2023年人工智能論文大學(xué)生(模板15篇)

字號(hào):

    總結(jié)是我們不斷進(jìn)步和學(xué)習(xí)的關(guān)鍵環(huán)節(jié),它使我們能夠從失敗和挫折中汲取教訓(xùn)??偨Y(jié)應(yīng)該注重邏輯性和系統(tǒng)性,做到有始有終。以下是一些名人的總結(jié)感悟,或許能夠給你一些啟示。
    人工智能論文大學(xué)生篇一
    人工智能(artificialintelligence),英文縮寫(xiě)為ai,也稱(chēng)機(jī)器智能?!叭斯ぶ悄堋币辉~最初是在1956年的dartmouth學(xué)會(huì)上提出的。它是計(jì)算機(jī)科學(xué)、控制論、信息論、神經(jīng)生理學(xué)、心理學(xué)、語(yǔ)言學(xué)等多種學(xué)科互相滲透而發(fā)展起來(lái)的一門(mén)綜合性學(xué)科。從計(jì)算機(jī)應(yīng)用系統(tǒng)的角度出發(fā),人工智能是研究如何制造智能機(jī)器或智能系統(tǒng)來(lái)模擬人類(lèi)智能活動(dòng)的能力,以延伸人們智能的科學(xué)。
    人工智能是計(jì)算機(jī)科學(xué)的一個(gè)分支,它企圖了解智能的實(shí)質(zhì),并生產(chǎn)出一種新的能與人類(lèi)智能相似的方式做出反應(yīng)的智能機(jī)器。人工智能的發(fā)展史是和計(jì)算機(jī)科學(xué)與技術(shù)的發(fā)展史聯(lián)系在一起的,目前能夠用來(lái)研究人工智能的主要物質(zhì)手段以及能夠?qū)崿F(xiàn)人工智能技術(shù)的機(jī)器就是計(jì)算機(jī),人工智能在21世紀(jì)必將為發(fā)展國(guó)民經(jīng)濟(jì)和改善人類(lèi)生活做出更大的貢獻(xiàn)。
    事物的發(fā)展都是曲折的,人工智能的發(fā)展也是如此。人工智能的發(fā)展歷程大致可以劃分為以下五個(gè)階段:
    第一階段:20世紀(jì)50年代,人工智能的興起和冷落。人工智能概念在1956年首次提出后,相繼出現(xiàn)了一批顯著的成果,如機(jī)器定理證明、跳棋程序、通用問(wèn)題s求解程序、lisp表處理語(yǔ)言等。但是由于消解法推理能力有限以及機(jī)器翻譯等的失敗,使人工智能走入了低谷。這一階段的特點(diǎn)是重視問(wèn)題求解的方法,而忽視了知識(shí)的重要性。
    第二階段:60年代末到70年代,專(zhuān)家系統(tǒng)出現(xiàn),使人工智能研究出現(xiàn)新高潮。dendral化學(xué)質(zhì)譜分析系統(tǒng)、mycin疾病診斷和治療系統(tǒng)、prospectior探礦系統(tǒng)、hearsay—ii語(yǔ)音理解系統(tǒng)等專(zhuān)家系統(tǒng)的研究和開(kāi)發(fā),將人工智能引向了實(shí)用化。并且,1969年成立了國(guó)際人工智能聯(lián)合會(huì)議(internationaljointconferencesonartificialintelligence即ijcai)。
    第三階段:80年代,隨著第五代計(jì)算機(jī)的研制,人工智能得到了飛速的發(fā)展。日本在1982年開(kāi)始了“第五代計(jì)算機(jī)研制計(jì)劃”,即“知識(shí)信息處理計(jì)算機(jī)系統(tǒng)kips”,其目的是使邏輯推理達(dá)到數(shù)值運(yùn)算那么快。雖然此計(jì)劃最終失敗,但它的開(kāi)展形成了一股研究人工智能的熱潮。
    第四階段:80年代末,神經(jīng)網(wǎng)絡(luò)飛速發(fā)展,。1987年,美國(guó)召開(kāi)第一次神經(jīng)網(wǎng)絡(luò)國(guó)際會(huì)議,宣告了這一新學(xué)科的誕生。此后,各國(guó)在神經(jīng)網(wǎng)絡(luò)方面的投資逐漸增加,神經(jīng)網(wǎng)絡(luò)迅速發(fā)展起來(lái)。
    第五階段:90年代,人工智能出現(xiàn)新的研究高潮。由于網(wǎng)絡(luò)技術(shù)特別是國(guó)際互連網(wǎng)技術(shù)的發(fā)展,人工智能開(kāi)始由單個(gè)智能主體研究轉(zhuǎn)向基于網(wǎng)絡(luò)環(huán)境下的分布式人工智能研究。不僅研究基于同一目標(biāo)的分布式問(wèn)題求解,而且研究多個(gè)智能主體的多目標(biāo)問(wèn)題求解,將人工智能更面向?qū)嵱谩A硗?,由于hopfield多層神經(jīng)網(wǎng)絡(luò)模型的提出,使人工神經(jīng)網(wǎng)絡(luò)研究與應(yīng)用出現(xiàn)了欣欣向榮的景象。
    1、人工智能在管理系統(tǒng)中的應(yīng)用
    人工智能應(yīng)用于企業(yè)管理的意義主要不在于提高效率,而是用計(jì)算機(jī)實(shí)現(xiàn)人們非常需要做,但工業(yè)工程信息技術(shù)是靠人工卻做不了或是很難做到的事情。把人工智能應(yīng)用于企業(yè)管理中,以數(shù)據(jù)管理和處理為中心,圍繞企業(yè)的核心業(yè)務(wù)和主導(dǎo)流程建立若干個(gè)主題數(shù)據(jù)庫(kù),而所有的應(yīng)用系統(tǒng)應(yīng)該圍繞主題數(shù)據(jù)庫(kù)來(lái)建立和運(yùn)行。也就是說(shuō),將企業(yè)各部門(mén)的數(shù)據(jù)進(jìn)行統(tǒng)一集成管理,搭建人工智能的應(yīng)用平臺(tái),使之成為企業(yè)管理與決策中的關(guān)鍵因子,這些正體現(xiàn)了人工智能在企業(yè)管理中的巨大價(jià)值。
    2、人工智能在工程領(lǐng)域中的應(yīng)用
    人工智能在地質(zhì)勘探、石油化工等工程領(lǐng)域也發(fā)揮著非常重要的作用。早在1978年,美國(guó)斯坦福國(guó)際研究所就研發(fā)制成礦藏勘探和評(píng)價(jià)專(zhuān)家系統(tǒng)“prospector”,該系統(tǒng)用于勘探評(píng)價(jià)、區(qū)域資源估值和鉆井井位選擇等,是工程領(lǐng)域的首個(gè)人工智能專(zhuān)家系統(tǒng),其發(fā)現(xiàn)了一個(gè)鉬礦沉積,價(jià)值超過(guò)1億美元。
    3、人工智能在技術(shù)研究中的應(yīng)用
    人工智能在電子技術(shù)領(lǐng)域的應(yīng)用可謂由來(lái)已久。隨著網(wǎng)絡(luò)的迅速發(fā)展,網(wǎng)絡(luò)技術(shù)的安全已經(jīng)成了人們關(guān)心的重點(diǎn),因此必須在傳統(tǒng)技術(shù)的基礎(chǔ)上進(jìn)行網(wǎng)絡(luò)安全技術(shù)的`改進(jìn)和變更,大力發(fā)展數(shù)據(jù)挖掘技術(shù)、人工免疫技術(shù)等高效的ai技術(shù),開(kāi)發(fā)更高級(jí)的ai通用與專(zhuān)用語(yǔ)言和應(yīng)用環(huán)境以及開(kāi)發(fā)專(zhuān)用機(jī)器,而人工智能技術(shù)則為其提供了一定的可能。
