2023年勾股定理應用教案(模板14篇)

字號:

    一個好的教案應該包含清晰的教學目標和合理的教學步驟。教案要注意在教學過程中適時引入案例和實例,加深學生的理解。這里有一些教學設計的范本,供大家參考和學習。
    勾股定理應用教案篇一
    勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.
    即直角三角形兩直角的平方和等于斜邊的平方.
    因此,在運用勾股定理計算三角形的邊長時,要注意如下三點:
    (2)注意分清斜邊和直角邊,避免盲目代入公式致錯;
    2.學會用拼圖法驗證勾股定理
    如,利用四個如圖1所示的直角三角形三角形,拼出如圖2所示的三個圖形.
    請讀者證明.
    請同學們自己證明圖(2)、(3).
    3.在數軸上表示無理數
    二、典例精析
    解:由勾股定理,得
    132-52=144,所以另一條直角邊的長為12.
    所以這個直角三角形的面積是×12×5=30(cm2).
    例2如圖3(1),一只螞蟻沿棱長為a的正方體表面從頂點a爬到
    頂點b,則它走過的最短路程為
    a.b.c.3ad.分析:本題顯然與例2屬同種類型,思路相同.但正方體的
    各棱長相等,因此只有一種展開圖.
    解:將正方體側面展開
    勾股定理應用教案篇二
    1、通過拼圖,用面積的方法說明勾股定理的正確性.
    2、通過實例應用勾股定理,培養(yǎng)學生的知識應用技能.
    1.用面積的方法說明勾股定理的正確.
    2.勾股定理的應用.
    勾股定理的應用.
    一、學前準備:
    1、閱讀課本第46頁到第47頁,完成下列問題:
    2、剪四個完全相同的直角三角形,然后將它們拼成如圖所示的'圖形。大正方形的面積可以表示為_________________________,又可以表示為__________________________.對比兩種表示方法,看看能不能得到勾股定理的結論。用上面得到的完全相同的四個直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說明勾股定理是正確的方法(請逐一說明)
    二、合作探究:
    (一)自學、相信自己:
    (二)思索、交流:
    (三)應用、探究:
    (四)鞏固練習:
    1、如圖,64、400分別為所在正方形的面積,則圖中字
    母a所代表的正方形面積是_________。
    三.學習體會:
    本節(jié)課我們進一步認識了勾股定理,并用兩種方法證明了這個定理,在應用此定理解決問題時,應注意只有直角三角形的三邊才有這樣的關系,如果不是直角三角形應該構造直角三角形來解決。
    2②圖
    四.自我測試:
    五.自我提高:
    勾股定理應用教案篇三
    本節(jié)將利用勾股定理及其逆定理解決一些具體的實際問題,其中需要學生了解空間圖形、對一些空間圖形進行展開、折疊等活動.學生在學習七年級上第一章時對生活中的立體圖形已經有了一定的認識,并從事過相應的實踐活動,因而學生已經具備解決本課問題所需的知識基礎和活動經驗基礎.
    二、教學任務分析
    本節(jié)是義務教育課程標準北師大版實驗教科書八年級(上)第一章《勾股定理》第3節(jié).具體內容是運用勾股定理及其逆定理解決簡單的實際問題.當然,在這些具體問題的解決過程中,需要經歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發(fā)展學生的分析問題、解決問題能力和應用意識;一些探究活動具體一定的難度,需要學生相互間的合作交流,有助于發(fā)展學生合作交流的能力.
    本節(jié)課的教學目標是:
    1.通過觀察圖形,探索圖形間的關系,發(fā)展學生的空間觀念.
    2.在將實際問題抽象成數學問題的過程中,提高分析問題、解決問題的能力及滲透數學建模的思想.
    3.在利用勾股定理解決實際問題的過程中,體驗數學學習的實用性.
    利用數學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題是本節(jié)課的重點也是難點.
