題做過三遍而不去做,可為難題放棄,絕不可為簡單題而放棄,這些就是基本功”。
    總之,學(xué)好數(shù)學(xué)不僅是為了應(yīng)付高考,或是為將來進一步學(xué)習(xí)相關(guān)專業(yè)打好基礎(chǔ),更重要的目的是接受數(shù)學(xué)思想、數(shù)學(xué)精神的熏陶,提高自身的思維品質(zhì)和科學(xué)素養(yǎng),果能如此,將終生受益。最后,祝愿每位同學(xué)學(xué)習(xí)進步。
    親近數(shù)學(xué)心得體會和方法篇十二
    數(shù)學(xué)是一門抽象的學(xué)科,以邏輯嚴密、推理嚴謹為特點。然而,對于大多數(shù)學(xué)生來說,數(shù)學(xué)是一門枯燥乏味的學(xué)科,充滿了公式和運算。然而,當(dāng)我開始運用數(shù)學(xué)的方法去理解生活中的問題時,我卻發(fā)現(xiàn)了它的魅力和價值所在。在接下來的幾段中,我將分享一些我在用數(shù)學(xué)的方法思考問題時獲得的心得體會。
    二、數(shù)學(xué)思維的訓(xùn)練
    數(shù)學(xué)思維是一種邏輯思維,它強調(diào)對問題的分析和推理能力。在解決數(shù)學(xué)問題時,我們需要將問題拆分成更小的部分,然后使用邏輯推理來解決它們。同樣,當(dāng)我們面臨任何其他問題時,拆分問題和進行邏輯推理也是非常有用的。以我的個人經(jīng)驗為例,當(dāng)我遇到一個看似復(fù)雜的項目時,我會將它拆分成更小的任務(wù),然后逐個解決。這種方法幫助我保持清晰的思維,并能有效地解決問題。
    三、數(shù)學(xué)的實踐性
    數(shù)學(xué)是一門實踐性很強的學(xué)科。在學(xué)習(xí)數(shù)學(xué)的過程中,我們需要不斷地做題和練習(xí),才能提高自己的能力。同樣,在現(xiàn)實生活中,我們需要應(yīng)用所學(xué)的數(shù)學(xué)知識來解決實際問題。例如,當(dāng)我在超市購物時,我會使用數(shù)學(xué)計算來比較不同商品的價格以及折扣優(yōu)惠的價值。這種實踐性不僅幫助我鞏固數(shù)學(xué)知識,還能在生活中節(jié)約金錢和時間。
    四、數(shù)學(xué)的適用性
    數(shù)學(xué)是一門廣泛適用于各個領(lǐng)域的學(xué)科。從自然科學(xué)到社會科學(xué),從工程學(xué)到藝術(shù)設(shè)計,數(shù)學(xué)都有其重要的作用。我曾經(jīng)在一次物理實驗中遇到了困擾,無法確定參數(shù)如何測量。然而,通過應(yīng)用數(shù)學(xué)原理和公式,我迅速解決了這個問題。這個經(jīng)歷讓我深刻地認識到數(shù)學(xué)在解決實際問題中的重要性和普遍適用性。
    五、數(shù)學(xué)啟發(fā)的思維方法
    數(shù)學(xué)不僅給我們提供了一種具體的解決問題的方式,還培養(yǎng)了我們的思維方法。例如,排除法是數(shù)學(xué)中常用的思維方法,它可以幫助我們迅速排除錯誤選項,提高解題的效率。類比思維是另外一種從數(shù)學(xué)中啟發(fā)而來的思維方法。通過將問題與數(shù)學(xué)中的概念進行類比,我們可以找到一個新的解決問題的角度。這些思維方法不僅適用于數(shù)學(xué)問題,也適用于其他領(lǐng)域的問題。我發(fā)現(xiàn)當(dāng)我運用這些方法去思考生活中的問題時,我能夠更加靈活和高效地解決它們。
    總結(jié)
    通過運用數(shù)學(xué)的方法去思考問題,我深刻體會到了數(shù)學(xué)的魅力和價值。數(shù)學(xué)思維的訓(xùn)練、實踐性、適用性以及數(shù)學(xué)啟發(fā)的思維方法都給我留下了深刻的印象。因此,我相信通過運用數(shù)學(xué)的方法去思考問題,我們可以提高自己的思維能力,更好地解決生活中的各種問題。無論是在學(xué)業(yè)上還是事業(yè)上,數(shù)學(xué)都能助你一臂之力。
    親近數(shù)學(xué)心得體會和方法篇十三
    數(shù)學(xué)一向以難學(xué)著稱,然而作為一項重要的學(xué)科,任何人都有掌握數(shù)學(xué)的必要性。我曾經(jīng)是一名數(shù)學(xué)學(xué)習(xí)者,也是一個數(shù)學(xué)家長。在幫助孩子學(xué)習(xí)數(shù)學(xué)的過程中,我發(fā)現(xiàn)了通向成功的教育方法,這個方法來自于“數(shù)學(xué)之家教育方法”。
    第二段:數(shù)學(xué)之家教育方法的特點
    “數(shù)學(xué)之家教育方法”是一種以自主學(xué)習(xí)為特點的教育方式。通過這種教育方式,學(xué)生可以自主學(xué)習(xí)數(shù)學(xué),并在學(xué)習(xí)過程中自行解決問題。通過自主學(xué)習(xí),學(xué)生可以拓展應(yīng)用數(shù)學(xué)的想象力,從而提高數(shù)學(xué)的成績。