    人工智能的近期研究目標(biāo)在于建造智能計(jì)算機(jī),用以代替人類(lèi)去從事各種復(fù)雜的腦力勞動(dòng)。正是根據(jù)這一近期研究目標(biāo),人們才把人工智能理解為計(jì)算機(jī)科學(xué)的一個(gè)分支。當(dāng)然,人工智能還有它的遠(yuǎn)期研究目標(biāo),即探究人類(lèi)智能和機(jī)器智能的基本原理,研究用自動(dòng)機(jī)(automata)模擬人類(lèi)的思維過(guò)程和智能行為。這個(gè)長(zhǎng)期目標(biāo)遠(yuǎn)遠(yuǎn)超出計(jì)算機(jī)科學(xué)的范疇,幾乎涉及自然科學(xué)和社會(huì)科學(xué)的所有學(xué)科。如今,人工智能已經(jīng)進(jìn)入了21世紀(jì),其必將為發(fā)展國(guó)民經(jīng)濟(jì)和改善人類(lèi)生活做出更大的貢獻(xiàn)。但是,從人工智能目前的發(fā)展現(xiàn)狀來(lái)看,其研究也存在一定的問(wèn)題,這些主要表現(xiàn)在以下三個(gè)方面:
    1、宏觀與微觀隔離
    一方面是哲學(xué)、認(rèn)知科學(xué)、思維科學(xué)和心理學(xué)等學(xué)科所研究的智能層次太高、太抽象;另一方面是人工智能邏輯符號(hào)、神經(jīng)網(wǎng)絡(luò)和行為主義所研究的智能層次太低。這兩方面之間相距太遠(yuǎn),中間還有許多層次尚待研究,目前還無(wú)法把宏觀與微觀有機(jī)地結(jié)合起來(lái)和相互滲透。
    2、全局與局部割裂
    人工智能是腦系統(tǒng)的整體效應(yīng),有著豐富的層次和多個(gè)側(cè)面。但是,符號(hào)主義只抓住人腦的抽象思維特性;連接主義只模仿人的形象思維特性;行為主義則著眼于人類(lèi)智能行為特性及其進(jìn)化過(guò)程。這就導(dǎo)致了三者之間存在著明顯的局限性。因此,必須從多層次、多因素、多維和全局觀點(diǎn)來(lái)研究人工智能,才能克服上述局限。
    3、理論與實(shí)際脫節(jié)
    大腦的實(shí)際工作,在宏觀上已知道不少;但是智能的千姿百態(tài),變幻莫測(cè),復(fù)雜的難以理出頭緒。在微觀上,我們對(duì)大腦的工作機(jī)制知之甚少,似是而非,這也使我們難以找出規(guī)律。在這種背景下提出的各種人工智能理論,只是部分人的主觀猜想,能在某些方面表現(xiàn)出“智能”就已經(jīng)算是相當(dāng)?shù)某晒Α?BR>    人工智能一直處于計(jì)算機(jī)技術(shù)的前沿,其研究的理論和發(fā)現(xiàn)在很大程度上將決定計(jì)算機(jī)技術(shù)的發(fā)展方向。人工智能研究與應(yīng)用雖取得了不少成果,但離全面推廣應(yīng)用還有很大的距離,還有許多問(wèn)題有待解決,且需要多學(xué)科的研究專(zhuān)家共同合作。因此,要想從根本上了解人腦的結(jié)構(gòu)和功能,完成人工智能的研究任務(wù),就必須去尋找和建立更新的人工智能框架和理論體系,進(jìn)而為人工智能的進(jìn)一步發(fā)展奠定堅(jiān)實(shí)的理論基礎(chǔ)。我們堅(jiān)信在不久的將來(lái),人工智能技術(shù)的應(yīng)用與發(fā)展必將會(huì)給人們的生活、工作和教育等帶來(lái)更大的影響。
    人工智能論文大學(xué)生篇二
    智能交通系統(tǒng)(intelligent transportation systems,簡(jiǎn)稱(chēng)its)是將先進(jìn)的信息技術(shù)、數(shù)據(jù)通訊傳輸技術(shù)、電子傳感技術(shù)、電子控制技術(shù)及計(jì)算機(jī)處理技術(shù)等有效地集成運(yùn)用于整個(gè)地面交通管理系統(tǒng)而建立的一種在大范圍內(nèi)、全方位發(fā)揮作用的,實(shí)時(shí)、準(zhǔn)確、高效的綜合交通運(yùn)輸管理系統(tǒng)。its能有效地利用現(xiàn)有交通設(shè)施、減少交通負(fù)荷和環(huán)境污染、保證交通安全、提高運(yùn)輸效率、促進(jìn)社會(huì)經(jīng)濟(jì)發(fā)展、提高人民生活質(zhì)量,并以推動(dòng)社會(huì)信息化及形成新產(chǎn)業(yè)而受到各國(guó)的重視。目前已形成世界二十一世紀(jì)的發(fā)展方向。
    交通仿真是智能交通領(lǐng)域的重要分支,它是利用最先進(jìn)的計(jì)算機(jī)技術(shù),通過(guò)仿真模擬的方法來(lái)分析交通問(wèn)題,輔助交通管理人員做決策。傳統(tǒng)上,數(shù)學(xué)推導(dǎo)、科學(xué)實(shí)驗(yàn)是進(jìn)行科學(xué)研究、解決科學(xué)問(wèn)題的主要方法。對(duì)于交通問(wèn)題來(lái)說(shuō),由于參與交通的人很多,影響交通出行的因素也很多,人們很難、甚至無(wú)法對(duì)交通問(wèn)題建立精確的數(shù)學(xué)模型。同時(shí),由于安全、法規(guī),以及開(kāi)銷(xiāo)方面的原因,進(jìn)行現(xiàn)場(chǎng)交通實(shí)驗(yàn)通常也是不可行的。而交通仿真恰恰能夠有效地解決上述兩個(gè)方面的困難。
    然而,傳統(tǒng)的交通仿真由于設(shè)計(jì)理念上的原因,并不能從根本上有效地解決交通問(wèn)題。這是因?yàn)?,交通系統(tǒng)是一個(gè)龐大的復(fù)雜系統(tǒng),必須用對(duì)付復(fù)雜系統(tǒng)的方法來(lái)處理,也就是要用綜合的方法,而不是還原分解的方法來(lái)處理。
    1)城市交通系統(tǒng)是由經(jīng)濟(jì)、環(huán)境、人口等因素綜合作用的結(jié)果,必須全面綜合地考慮城市交通和這些系統(tǒng)之間的關(guān)系。例如,不能為例城市交通問(wèn)題的解決,而導(dǎo)致城市生態(tài)惡化,危害人居環(huán)境;不能為了城市交通的暢通,阻礙城市社會(huì)經(jīng)濟(jì)活動(dòng)的健康發(fā)展。我們必須在已有工作的基礎(chǔ)上,突破傳統(tǒng)思維,探索研究此類(lèi)復(fù)雜系統(tǒng)的新途徑,而基于人工系統(tǒng)的研究方法正是這種有效途徑之一。
    2)城市交通問(wèn)題不存在“一勞永逸”的解決方案。城市交通系統(tǒng)涉及人與社會(huì)的動(dòng)態(tài)變化,本身也在不斷變化和發(fā)展之中,不可避免地需要一個(gè)不斷深化地認(rèn)識(shí)過(guò)程,這類(lèi)系統(tǒng)實(shí)際上不存在精確完備的整體解析模型。因此,無(wú)法“一勞永逸”地解決城市交通問(wèn)題,我們需要基于“不斷探索和改善”的'原則,研究建立有效可行的計(jì)算實(shí)驗(yàn)方法體系,為不斷地完善城市交通系統(tǒng)的綜合可持續(xù)發(fā)展方案提供科學(xué)依據(jù)。