    四、教法學法
    1.教學方法
    引導—探究—歸納
    本節(jié)課的教學對象是初二學生,他們的參與意識教強,思維活躍,為了實現本節(jié)課的教學目標,我力求以下三個方面對學生進行引導:
    (1)從創(chuàng)設問題情景入手,通過知識再現,孕育教學過程;
    (2)從學生活動出發(fā),順勢教學過程;
    (3)利用探索研究手段,通過思維深入,領悟教學過程.
    2.課前準備
    教具:教材、電腦、多媒體課件.
    學具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習本、文具.
    五、教學過程分析
    本節(jié)課設計了七個環(huán) 節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結;第七環(huán)節(jié):布置作業(yè).
    勾股定理應用教案篇四
    教學方法葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導?!币虼私處熇脦缀沃庇^提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。
    學法指導為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。
    勾股定理應用教案篇五
    教學目標:
    1、知識目標:
    (1)掌握勾股定理;
    (2)學會利用勾股定理進行計算、證明與作圖;
    (3)了解有關勾股定理的歷史。
    2、能力目標:
    (1)在定理的證明中培養(yǎng)學生的拼圖能力;
    (2)通過問題的解決,提高學生的運算能力
    3、情感目標:
    (1)通過自主學習的發(fā)展體驗獲取數學知識的感受;
    (2)通過有關勾股定理的歷史講解,對學生進行德育教育。
    教學重點:勾股定理及其應用
    教學難點:通過有關勾股定理的歷史講解,對學生進行德育教育。
    教學用具:直尺,微機
    教學方法:以學生為主體的討論探索法
    教學過程:
    1、新課背景知識復習
    (1)三角形的三邊關系
    (2)問題:(投影顯示)
    直角三角形的三邊關系,除了滿足一般關系外,還有另外的特殊關系嗎?
    2、定理的獲得
    讓學生用文字語言將上述問題表述出來。
    勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。
    強調說明:
    (1)勾――最短的邊、股――較長的直角邊、弦――斜邊
    (2)學生根據上述學習,提出自己的問題(待定)
    3、定理的證明方法
    方法一:將四個全等的直角三角形拼成如圖1所示的正方形。
    方法二:將四個全等的直角三角形拼成如圖2所示的正方形。
    方法三:“總統(tǒng)”法、如圖所示將兩個直角三角形拼成直角梯形。
    以上證明方法都由學生先分組討論獲得,教師只做指導、最后總結說明
    4、定理與逆定理的應用
    5、課堂小結:
    (1)勾股定理的內容
    (2)勾股定理的作用
    已知直角三角形的兩邊求第三邊
    已知直角三角形的一邊,求另兩邊的關系
    6、布置作業(yè):
    a、書面作業(yè)p130#1、2、3
    b、上交作業(yè)p132#1、3
    勾股定理應用教案篇六
    本節(jié)課教學模式主要采用“互動式”教學模式及“類比”的教學方法.通過前面所學的垂直平分線定理及其逆定理,做類比對象,讓學生自己提出問題并解決問題.在課堂教學中營造輕松、活潑的課堂氣氛.通過師生互動、生生互動、學生與教材之間的互動,造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達到培養(yǎng)學生思維能力的目的.具體說明如下:
    (1)讓學生主動提出問題
    (2)讓學生自己解決問題
    (3)通過實際問題的解決,培養(yǎng)學生的數學意識.