    第三段:數(shù)學(xué)之家教育方法的優(yōu)點
    “數(shù)學(xué)之家教育方法”以自主學(xué)習(xí)為主要特點,其最大的優(yōu)點是幫助學(xué)生建立自信心。自主學(xué)習(xí)的方法不是靠死記硬背來提升成績的,而是依靠自己的思考能力和邏輯能力,從而讓學(xué)生獲得了成功的喜悅和成就感。
    第四段:使用數(shù)學(xué)之家教育方法的注意事項
    在使用“數(shù)學(xué)之家教育方法”時,家長和老師需要引導(dǎo)學(xué)生掌握正確的思維方式。自主學(xué)習(xí)并不意味著無所顧慮,學(xué)生需要學(xué)會思考問題,提高分析能力。家長需要提供必要的指導(dǎo),引導(dǎo)孩子掌握重要的思考技巧,避免走入犯錯的錯誤思考模式。
    第五段:結(jié)論
    總之,通過“數(shù)學(xué)之家教育方法”的學(xué)習(xí),可以讓孩子掌握正確的學(xué)習(xí)方法和思考方式,助力提高數(shù)學(xué)成績。盡管在學(xué)習(xí)數(shù)學(xué)的過程中,難免會遇到挫敗和失敗,但是,通過挑戰(zhàn)自我、敢于思考并學(xué)會自我調(diào)整,孩子們定能順利戰(zhàn)勝困難,取得數(shù)學(xué)學(xué)習(xí)上的巨大成就。
    親近數(shù)學(xué)心得體會和方法篇十四
    高中數(shù)學(xué),可能對于某些人來說是一門頭疼的課程。現(xiàn)在,我以畢業(yè)多年的身份來談?wù)劯咧袛?shù)學(xué)的學(xué)習(xí)心得體會,可能說法有些偏頗,但是都是我的真實感受,希望對廣大奮斗在高考征程上的人有些小小的啟發(fā)作用。
    我記得高一的第一次數(shù)學(xué)考試,我考了150,那次考試給了我很大的信心去把后面的學(xué)習(xí)搞好。其實我不是什么高考數(shù)學(xué)滿分的人,我的分數(shù)對于那些真正高分的人來說特別普通,我更愿意站在一個原來學(xué)不好,后來怎么把數(shù)學(xué)學(xué)好這個角度去談。
    首先,要堅定信心,不要覺得提高成績是很困難甚至是不可能的事。我初中數(shù)學(xué)也曾經(jīng)不及格過,可是后來我還是憑著一點一滴的努力讓自己的成績慢慢提上來。其次,要努力,除了努力還是努力!
    還是不說廢話了,重點說一下怎么把數(shù)學(xué)學(xué)好。
    1、課本上的原理,例題要全部弄懂。一般來說,那些例題都是很典型的,也很淺顯易懂的,掌握了它們就是掌握了最基本的東西,才能為做難題打下牢固的基礎(chǔ)。
    2、一定要挑好輔導(dǎo)資料。我這里就不推薦什么具體的資料了,免得大家以為我在推銷。這里必須注意的一點是,如果你數(shù)學(xué)基礎(chǔ)不好,那么不要好高騖遠,去跟隨潮流,別人買什么輔導(dǎo)資料你也買什么輔導(dǎo)資料。要有選擇性。最好挑一本比課本上的例題難一些,但是又不是特別難的輔導(dǎo)書。建議大家可以看一下參考資料上面的題,如果你看了之后覺得那些例題還算有些深度,你看了有點思路,但是又不是可以馬上解答出來的題,這種輔導(dǎo)資料就比較合適你。如果你看了半天,完全不知道那些例題在說什么,你還買了,最后你可能要花費很多時間去理解它,掌握它,但最后對你學(xué)習(xí)成績的提高又不是特別有用。
    3、堅持題海戰(zhàn)術(shù)。比如說今天老師教了一節(jié)內(nèi)容,里面涉及某個知識點,比如說在解析幾何那里,會涉及通過引進x軸,y軸,z軸這些坐標軸來解答一些原本通過直觀解答比較難以理解的題。老師教了這個知識點以后,你要爭取早一點把輔導(dǎo)資料上有關(guān)于這一節(jié)的知識全部弄懂,這樣才好為后面解答更難的題打下基礎(chǔ),因為后面的知識點都是在前面的基礎(chǔ)上延伸的。(當(dāng)然,我指的是專屬解析幾何這一塊)
    4、考試技巧。無非幾個字——眼明手快!大家要特別細心,特別是選擇題,有一些選項比較有迷惑性,一時粗心可能就丟了一道選擇題而使你的整體分數(shù)和別人落下一大截。要爭取自己會做的題全部做出來,自己實在不會的,巧妙地猜一個。有時,最不像答案的那一個可能就是答案,看上去表面很像答案的可能根本不是。
    幾步是幾步。
    6、其實說起來,要怎么學(xué)好數(shù)學(xué)也不是一句話兩句話就能說得完的。我這里說的可能對于絕大多數(shù)人來說是廢話,但是,萬變不離其宗,也許這些話你都聽過,但是真正去做,付諸實踐,又可能收到你意想不到的效果。
    7、堅持努力,不要因為一時的失敗就放棄,失去信心。祝所有數(shù)學(xué)基礎(chǔ)不好的學(xué)生都能戰(zhàn)勝自己!