    3)城市交通問(wèn)題不存在一般意義下的最優(yōu)解,更不存在唯一的最優(yōu)解。首先,基于解析模型的最優(yōu)解與假設(shè)條件直接相關(guān),具有條件敏感性,但對(duì)于城市交通這樣的問(wèn)題,假設(shè)條件與實(shí)際情況往往存在很大差別。其次,解決這些問(wèn)題一般不存在單一的優(yōu)化指標(biāo),而多層次多目標(biāo)優(yōu)化往往導(dǎo)致多個(gè)甚至無(wú)數(shù)個(gè)解決方案,就連采用近似模型的多目標(biāo)優(yōu)化也是如此。再者,對(duì)于這類(lèi)復(fù)雜系統(tǒng),有時(shí)甚至連確定一個(gè)量化的綜合優(yōu)化指標(biāo)也有困難,特別是由于復(fù)雜系統(tǒng)長(zhǎng)期行為的不可預(yù)測(cè)性,試圖求解其某一最優(yōu)化解決方案本身就是不可行的。因此,我們應(yīng)當(dāng)接受有效解決方案的概念,而且還要接受一般情況下存在多個(gè)有效解決方案的事實(shí)。在這種情況下,我們應(yīng)該利用平行系統(tǒng)方法,追求具有動(dòng)態(tài)適應(yīng)能力的有效解決方案。
    基于以上分析,中國(guó)科學(xué)研自動(dòng)化所王飛躍研究員提出了人工交通系統(tǒng)的概念。其基本思想是利用人工社會(huì)的理論與方法,把交通仿真推向更高的層次、獲得更廣的視野。它利用基于代理的建模、面向?qū)ο蟮木幊毯筒⑿蟹植际接?jì)算等方法和技術(shù),“生長(zhǎng)”和“培育”交通系統(tǒng),即“人工交通系統(tǒng)”。
    利用人工交通系統(tǒng)解決問(wèn)題的思路跟改革開(kāi)放摸著石頭過(guò)河差不多,不斷探索和改善,使過(guò)程、方法更科學(xué)化、系統(tǒng)化、綜合化,不斷改善探索建立城市交通、物流、生態(tài)綜合發(fā)展的理論和方法體系。
    三是平行管理運(yùn)行,虛擬交通系統(tǒng)與實(shí)際交通系統(tǒng)相結(jié)合,直接采集現(xiàn)實(shí)交通數(shù)據(jù),進(jìn)行超前運(yùn)算,以判斷可能發(fā)生的交通事件,提前采取預(yù)防措施,為交通的高效暢通提供保障。
    1)在宏觀認(rèn)識(shí)上,人工交通系統(tǒng)不是單純的討論交通自身的問(wèn)題。相反,人工交通系統(tǒng)將交通看作社會(huì)整體的一個(gè)子系統(tǒng),與經(jīng)濟(jì)、人口、環(huán)境、氣候等子系統(tǒng)具有平等的地位,并將各個(gè)子系統(tǒng)之間的相互銜接、相互聯(lián)系、相互作用和相互影響作為研究的重點(diǎn)之一。
    2)在仿真方法上,人工交通系統(tǒng)屬于微觀仿真的范疇,但是不局限于研究局部的交通問(wèn)題。人工交通系統(tǒng)面向大區(qū)域的仿真研究,采用復(fù)雜性科學(xué)中“涌現(xiàn)”的原理,在底層建立單個(gè)交通出行元素的代理模型,通過(guò)大交通區(qū)域內(nèi)單個(gè)代理模型之間的相互作用,“涌現(xiàn)”出宏觀的交通現(xiàn)象。
    3)在實(shí)現(xiàn)手段上,人工交通系統(tǒng)不能在單一、孤立的計(jì)算機(jī)上進(jìn)行仿真,要使人工交通系統(tǒng)具備真實(shí)交通系統(tǒng)的分散性和社會(huì)性,必須采用先進(jìn)的分布式計(jì)算方法,如網(wǎng)格和p2p等,在互聯(lián)網(wǎng)上建立結(jié)構(gòu)化、分散化的虛擬交通路網(wǎng)系統(tǒng),并且通過(guò)終端界面將網(wǎng)絡(luò)中的真實(shí)人吸引到人工交通系統(tǒng)的運(yùn)行中來(lái),以使每一個(gè)代理模型具有逼近現(xiàn)實(shí)的社會(huì)屬性。
    4)在仿真目的上,人工交通系統(tǒng)不是一味的追求逼近現(xiàn)實(shí)交通環(huán)境和狀態(tài)。除此之外,人工交通系統(tǒng)可以通過(guò)調(diào)整參數(shù)、添加隨機(jī)事件等方法產(chǎn)生現(xiàn)實(shí)交通系統(tǒng)可能但尚未發(fā)生的交通現(xiàn)象,用以制定突發(fā)事故的緊急預(yù)案、交通控制方案的預(yù)評(píng)估以及交通參與人員的培訓(xùn)等等。
    人工系統(tǒng)說(shuō)起來(lái)有一點(diǎn)抽象,其實(shí)說(shuō)穿了很簡(jiǎn)單。第一是充分利用計(jì)算機(jī)技術(shù)的發(fā)展,第二是仿真與模擬的常態(tài)化。仿真不再是一個(gè)項(xiàng)目立項(xiàng)前跑一跑看看行不行的手段,仿真要秒秒在、分分在、永遠(yuǎn)在。它是經(jīng)驗(yàn)與知識(shí)的數(shù)字化、動(dòng)態(tài)化和即時(shí)化,使人工影響現(xiàn)實(shí),虛擬影響實(shí)在。
    人工交通系統(tǒng)完善之后,人們可以像玩網(wǎng)絡(luò)游戲一樣,作為一個(gè)行人或司機(jī)加入到系統(tǒng)中,不必出門(mén)即可體驗(yàn)交通;交警同志可以在人工交通系統(tǒng)中學(xué)習(xí)指揮交通,而不必?fù)?dān)心造成擁堵;交通分析人員可以利用人工交通系統(tǒng)研究各種突發(fā)事故對(duì)交通的影響,而不必?fù)?dān)心人民的生命財(cái)產(chǎn)受到威脅;交通管理和決策人員可以在人工交通系統(tǒng)試驗(yàn)交通政策和方案,而不必承擔(dān)決策失敗的風(fēng)險(xiǎn)。
    人工智能論文大學(xué)生篇三
    :隨著社會(huì)信息技術(shù)和計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)的發(fā)展,人們對(duì)網(wǎng)絡(luò)應(yīng)用的需求也原來(lái)越多,這就需要不斷研究計(jì)算機(jī)網(wǎng)絡(luò)技術(shù),由于人工智能在一定程度上成為科學(xué)技術(shù)前言領(lǐng)域,所以世界上各個(gè)國(guó)家對(duì)人工智能的發(fā)展越來(lái)越重視。本文首先分析其所具有的重要意義,然后研究其在應(yīng)用過(guò)程中的作用,提出以下內(nèi)容。
    計(jì)算機(jī);人工智能;應(yīng)用;分析
    目前由于人工智能的不斷成熟,人們?cè)谏罘矫嬉约肮ぷ鞯倪^(guò)程中,智能化產(chǎn)品隨處可見(jiàn)。這不僅對(duì)人們?cè)诠ぷ髦械男蔬M(jìn)行提高,同時(shí)還對(duì)其生活質(zhì)量進(jìn)行加強(qiáng)。所以人工智能的發(fā)展在一定程度上離不開(kāi)計(jì)算機(jī)網(wǎng)絡(luò)技術(shù),只有對(duì)計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)進(jìn)行相應(yīng)的依靠,才能夠讓人工智能研究出更多的成果。