    勾股定理應用教案篇七
    這節(jié)課重在導入,引起學生的興趣,現談談本節(jié)課的反思:
    1、從生活出發(fā)的教學讓學生感受到學習的快樂。
    在“勾股定理”這節(jié)課中,一開始引入情景:
    平平湖水清可鑒,荷花半尺出水面。
    忽來一陣狂風急,吹倒荷花水中偃。
    湖面之上不復見,入秋漁翁始發(fā)現。
    花離根二尺遠,試問水深尺若干。
    知識回味:復習勾股定理及它的公式變形,然后是幾組簡單的計算。
    2、走進生活:以裝修房子為主線,設計木板能否通過門框,梯子底端滑出多少,求螞蟻爬的最短距離,這些都是勾股定理應用的典型例題。
    3、在教學應用勾股定理時,老是運用公式計算,學生感覺比較厭倦,為了吸引學生注意力,活躍課堂氣氛,拓寬學生思路,運用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問題。并且將問題用動畫的形式展現出來,不僅將問題形象化,又提高了學生的學習興趣。同時將實際的問題轉化為數學問題的過程用直觀的圖形表示,在降低難度的同時又鼓勵了學生能夠看到身邊的數學,從而做到學以致用。最后讓學生互相討論,就這樣讓學生在開放自由的情況下解決了該題,同時培養(yǎng)了學生之間的合作。
    4、最后介紹了勾股定理的歷史,并且推薦了一些網站,讓學生下課之后進行查閱、了解。這是為了方便學生到更廣闊的知識海洋中去尋找知識寶藏,利用網絡檢索相關信息,充實、豐富、拓展課堂學習資源,提供各種學習方式,讓學生學會選擇、整理、重組、再用這些更廣泛的資源。這種對網絡資源的重新組織,使學生對知識的需求由窄到寬,有力的促進了自主學習。這樣學生不僅能在課堂上學習到知識,還讓他們有了怎樣學習知識的方法。這就達到了新課標新理念的預定目標。
    通過本節(jié)課的教學,學生在勾股定理的學習中能感受“數形結合”和“轉化”的數學思想,體會數學的應用價值和滲透數學思想給解題帶來的便利;感受人類文明的力量,了解勾股定理的重要性。真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學習。這堂課將信息技術融入課堂,有利于創(chuàng)設教學環(huán)境,教學模式將從以教師講授為主轉為以學生動腦動手自主研究、小組學習討論交流為主,把數學課堂轉為“數學實驗室”,學生通過自己的活動得出結論、使創(chuàng)新精神與實踐能力得到了發(fā)展。不足之處:學生合作意識不強,討論氣氛不夠活躍;計算不熟練,書寫不規(guī)范。
    勾股定理應用教案篇八
    星期三上午第一節(jié)講了《勾股定理逆定理》第一課時,課后效果和我預想的一樣,由于探究內容偏多,課堂容量大,后半部分感覺倉促,留給學生的思考時間顯得不足。
    回頭反思,這節(jié)課的設計思路比較合理:定理來源于生活,服務于生活。我由勾股定理引出一道生活實際問題,引起學生的求知欲,然后和學生分三種方法探究,得出“勾股定理逆定理”,經過課堂練習夯實基礎,最后利用新知解決開課時提出的生活實際問題,首尾呼應,學以致用。
    對互逆命題,原命題,逆命題,互逆定理,逆定理等概念的講解可隨題點化,而詳細講解、隨堂練習可做為第二課時的重點,讓出更多時間來做勾股定理逆定理的相應練習,特別是應加大有靈活度和難度生活習題的練習,拓寬學生知識面,提高學生的發(fā)散思維能力。
    總之,課堂設計要做到一個“狠”字,該刪除的就刪,教學目標不可貪多。我們圍繞授課重點做相應探究,練習,次重點可放在下個課時重點講解,探究時間要預留充足,相應練習寧精勿多,注重雙基才是根本。
    勾股定理應用教案篇九
    1、知識與技能目標
    學會觀察圖形,勇于探索圖形間的關系,培養(yǎng)學生的空間觀念。
    2、過程與方法
    (1)經歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力。
    (2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數學建模的思想。
    3、情感態(tài)度與價值觀
    (1)通過有趣的問題提高學習數學的興趣。
    (2)在解決實際問題的過程中,體驗數學學習的實用性。
    教學重點:
    探索、發(fā)現事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題。
    教學難點:
    利用數學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題。
    教學準備:
    多媒體
    教學過程:
    第一環(huán)節(jié):創(chuàng)設情境,引入新課(3分鐘,學生觀察、猜想)
    情景:
    第二環(huán)節(jié):合作探究(15分鐘,學生分組合作探究)
    學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內討論每種方案的路線計算方法,通過具體計算,總結出最短路線。讓學生發(fā)現:沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數學解決實際問題的方法:建立數學模型,構圖,計算。
    第三環(huán)節(jié):做一做(7分鐘,學生合作探究)
    教材23頁
    李叔叔想要檢測雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
    (1)你能替他想辦法完成任務嗎?