    親近數(shù)學(xué)心得體會和方法篇十五
    數(shù)學(xué)是一門讓許多人頭疼的學(xué)科,其抽象性和邏輯性常常令人望而卻步。然而,通過我的學(xué)習(xí)和實踐,我深信數(shù)學(xué)的方法是解決問題和拓寬思維的利器。在這篇文章中,我將分享我對數(shù)學(xué)方法的心得體會。
    在我看來,數(shù)學(xué)方法的第一步是理清思路。在解決數(shù)學(xué)問題時,了解問題的本質(zhì)和要求非常重要。我們應(yīng)該試圖將復(fù)雜的問題簡化為更易于理解和解決的形式,找出其中的關(guān)鍵因素和聯(lián)系。通過理清思路,我們可以確保自己不會在解決問題的過程中迷失方向,為接下來的步驟打下堅實的基礎(chǔ)。
    接下來,數(shù)學(xué)方法要求我們建立邏輯推理的能力。數(shù)學(xué)問題通常需要我們進行推導(dǎo)和證明,而這些過程都需要嚴密的邏輯思維。我們應(yīng)該注重證明中的每一個步驟,確保每一步都嚴密可靠,沒有遺漏和失誤。通過鍛煉邏輯推理的能力,我們能夠培養(yǎng)出清晰的思維和嚴密的思考習(xí)慣,提高自己的解決問題的能力。
    除了邏輯推理,數(shù)學(xué)方法還要求我們靈活運用各種數(shù)學(xué)工具和技巧。數(shù)學(xué)中有許多常用的工具和技巧,如分解、整理、代入等。這些工具和技巧可以幫助我們化解復(fù)雜的數(shù)學(xué)問題,使其變得更易于解決。在學(xué)習(xí)數(shù)學(xué)方法的過程中,我們應(yīng)該多注意積累各種數(shù)學(xué)知識和技巧,善于將它們運用到實際問題中,提高解決問題的效率和準確性。
    此外,數(shù)學(xué)方法還要求我們保持耐心和堅持。數(shù)學(xué)問題往往不是一蹴而就的,我們可能需要進行多次嘗試和思考才能找到正確的解決方案。在遇到困難和挫折時,我們不應(yīng)該輕易放棄,而應(yīng)該保持耐心和堅持。通過不斷的嘗試和思考,我們能夠逐步找到解決問題的線索和方法,最終得到滿意的結(jié)果。
    最后,數(shù)學(xué)方法還需要我們進行反思和總結(jié)。數(shù)學(xué)是一門不斷發(fā)展和演進的學(xué)科,我們應(yīng)該及時總結(jié)自己的經(jīng)驗和心得體會。在解決問題的過程中,我們應(yīng)該思考自己是如何應(yīng)用數(shù)學(xué)方法解決問題的,是否有更好的方法和思路。通過不斷地反思和總結(jié),我們能夠不斷優(yōu)化自己的數(shù)學(xué)方法,提高解決問題的效率和準確性。
    總之,數(shù)學(xué)方法是一種強大的工具,可以幫助我們解決各種問題和拓寬思維。通過理清思路、建立邏輯推理能力、靈活運用數(shù)學(xué)工具和技巧、保持耐心和堅持以及進行反思和總結(jié),我們能夠逐步提高自己的數(shù)學(xué)水平和解決問題的能力。數(shù)學(xué)方法不僅在數(shù)學(xué)課堂上有用,在日常生活和工作中也起著重要的作用。我相信只要我們認真學(xué)習(xí)和運用數(shù)學(xué)方法,我們一定能夠成為在解決問題和思考方面有獨到見解和能力的人。