    由于計(jì)算機(jī)技術(shù)的快速發(fā)展,網(wǎng)絡(luò)信息安全問(wèn)題在一定程度上是人們目前比較關(guān)注的一個(gè)重要問(wèn)題。在網(wǎng)絡(luò)管理系統(tǒng)應(yīng)用中,其網(wǎng)絡(luò)監(jiān)控以及網(wǎng)絡(luò)控制是其比較重要的功能,信息能夠及時(shí)有效的獲取以及正確的處理對(duì)其起著決定性作用。所以,對(duì)計(jì)算機(jī)技術(shù)智能化進(jìn)行實(shí)現(xiàn)是比較必要的。由于計(jì)算機(jī)得到了不斷的深入以及管廣泛的運(yùn)用,在一定程度上導(dǎo)致用戶對(duì)網(wǎng)絡(luò)安全在管理方面的需求比較高,對(duì)自身的信息安全進(jìn)行有效的保證。目前網(wǎng)絡(luò)犯罪現(xiàn)象比較多,計(jì)算機(jī)只有在具備較快的反應(yīng)力和靈敏觀察力的狀況下,才能夠?qū)τ脩粜畔⑦M(jìn)行侵犯的違法活動(dòng)進(jìn)行及時(shí)遏制。充分的利用人工智能技術(shù),建立起相對(duì)較系統(tǒng)化的管理,讓其不僅對(duì)信息進(jìn)行自動(dòng)的收集,同時(shí)還能夠?qū)W(wǎng)絡(luò)出現(xiàn)的故障進(jìn)行及時(shí)診斷,對(duì)網(wǎng)絡(luò)故障及時(shí)遏制,運(yùn)用有效的措施對(duì)計(jì)算機(jī)網(wǎng)絡(luò)系統(tǒng)進(jìn)行及時(shí)的恢復(fù),保證用戶信息的安全。計(jì)算機(jī)技術(shù)在發(fā)展的過(guò)程中對(duì)人工智能應(yīng)用起著決定性作用,人工智能技術(shù)也在一定程度上對(duì)計(jì)算機(jī)技術(shù)的發(fā)展起著促進(jìn)作用。不斷的跟蹤動(dòng)態(tài)化信息,為用戶提供準(zhǔn)確的信息資源??偟膩?lái)說(shuō),計(jì)算機(jī)網(wǎng)絡(luò)在管理的過(guò)程中有效的運(yùn)用人工智能,對(duì)網(wǎng)絡(luò)管理水平進(jìn)行不斷的提高。
    2.1安全管理應(yīng)用
    網(wǎng)絡(luò)安全所具有的漏洞相對(duì)比較多,用戶在網(wǎng)絡(luò)中自身的資料信息安全是現(xiàn)階段人們比較關(guān)注以及重視的主要問(wèn)題。在對(duì)網(wǎng)絡(luò)安全進(jìn)行管理時(shí),可以對(duì)人工智能技術(shù)進(jìn)行充分的運(yùn)用,在一定程度上能夠?qū)τ脩糇陨淼碾[身進(jìn)行有效的保護(hù)。主要表現(xiàn)為:一是,智能防火墻的應(yīng)用;二是,智能反應(yīng)垃圾郵件方面;三是,入侵檢測(cè)方面等。智能防護(hù)墻主要應(yīng)用的就是智能化識(shí)別技術(shù),通過(guò)概率以及統(tǒng)計(jì)方式、決策方法和計(jì)算等對(duì)信息數(shù)據(jù)不僅進(jìn)行有效的識(shí)別,同時(shí)還能對(duì)其相應(yīng)的處理,對(duì)匹配檢查過(guò)程中需要的計(jì)算進(jìn)行消除,充分認(rèn)識(shí)網(wǎng)絡(luò)行為特征值,訪問(wèn)可以直接進(jìn)行控制,把存在的網(wǎng)絡(luò)及時(shí)發(fā)現(xiàn),攔截以及阻止有害信息的彈出。智能防火墻能夠在一定程度上避免網(wǎng)絡(luò)站點(diǎn)受到黑客的攻擊,遏制病毒傳播,對(duì)相關(guān)局域網(wǎng)進(jìn)行相應(yīng)的管理和控制,反之就會(huì)導(dǎo)致病毒以及木馬的傳播。在智能防火墻中,比較重要的就是入侵檢測(cè),它屬于防護(hù)墻后的.第二安全閘門(mén),在對(duì)網(wǎng)絡(luò)安全保證方面起著重要的作用。針對(duì)入侵檢測(cè)技術(shù)而言,主要能夠在一定程度上對(duì)網(wǎng)絡(luò)中的數(shù)據(jù)進(jìn)行有效的分析,并且對(duì)其進(jìn)行及時(shí)的處理,把部分?jǐn)?shù)據(jù)過(guò)濾出去,數(shù)據(jù)檢測(cè)后的報(bào)告分析報(bào)告給用戶。入侵檢測(cè)在對(duì)網(wǎng)絡(luò)性能不產(chǎn)生影響的前提下監(jiān)測(cè)網(wǎng)絡(luò),為操作上的失誤以及內(nèi)外部攻擊提供一定的保護(hù)。針對(duì)智能型反垃圾而言,其自身的郵件系統(tǒng)能夠?qū)τ脩羿]箱進(jìn)行有效的監(jiān)測(cè),對(duì)郵箱進(jìn)行相應(yīng)識(shí)別,把郵箱中存在的垃圾充分的篩選出來(lái)。如果郵件進(jìn)入郵箱后,就會(huì)進(jìn)行掃描郵箱,在一定程度上把垃圾郵箱的分類(lèi)信息發(fā)給用戶,提醒用戶要對(duì)其進(jìn)行及時(shí)的處理,避免給郵箱安全帶來(lái)影響。
    2.2人工智能agent技術(shù)應(yīng)用分析
    針對(duì)人工智能agent技術(shù)而言,它屬于人工智能代理的一種技術(shù),屬于不同部分所組成的軟件實(shí)體,包括:一是,知識(shí)域庫(kù);二是數(shù)據(jù)庫(kù);三是解釋推理器;四是各個(gè)agent之間的通訊部分等。人工智能agent技術(shù)通過(guò)任何一個(gè)agent域庫(kù)對(duì)新數(shù)據(jù)的相關(guān)信息進(jìn)行處理,并且溝通以至完成任務(wù)。人工智能agent技術(shù)能夠在一定程度上通過(guò)用戶自定義對(duì)信息獲得自動(dòng)搜索,然后將其發(fā)送到指定位置。人們通過(guò)agent技術(shù)得到人性化服務(wù)。例如:用戶在用電腦查相關(guān)信息時(shí),該技術(shù)不僅能對(duì)信息進(jìn)行處理,同時(shí)還能夠進(jìn)行有效的分析,最后把有用的信息出題給用戶,充分節(jié)省用戶的時(shí)間。agent技術(shù)為用戶在日常生活中提供相應(yīng)的服務(wù),例如:在網(wǎng)上進(jìn)行購(gòu)物以及會(huì)議等方面的安排。它不僅自主性以及學(xué)習(xí)性,讓計(jì)算機(jī)對(duì)用戶所分配的任務(wù)自動(dòng)完成,進(jìn)一步推動(dòng)機(jī)計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)的發(fā)展。
    2.3在網(wǎng)絡(luò)系統(tǒng)管理以及評(píng)價(jià)過(guò)程中的應(yīng)用分析