    第四環(huán)節(jié):鞏固練習(10分鐘,學生獨立完成)
    2.如圖,臺階a處的螞蟻要爬到b處搬運食物,它怎么走最近?并求出最近距離。
    第五環(huán)節(jié)課堂小結(3分鐘,師生問答)
    內容:如何利用勾股定理及逆定理解決最短路程問題?
    第六環(huán)節(jié):布置作業(yè)(2分鐘,學生分別記錄)
    作業(yè):1.課本習題1.5第1,2,3題.
    要求:a組(學優(yōu)生):1、2、3
    b組(中等生):1、2
    c組(后三分之一生):1
    勾股定理應用教案篇十
    教學目標:
    1、知識與技能目標:理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
    2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
    3、情感、態(tài)度與價值觀目標:了解中國古代的數學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數學的美感,從而了解數學,喜歡幾何。
    教學重點:
    引導學生經歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
    教學難點:
    用面積法方法證明勾股定理
    課前準備:
    多媒體ppt,相關圖片
    教學過程:
    (一)情境導入
    1、多媒體課件放映圖片欣賞:勾股定理數形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,國際數學大會會標等。通過圖形欣賞,感受數學之美,感受勾股定理的文化價值。
    勾股定理應用教案篇十一
    1.理解勾股定理的逆定理的證明方法和證明過程;
    2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是直角三角形;
    二數學思考
    1.通過勾股定理的逆定理的探索,經歷知識的發(fā)生發(fā)展與形成的過程;
    2.通過三角形三邊的數量關系來判斷三角形的形狀,體驗數形結合法的應用.
    三解決問題
    通過勾股定理的逆定理的證明及其應用,體會數形結合法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題.
    四情感態(tài)度
    2.在探究勾股定理的逆定理的證明及應用的活動中,通過一系列富有探究性的問題,滲透與他人交流合作的意識和探究精神.
    勾股定理應用教案篇十二
    通過本節(jié)課的教學,我采用了合作探究、操作體驗的教學方式。在課堂教學中,首先創(chuàng)設情境,提出問題;再讓學生通過做一做、測量、判斷、找規(guī)律,猜想出一般性的結論;然后由學生想、做、量一量、猜一猜、去驗證結論……使學生自始至終感悟、體驗、嘗試到了知識的生成過程,品嘗著成功后帶來的樂趣。這不僅使學生學到獲取知識的思想和方法,同時也體會到在解決問題的過程中與他人合作的重要性,而且為學生今后獲取知識以及探索、發(fā)現和創(chuàng)造打下了良好的基礎,更增強了學生敢于實踐、勇于探索、不斷創(chuàng)新和努力學習數學知識的信心和勇氣。
    作為教師,在課堂教學中要始終牢記:學生才是學習的主體,學生才是課堂的主體;教師只是課堂教學活動的組織者、引導者與合作者。因此,課堂教學過程的設計,也必須體現出學生的主體性。
    勾股定理應用教案篇十三
    了解勾股定理的一些證明方法,會簡單應用勾股定理解決問題
    在充分觀察、歸納、猜想的基礎上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數形結合、從特殊到一般等數學思想。
    通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學生的民族自豪感。
    1、創(chuàng)設情境
    師生活動:教師引導學生尋找圖形中的直角三角形和正方形等,并引導學生發(fā)現直角三角形的全等關系,指出通過今天的學習,就能理解會徽圖案的含義。
    設計意圖:本節(jié)課是本章的起始課,重視引言教學,從國際數學家大會的會徽說起,設置懸念,引入課題。
    2、探究勾股定理
    觀看洋蔥數學中關于勾股定理引入的視頻,讓我們一起走進神奇的數學世界
    追問:由這三個正方形的邊長構成的等腰直角三角形三條邊長之間又有怎么樣的關系?