    針對(duì)網(wǎng)絡(luò)管理系統(tǒng)來(lái)說(shuō),其智能化在一定程度上需要人工技能的不斷發(fā)展。在對(duì)網(wǎng)絡(luò)綜合管理系統(tǒng)進(jìn)行建立的過(guò)程中,不僅可以對(duì)人工智能中的專(zhuān)家知識(shí)庫(kù)進(jìn)行充分的利用,同時(shí)還能夠?qū)Υ嬖诘募夹g(shù)問(wèn)題進(jìn)行有效的解決和處理。網(wǎng)絡(luò)存在著動(dòng)態(tài)以及變化性,所以,網(wǎng)絡(luò)在管理的過(guò)程中會(huì)面臨著困難,這就需要對(duì)網(wǎng)絡(luò)管理技術(shù)人工智能化進(jìn)行實(shí)現(xiàn)。在人工智能技術(shù)中,其專(zhuān)家知識(shí)庫(kù)主要指的就是把各個(gè)相關(guān)領(lǐng)域?qū)<业闹R(shí)以及經(jīng)驗(yàn)進(jìn)行相應(yīng)的結(jié)語(yǔ)出來(lái),錄入系統(tǒng)中,只有這樣才能形成比較完善的知識(shí)庫(kù)系統(tǒng),促進(jìn)智能計(jì)算機(jī)程序的發(fā)展和提高。如果遇到某個(gè)領(lǐng)域問(wèn)題的過(guò)程中,要充分利用專(zhuān)家經(jīng)驗(yàn)程序?qū)ζ溥M(jìn)行及時(shí)的處理。專(zhuān)家知識(shí)經(jīng)驗(yàn)系統(tǒng)促進(jìn)計(jì)算機(jī)網(wǎng)絡(luò)管理得到順利開(kāi)展的同時(shí),對(duì)系統(tǒng)評(píng)價(jià)相關(guān)進(jìn)行工作不斷的提高和加強(qiáng)。
    科學(xué)技術(shù)在發(fā)展的同時(shí),也促進(jìn)人工智能技術(shù)的提高,計(jì)算機(jī)在網(wǎng)絡(luò)技術(shù)中得到了比較多的需求,在一定程度上提高其應(yīng)用范圍和領(lǐng)域,因此可以看出,人工智能其應(yīng)用發(fā)展前景是比較廣泛的,人類(lèi)對(duì)人工智能技術(shù)的進(jìn)一步研究,會(huì)在未來(lái)開(kāi)創(chuàng)出更多的應(yīng)用領(lǐng)域。
    人工智能論文大學(xué)生篇四
    語(yǔ)言文學(xué)專(zhuān)業(yè)學(xué)術(shù)論文具有突出的學(xué)術(shù)性,它只能把學(xué)術(shù)問(wèn)題當(dāng)作自己的論題,把學(xué)術(shù)成果當(dāng)作自己的描述對(duì)象,把學(xué)術(shù)見(jiàn)解作為自己的核心內(nèi)容。它以學(xué)術(shù)性區(qū)別于一般的社會(huì)理論文章和政治理論文章。學(xué)術(shù)是有系統(tǒng)、較專(zhuān)門(mén)的學(xué)問(wèn),它往往以學(xué)科的形式表現(xiàn)出來(lái)。人們通常將學(xué)科分為自然科學(xué)和社會(huì)科學(xué)兩大類(lèi)。兩大類(lèi)又可逐層劃分下去。如社會(huì)科學(xué)可以分為哲學(xué)、政治、經(jīng)濟(jì)、法律、歷史、語(yǔ)言文學(xué)等,語(yǔ)言文學(xué)又可劃分出語(yǔ)言、文學(xué),文學(xué)又可以劃分出文學(xué)理論、文學(xué)史,文學(xué)史又可以分為中外文學(xué)史,中外文學(xué)史又可以劃階段、設(shè)專(zhuān)題。分工越細(xì),學(xué)問(wèn)也就越專(zhuān)門(mén)化。但一切專(zhuān)門(mén)化的學(xué)問(wèn),又隸屬于它的上級(jí)學(xué)科。語(yǔ)言文學(xué)專(zhuān)業(yè)學(xué)術(shù)論文所研究的,就是這些專(zhuān)門(mén)化的學(xué)問(wèn)。語(yǔ)言文學(xué)專(zhuān)業(yè)學(xué)術(shù)論文所要研究和解決的問(wèn)題,是這些專(zhuān)業(yè)知識(shí)中的某一問(wèn)題。
    (二)獨(dú)創(chuàng)性
    人工智能論文大學(xué)生篇五
    人工智能是一門(mén)交叉性的前沿學(xué)科,也是一門(mén)極富挑戰(zhàn)性的科學(xué)。人工智能技術(shù)和理論在一定程度上代表了信息技術(shù)的發(fā)展方向,所以對(duì)其人才的培養(yǎng)也是重中之重。
    人工智能;信息技術(shù);智能教育
    人工智能是多種學(xué)科相互滲透而發(fā)展起來(lái)的交叉性學(xué)科,其涉及計(jì)算機(jī)科學(xué)、信息論、數(shù)學(xué)、哲學(xué)和認(rèn)知科學(xué)、心理學(xué)、控制論、不定性論、神經(jīng)生理學(xué)、語(yǔ)言學(xué)等多種學(xué)科。隨著科技的飛速發(fā)展和人工智能技術(shù)應(yīng)用的不斷擴(kuò)延,其涉及的學(xué)科領(lǐng)域?qū)⒂鷣?lái)愈多,它已和人們的學(xué)習(xí)、生活息息相關(guān),時(shí)代和社會(huì)需要此方面的大量人才。在高中信息技術(shù)課中開(kāi)設(shè)人工智能初步模塊是十分必要的,本文擬從其發(fā)展現(xiàn)狀、存在問(wèn)題等幾個(gè)方面對(duì)我國(guó)高中信息課程中人工智能教育做一下探討。
    (1)人工智能定義
    人工智能(ai,artificial intelligence)是計(jì)算機(jī)科學(xué)的一個(gè)分支,己成為一門(mén)具有廣泛應(yīng)用的交叉學(xué)科和前沿學(xué)科。它研究如何用計(jì)算機(jī)模擬人腦所從事的推理、證明、識(shí)別、理解、設(shè)計(jì)、學(xué)習(xí)、規(guī)劃以及問(wèn)題求解等思維活動(dòng),來(lái)解決人類(lèi)專(zhuān)家才能解決的復(fù)雜問(wèn)題,例如咨詢、探測(cè)、診斷、策劃等。
    (2)開(kāi)設(shè)人工智能課程的意義
    現(xiàn)實(shí)世界的問(wèn)題可以按照結(jié)構(gòu)化程度劃分成三個(gè)層次:結(jié)構(gòu)化問(wèn)題,是能用形式化(或稱(chēng)公式化)方法描述和求解的一類(lèi)問(wèn)題;非結(jié)構(gòu)化問(wèn)題難以用確定的形式來(lái)描述,主要根據(jù)經(jīng)驗(yàn)來(lái)求解;半結(jié)構(gòu)化問(wèn)題則介于上述兩者之間。
    將人工智能課程引入到我國(guó)現(xiàn)行的教育中,可以讓學(xué)生在了解人工智能基本語(yǔ)言特征、理解智能化問(wèn)題求解的基本策略過(guò)程中,體驗(yàn)、認(rèn)識(shí)人工智能技術(shù)的同時(shí)獲得對(duì)非結(jié)構(gòu)化、半結(jié)構(gòu)化問(wèn)題解決過(guò)程的了解,從而使學(xué)生了解計(jì)算機(jī)解決問(wèn)題方法的多樣性,培養(yǎng)學(xué)生的多種思維方式,更好的解決現(xiàn)實(shí)問(wèn)題。
    目前,該學(xué)科的教育正處于摸索階段,由于中學(xué)信息技術(shù)師資水平、學(xué)校硬軟件設(shè)備等條件的制約,我國(guó)尚未在中學(xué)專(zhuān)門(mén)開(kāi)設(shè)獨(dú)立的人工智能類(lèi)課程,internet上與人工智能教育相關(guān)的中文信息資源也十分貧乏,在教學(xué)環(huán)境上大致存在以下問(wèn)題:
    (一)教學(xué)條件參差不齊
    開(kāi)設(shè)好人工智能課程,就要求安排更多的實(shí)踐課程和活動(dòng)來(lái)增強(qiáng)課程的趣味性,讓廣大師生切實(shí)體會(huì)到人工智能對(duì)我們生活的影響。這些活動(dòng)大部分要求上機(jī)操作或利用網(wǎng)絡(luò)資源來(lái)學(xué)習(xí)交流,這就對(duì)教學(xué)條件提出了較高的要求,尤其是一些偏遠(yuǎn)農(nóng)村、條件相對(duì)落后的中學(xué)在開(kāi)設(shè)人工智能課程上存在很大困難。
    (1)對(duì)硬件性能的要求
    人工智能課程中有較多的實(shí)踐課程需要老師和學(xué)生利用網(wǎng)絡(luò)資源,使用計(jì)算機(jī)進(jìn)行操作。這就需要學(xué)校配備計(jì)算機(jī)網(wǎng)絡(luò)教學(xué)機(jī)房,若其性能較差,會(huì)延長(zhǎng)學(xué)生在線進(jìn)行人機(jī)對(duì)話的時(shí)間,一旦遇到網(wǎng)絡(luò)堵塞,可能連網(wǎng)頁(yè)都打不開(kāi),這不僅浪費(fèi)了僅有的'上課時(shí)間,而且大大降低了學(xué)生的學(xué)習(xí)興趣。
    (2)對(duì)軟件性能的要求
    為了降低成本,學(xué)??梢岳没ヂ?lián)網(wǎng)上提供的免費(fèi)下載軟件和免費(fèi)在線教學(xué)網(wǎng)站等進(jìn)行實(shí)踐教學(xué),可大大減少自研開(kāi)發(fā)軟件和軟件維護(hù)的費(fèi)用。但一旦遇到網(wǎng)絡(luò)不通、網(wǎng)絡(luò)擁擠或在線網(wǎng)站停止服務(wù)等情況,將無(wú)法使用網(wǎng)絡(luò)資源進(jìn)行教學(xué),可見(jiàn),軟件的依賴性較強(qiáng)也存在很大的問(wèn)題。
    (二)對(duì)人工智能科學(xué)的認(rèn)識(shí)不足
    (1)學(xué)生的認(rèn)識(shí)誤區(qū)
    提及人工智能,給大多數(shù)學(xué)生的感覺(jué)是一門(mén)神秘、遙不可及的科學(xué)。很多學(xué)生認(rèn)為人工智能技術(shù)是很高深的科學(xué),離我們現(xiàn)實(shí)生活有一定距離,研究和接觸這門(mén)科學(xué)是少數(shù)科學(xué)家的事情,從而對(duì)該科學(xué)的關(guān)注程度不高。其實(shí),人工智能學(xué)科是一門(mén)漸漸成長(zhǎng)的科學(xué),它將應(yīng)用在我們生活的方方面面。我們應(yīng)在教學(xué)中讓學(xué)生多去體驗(yàn)人工智能的魅力所在,吸引更多對(duì)該學(xué)科感興趣的人去研究和使用它。
    (2)教師對(duì)人工智能學(xué)科開(kāi)設(shè)存在偏見(jiàn)
    一些從事該學(xué)科教學(xué)的教師沒(méi)有接觸過(guò)人工智能方面的知識(shí),在接觸過(guò)后被其中深?yuàn)W難理解的知識(shí)所嚇倒,認(rèn)為即使開(kāi)設(shè)了這門(mén)課程也不易被同學(xué)們所接受;而一些在大學(xué)接觸過(guò)人工智能課程的教師則認(rèn)為,其理論枯燥乏味,知識(shí)內(nèi)容艱深,不適合放在高中開(kāi)設(shè)。
    (三)一線教師經(jīng)驗(yàn)不足
    在我國(guó)大學(xué)教育中,開(kāi)展人工智能專(zhuān)業(yè)課程的大學(xué)為數(shù)不多,師范類(lèi)院校更是少之又少。從事人工智能領(lǐng)域的專(zhuān)業(yè)人才輸出少,所以,缺乏具備一定知識(shí)結(jié)構(gòu)、有專(zhuān)業(yè)素養(yǎng)的教師來(lái)?yè)?dān)任高中信息技術(shù)課中人工智能課程的教育工作。絕大多數(shù)的一線教師并沒(méi)有接受過(guò)人工智能課程的專(zhuān)業(yè)培訓(xùn),在授課內(nèi)容上的著重點(diǎn)掌握不好,教學(xué)目標(biāo)不夠明確;在授課形式上也沒(méi)有前人的經(jīng)驗(yàn)可尋,這就給一線教師帶來(lái)了極大的挑戰(zhàn)。
    (一)加強(qiáng)軟、硬件建設(shè)
    在學(xué)校條件允許的條件下,應(yīng)加大硬件設(shè)施的投入,改善網(wǎng)絡(luò)傳遞信息的效率,同時(shí)加強(qiáng)軟件資源建設(shè)。鼓勵(lì)師生上網(wǎng)搜索更多適合ai教學(xué)的網(wǎng)站,教師應(yīng)整理出和ai相關(guān)的趣味小故事、電影、光盤(pán)等和教材相關(guān)的素材,以便更好的配合硬件教學(xué)。
    (二)端正認(rèn)識(shí),增強(qiáng)支持
    作為教師要樹(shù)立對(duì)高中人工智能選修課程的正確認(rèn)識(shí)。通過(guò)對(duì)課標(biāo)中規(guī)定的相關(guān)內(nèi)容的深入了解和學(xué)習(xí),克服對(duì)人工智能的神秘感或恐懼感,理性而客觀的看待人工智能技術(shù)及其應(yīng)用,明確在高中開(kāi)設(shè)該課程的目的。同時(shí),教師也不能因?yàn)樵撜n程的“選修”性質(zhì),從而輕視該課程的作用。
    作為學(xué)生不應(yīng)該僅僅看見(jiàn)這門(mén)課程的娛樂(lè)趣味性,應(yīng)把一些重要的技術(shù)理論知識(shí)重視起來(lái),不能過(guò)分的放松自己而偏離了我們的教學(xué)目標(biāo)。家長(zhǎng)也應(yīng)該支持和贊同學(xué)生選擇該課程,不能應(yīng)認(rèn)識(shí)不到這門(mén)課程的作用、怕耽誤學(xué)生主干課的學(xué)習(xí)而反對(duì)學(xué)生積極參與。
    校方領(lǐng)導(dǎo)也不應(yīng)條件限制就輕易放棄這門(mén)課程的開(kāi)設(shè),應(yīng)給予積極的配合。社會(huì)各界也應(yīng)加強(qiáng)輿論與正確引導(dǎo),讓更多的人們認(rèn)識(shí)人工智能并予以肯定。
    總之,人工智能是一門(mén)逐漸成長(zhǎng)的科學(xué),開(kāi)設(shè)好該課程需要廣大教育工作者和校方領(lǐng)導(dǎo)不斷努力,互相交流,共同克服困難。
    參考文獻(xiàn):
    [1]張劍平.人工智能技術(shù)與“問(wèn)題解決”[j].中小學(xué)信息技術(shù)教育,2003(10).
    [2]段東輝.淺談信息技術(shù)課程中人工智能教育[j].新鄉(xiāng)教育學(xué)院學(xué)報(bào),第19卷第二期2006,6.
    [3]教育部.普通高中技術(shù)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿).人民教育出版社,2003年4月.
    [4]張家華,張劍平.開(kāi)展高中人工智能教學(xué)存在的問(wèn)題及對(duì)策[j].