    師生活動:教師引導學生發(fā)現正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
    設計意圖:從最特殊的等腰直角三角形入手,便于學生觀察得到結論
    問題3:數學研究遵循從特殊到一般的數學思想,既然我們得到了等腰直角三角形三邊的這種特殊的數量關系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數量關系也同樣成立。
    師生活動:學生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結得出可以通過割、補兩種方法,求出其面積。
    勾股定理應用教案篇十四
    勾股定理是揭示三角形三條邊數量關系的一條非常重要的性質,也是幾何中最重要的定理之一。它是解直角三角形的主要依據之一,同時在實際生活中具有廣泛的用途,“數學源于生活,又用于生活”正是這章書所體現的主要思想。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際操作,使學生獲得較為直觀的印象;通過聯系比較、探索、歸納,幫助學生理解勾股定理,以利于進行正確的應用。
    本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關系,發(fā)現兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現勾股定理,這時教科書以命題的形式呈現了勾股定理。關于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數學問題中的應用,使學生對勾股定理的作用有一定的認識。
    一、知識與技能
    1、探索直角三角形三邊關系,掌握勾股定理,發(fā)展幾何思維。
    2、應用勾股定理解決簡單的實際問題
    3學會簡單的合情推理與數學說理
    二、過程與方法
    引入兩段中西關于勾股定理的史料,激發(fā)同學們的興趣,引發(fā)同學們的思考。通過動手操作探索與發(fā)現直角三角形三邊關系,經歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數學表達能力,并感受勾股定理的應用知識。
    三、情感與態(tài)度目標
    通過對勾股定理歷史的了解,感受數學文化,激發(fā)學習興趣;在探究活動中,學生親自動手對勾股定理進行探索與驗證,培養(yǎng)學生的合作交流意識和探索精神,以及自主學習的能力。
    四、重點與難點
    1、探索和證明勾股定理
    2、熟練運用勾股定理
    一、創(chuàng)設情景,揭示課題
    1、教師展示圖片并介紹第一情景
    以中國最早的一部數學著作——《周髀算經》的開頭為引,介紹周公向商高請教數學知識時的對話,為勾股定理的出現埋下伏筆。
    周公問:“竊聞乎大夫善數也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數安從出?”商高答:“數之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數之所由生也?!?BR>    2、教師展示圖片并介紹第二情景
    畢達哥拉斯是古希臘著名的數學家。相傳在2500年以前,他在朋友家做客時,發(fā)現朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
    二、師生協(xié)作,探究問題
    1、現在請你也動手數一下格子,你能有什么發(fā)現嗎?
    2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?
    3、你能得到什么結論嗎?
    三、得出命題
    勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
    四、勾股定理的證明
    第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。
    第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、,斜邊為 的
    角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。
    因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。
    這種證明方法很簡明,很直觀,它表現了我國古代數學家趙爽高超的證題思想和對數學的鉆研精神,是我們中華民族的驕傲。
    五、應用舉例,拓展訓練,鞏固反饋。
    勾股定理的靈活運用勾股定理在實際的生產生活當中有著廣泛的應用。勾股定理的發(fā)現和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。
    六、歸納總結
    2、方法歸納:數方格看圖找關系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現。
    七、討論交流
    讓學生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導,讓學生對勾股定理的概念豁然開朗,為后面勾股定理的應用打下基礎。
    我們班的同學很聰明。大家很快就通過數格子發(fā)現了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學們課后在反思天地中都發(fā)表一下自己的學習心得。