    人工智能論文大學(xué)生篇六
    1、構(gòu)思要圍繞主題展開(kāi):若要使論文寫(xiě)得條理清晰、脈絡(luò)分明,必須要使全文有一條貫穿線,這就是論文的主題。主題是一篇學(xué)術(shù)論文的精髓,它是體現(xiàn)作者的學(xué)術(shù)觀點(diǎn)學(xué)術(shù)見(jiàn)解的。
    2、構(gòu)思論文布局,要力求結(jié)構(gòu)完整統(tǒng)一:在對(duì)一篇論文構(gòu)思時(shí),有時(shí)按時(shí)間順序編寫(xiě),有時(shí)按地域位置(空間)順序編寫(xiě),但更多的還是按邏輯關(guān)系編寫(xiě),即要求符合客觀事物的內(nèi)在聯(lián)系和規(guī)律,符合科學(xué)研究和認(rèn)識(shí)事物的邏輯。但不管屬于何種情形,都應(yīng)保持合乎情理、連貫完整。
    3、要作讀者分析:撰寫(xiě)并發(fā)表任何一篇科技文章,其最終目的是讓別人讀的,因此,構(gòu)思時(shí)要求做“心中裝著讀者”,多作讀者分析。有了清晰的讀者對(duì)象,才能有效地展開(kāi)構(gòu)思,也才能順利地確定立意、選材以及表達(dá)的角度。
    提高構(gòu)思能力
    1、寫(xiě)學(xué)術(shù)論文之前,先擬定提綱,可以極大地幫助作者鍛煉思想,提高構(gòu)思能力。
    2、寫(xiě)作提綱,可以幫助作者勾劃出全篇論文的框架,體現(xiàn)自己經(jīng)過(guò)對(duì)材料的消化與進(jìn)行邏輯思維后形成的初步設(shè)想,可計(jì)劃先寫(xiě)什么、后寫(xiě)什么,前后如何表述一致,重點(diǎn)又放在哪里,哪里需要進(jìn)行一些注釋或解說(shuō)。按此計(jì)劃寫(xiě)作,可使論文層次清晰,前后照應(yīng),內(nèi)容連貫,表達(dá)嚴(yán)密。
    3、擬制寫(xiě)作提綱,只需要運(yùn)用一些簡(jiǎn)單的句子甚至是詞與詞組加以提示,把材料單元與相應(yīng)的論點(diǎn)有機(jī)組織編成順序號(hào),工作量并不大,也容易辦到。提綱中用以提示寫(xiě)作的句子,有時(shí)即可用來(lái)做論文段落的標(biāo)題。
    討論部分的寫(xiě)作技巧
    1.描述結(jié)論:首先,從專(zhuān)業(yè)角度對(duì)自己的研究進(jìn)行總結(jié),此部分務(wù)必與研究結(jié)果和研究目的保持一致,也就是說(shuō)討論部分的內(nèi)容必須在結(jié)果中找到依據(jù)。否則就會(huì)給人一種課題設(shè)計(jì)不完善的感覺(jué)。
    2.解釋結(jié)論:對(duì)本研究的結(jié)論進(jìn)行解釋?zhuān)瑸榱送怀鼋忉尩目茖W(xué)性和可靠性,一般是在和別人的研究分析對(duì)比中進(jìn)行解釋。列出幾篇和自己結(jié)論一致的文獻(xiàn),同時(shí)也要列出幾篇和自己不一致或者相悖的文獻(xiàn),但要解釋出不一致的理由,比如是因?yàn)樗x群體不一致,研究條件不一致等等,因?yàn)榭茖W(xué)研究中的可控變量較多,所以解釋兩個(gè)結(jié)論不一致一般不難。
    3.研究?jī)r(jià)值:結(jié)論解釋完之后,還要說(shuō)明本研究的應(yīng)用價(jià)值,也就本研究所能給社會(huì)或者臨床帶來(lái)什么實(shí)際價(jià)值,比如本研究可以進(jìn)一步明確某種方法治療某種疾病的效果,本研究發(fā)現(xiàn)某種藥物存在一些尚未發(fā)現(xiàn)的治療作用,或者本研究可以為相關(guān)研究提供參考。
    4.不足之處:任何一項(xiàng)研究由于客觀條件的限制,不可能盡善盡美,都會(huì)或多或少存在一些不足之處,或者由于當(dāng)前科技水平的限制,也會(huì)導(dǎo)致研究所存在的一些局限性,描述此部分內(nèi)容時(shí),一定要慎重。
    盡量列出1~2個(gè)不影響本研究結(jié)論科學(xué)性和準(zhǔn)確性的限制,比如本研究的樣本含量較小,或者本研究隨訪時(shí)間較短等等,一般不要列出諸如本研究所用統(tǒng)計(jì)方法不當(dāng),或者本課題的所用評(píng)價(jià)標(biāo)準(zhǔn)不夠成熟等。
    5.研究心得:在文章最后,應(yīng)說(shuō)明本文所要傳遞的信息,或者是對(duì)后續(xù)研究的展望。一般文章最后寫(xiě)出本文要傳遞給讀者什么有價(jià)值的知識(shí)或信息,也可以是給讀者帶來(lái)的啟發(fā)。比如:“隨著對(duì)不穩(wěn)定型上頸椎結(jié)核性骨折的研究不斷深入,探求一種既能實(shí)現(xiàn)理想的復(fù)位固定,又可保留寰樞椎關(guān)節(jié)活動(dòng)功能的內(nèi)固定方法是我們當(dāng)前研究的方向。”
    人工智能論文大學(xué)生篇七
    電氣自動(dòng)化控制系統(tǒng)是由計(jì)算機(jī)控制系統(tǒng)對(duì)電氣設(shè)備的運(yùn)行進(jìn)行自動(dòng)控制,電氣自動(dòng)化控制系統(tǒng)的應(yīng)用能夠大大提高電氣設(shè)備的工作效率,提高機(jī)械設(shè)備工作的精確性,為企業(yè)帶來(lái)了良好的經(jīng)濟(jì)效益,但是隨著電氣設(shè)備自動(dòng)化程度的不斷提高,要求電氣設(shè)備自動(dòng)化控制系統(tǒng)要實(shí)現(xiàn)智能化操作。人工智能技術(shù)是通過(guò)計(jì)算機(jī)系統(tǒng)模擬人的智能,在計(jì)算機(jī)的控制下,實(shí)現(xiàn)電氣設(shè)備控制系統(tǒng)的模擬人的智能,例如進(jìn)行圖像分析與處理、語(yǔ)音識(shí)別以及專(zhuān)家控制系統(tǒng)等等??梢哉f(shuō)將人工智能技術(shù)應(yīng)用在電氣自動(dòng)化控制系統(tǒng)中是電氣自動(dòng)化技術(shù)發(fā)展的必然趨勢(shì)。
    人工智能技術(shù)是以計(jì)算機(jī)技術(shù)為基礎(chǔ),融合多門(mén)學(xué)科的綜合性科學(xué)技術(shù),其主要是通過(guò)計(jì)算機(jī)模擬構(gòu)建人的智能,并且創(chuàng)建機(jī)器人系統(tǒng)和專(zhuān)家系統(tǒng)實(shí)現(xiàn)對(duì)電氣自動(dòng)控制系統(tǒng)的智能化操作。人工智能技術(shù)的突出特點(diǎn)是:一是操作性。人工智能技術(shù)主要是依托計(jì)算機(jī)的控制實(shí)現(xiàn)對(duì)電氣設(shè)備的控制,因此人工智能技術(shù)具有很強(qiáng)的邏輯性,便于控制人員進(jìn)行操作;二是價(jià)值大。人工智能技術(shù)不僅融合了計(jì)算機(jī)技術(shù),而且其還實(shí)現(xiàn)了對(duì)電氣設(shè)備的自動(dòng)化控制與監(jiān)測(cè),實(shí)現(xiàn)了以較小的投入獲得更大的經(jīng)濟(jì)效益的目的。比如通過(guò)人工智能技術(shù)可以減少人工操作環(huán)節(jié),進(jìn)而為企業(yè)節(jié)省相當(dāng)多的人力資源成本費(fèi)用;三是準(zhǔn)確性比較高。人工智能技術(shù)主要是計(jì)算機(jī)依據(jù)人的智能建立計(jì)算機(jī)控制系統(tǒng),實(shí)現(xiàn)對(duì)電氣設(shè)備的精確性操作,比如利用人工智能技術(shù)可以對(duì)電氣設(shè)備的運(yùn)行情況進(jìn)行智能檢測(cè)與處理,避免了人工檢測(cè)所存在的弊端。
    人工智能技術(shù)的最大優(yōu)勢(shì)就是通過(guò)對(duì)電氣控制系統(tǒng)信息的收集、研究,制定出具體的有效處理措施,從而代替?zhèn)鹘y(tǒng)的依靠人腦進(jìn)行操作的模式。將人工智能技術(shù)應(yīng)用到電氣自動(dòng)化控制系統(tǒng)中具有重要的意義:
    2.1能夠有效解決電氣自動(dòng)化控制過(guò)程中存在的病態(tài)結(jié)構(gòu)問(wèn)題
    電氣自動(dòng)化控制過(guò)程中因?yàn)殡姎庠O(shè)備精密度越來(lái)越高,因此在運(yùn)行過(guò)程中所出現(xiàn)的病態(tài)結(jié)構(gòu)很難應(yīng)用傳統(tǒng)的方式表達(dá)出來(lái),而人工智能技術(shù)則可以有效解決此類(lèi)問(wèn)題,其完全有能力利用定量與定性相結(jié)合的控制方式對(duì)控制系統(tǒng)進(jìn)行計(jì)算與分析。
    2.2實(shí)現(xiàn)自動(dòng)控制系統(tǒng)的數(shù)據(jù)采集與處理功能
    將人工智能技術(shù)應(yīng)用到電氣自動(dòng)化控制中能夠依托專(zhuān)家系統(tǒng)對(duì)電氣設(shè)備進(jìn)行實(shí)時(shí)監(jiān)視,并且對(duì)相關(guān)信息進(jìn)行自動(dòng)收集與儲(chǔ)存,一旦發(fā)現(xiàn)存在潛在故障或者存在事故的事件,人工智能技術(shù)就會(huì)自動(dòng)采取相應(yīng)的.控制方式,對(duì)故障進(jìn)行自動(dòng)處理,進(jìn)而避免了電氣系統(tǒng)故障的進(jìn)一步擴(kuò)大化。
    2.3簡(jiǎn)化了人工操作過(guò)程,降低了人工操作造成的損失
    人工智能技術(shù)通過(guò)計(jì)算機(jī)設(shè)備就可以實(shí)現(xiàn)對(duì)電氣設(shè)備的自動(dòng)化控制,比如電氣系統(tǒng)的人工智能化控制系統(tǒng)就可以通過(guò)鼠標(biāo)對(duì)控制開(kāi)關(guān)進(jìn)行自動(dòng)控制,并且對(duì)勵(lì)磁電流進(jìn)行調(diào)整。同時(shí)電氣人工智能控制系統(tǒng)還設(shè)定了應(yīng)用管理權(quán)限,限制了相應(yīng)操作人員的權(quán)限,實(shí)現(xiàn)了專(zhuān)人專(zhuān)崗制度,細(xì)化了操作責(zé)任制度。
    3.1人工智能技術(shù)在電氣自動(dòng)化設(shè)備中的應(yīng)用
    我們知道電氣自動(dòng)化控制系統(tǒng)屬于非常負(fù)責(zé)的控制系統(tǒng),其不僅包含復(fù)雜的元件,而且還需要操作人員嚴(yán)格按照自動(dòng)化控制系統(tǒng)的要求進(jìn)行操作,而將人工智能技術(shù)應(yīng)用到電氣設(shè)備中可以實(shí)現(xiàn)計(jì)算機(jī)的自動(dòng)化操作,最重要的就是可以代替?zhèn)鹘y(tǒng)的需要人工進(jìn)行設(shè)備檢測(cè)的落后模式,實(shí)現(xiàn)了對(duì)電氣設(shè)備的運(yùn)行狀態(tài)、故障檢測(cè)以及維修意見(jiàn)等一體的功能,降低了人工操作的失誤性,提高了電氣設(shè)備的應(yīng)用壽命,為企業(yè)節(jié)省了大量的成本。
    3.2人工智能技術(shù)在電氣控制過(guò)程中的應(yīng)用
    將智能技術(shù)應(yīng)用到電氣自動(dòng)化控制過(guò)程中,是人工智能技術(shù)發(fā)展的重要?jiǎng)恿?,通過(guò)人工智能化的電氣控制系統(tǒng)不僅可以提高電氣設(shè)備的工作效率,而且還可以降低電氣自動(dòng)化控制中的故障發(fā)生率。人工智能技術(shù)主要師模糊控制、專(zhuān)家控制以及神經(jīng)網(wǎng)絡(luò)控制和集成智能控制。本文以專(zhuān)家控制為例,專(zhuān)家控制就是將專(zhuān)家系統(tǒng)的設(shè)計(jì)規(guī)范和運(yùn)行機(jī)制與電氣控制劉楠相結(jié)合實(shí)現(xiàn)實(shí)時(shí)控制系統(tǒng)的設(shè)計(jì),其主要是對(duì)自動(dòng)控制的知識(shí)獲取、表示以及推理機(jī)制的建立。
    3.3在事故和故障診斷中人工智能技術(shù)的應(yīng)用分析
    人工智能技術(shù)在電氣設(shè)備故障中的作用是非常大的,尤其是對(duì)發(fā)動(dòng)機(jī)的故障檢修是具有重要作用的,我們知道在電氣設(shè)備中由于其結(jié)構(gòu)比較復(fù)雜,依靠人工很難對(duì)其進(jìn)行深入的檢測(cè),因此需要借助人工智能技術(shù)實(shí)現(xiàn)對(duì)設(shè)備的檢修。我們以變壓器為例,將智能技術(shù)應(yīng)用到變壓器的故障檢修中首先就是先收集電壓器油體中分解的氣體,然后通過(guò)對(duì)油體氣體的分析,找出故障的原因,進(jìn)而自動(dòng)形成解決措施。這樣有效避免了人工檢測(cè)所出現(xiàn)的失誤現(xiàn)象。另外人工智能技術(shù)在電氣設(shè)備操作中的應(yīng)用價(jià)值也比較大。通過(guò)人工智能技術(shù)可以實(shí)現(xiàn)電氣自動(dòng)化控制環(huán)節(jié)的簡(jiǎn)單化,比如在機(jī)床加工中,如果運(yùn)用人工智能技術(shù)則能夠有效降低機(jī)床操作的復(fù)雜性,并且能夠?qū)C(jī)床的運(yùn)行信息進(jìn)行收集與儲(chǔ)存,便于日后對(duì)相關(guān)信息的查詢。
    總之,人工智能技術(shù)在電氣化領(lǐng)域中應(yīng)用,不但能夠最大限度的降低人工參與的程度,提升控制系統(tǒng)的數(shù)字化、智能化程度,還能夠大幅降低企業(yè)運(yùn)營(yíng)的成本,提高其利潤(rùn)空間,并將生產(chǎn)效率提高到一個(gè)全新的層面。因此,相關(guān)部門(mén)應(yīng)加強(qiáng)對(duì)人工智能技術(shù)的研究,使其能夠?yàn)槠髽I(yè)的發(fā)展以及社會(huì)的進(jìn)步發(fā)揮出更為突出的作用。
    人工智能論文大學(xué)生篇八
    人工智能和數(shù)字地球是計(jì)算機(jī)科學(xué)及信息科學(xué)發(fā)展中的重要領(lǐng)域。本文簡(jiǎn)述了人工智能的概念及其在計(jì)算機(jī)上的實(shí)現(xiàn)方式,并提出了人工智能技術(shù)在數(shù)字地球發(fā)展中幾個(gè)方面的應(yīng)用,最后總結(jié)了人工智能技術(shù)為數(shù)字地球的發(fā)展帶來(lái)的好處。
    1前言
    ,美國(guó)副總統(tǒng)阿爾.戈?duì)栐诩永D醽喛茖W(xué)中心作的演講中提出了“數(shù)字地球”這一新概念,并對(duì)其作了比較全面和通俗的說(shuō)明[1]。演講中戈?duì)柨偨y(tǒng)給出數(shù)字地球可能的無(wú)比廣闊的應(yīng)用前景,人們可以通過(guò)數(shù)字地球技術(shù)指導(dǎo)仿真外交,打擊和監(jiān)測(cè)犯罪,保護(hù)生態(tài)多樣性,預(yù)測(cè)氣候變化,增加作物產(chǎn)量等。
    在數(shù)字地球中非常重要的一點(diǎn)是如何使海量的地理空間數(shù)據(jù)變得有意義,即讓它們能過(guò)被人們所理解。但是,在面對(duì)這些海量的數(shù)據(jù)時(shí),我們處理的手段卻是有限的。而且這些數(shù)據(jù)都是由計(jì)算機(jī)來(lái)處理的,在面對(duì)大量數(shù)據(jù)中的無(wú)用數(shù)據(jù)時(shí),計(jì)算機(jī)是很難將其識(shí)別出來(lái)的。所以我們需要讓計(jì)算機(jī)具有人類(lèi)一樣的智慧,將這些數(shù)據(jù)進(jìn)行有效的處理。如今,人工智能技術(shù)在數(shù)字地球中有著廣泛的應(yīng)用。通過(guò)這一技術(shù),人們可以高效的處理和分析這些海量數(shù)據(jù)。
    2人工智能的實(shí)現(xiàn)方式
    人工智能在計(jì)算機(jī)上有兩種不同的實(shí)現(xiàn)方式。一種是采用傳統(tǒng)的編碼技術(shù),使系統(tǒng)呈現(xiàn)智能的效果,而不考慮所用的方法是否與人或動(dòng)物機(jī)體所用的方法相同。另一種是模擬法(modelingapproach),它要求實(shí)現(xiàn)方法也和人或動(dòng)物機(jī)體所用的方法相同或相似。模擬法有兩種實(shí)現(xiàn)的算法:遺傳算法和神經(jīng)網(wǎng)絡(luò)算法。
    遺傳算法借鑒生物進(jìn)化論,將要解決的問(wèn)題模擬成一個(gè)生物體,通過(guò)復(fù)制、交叉、突變等操作產(chǎn)生下一代解空間[3],并通過(guò)適應(yīng)函數(shù)度來(lái)淘汰那些不良的個(gè)體,這樣迭代進(jìn)化幾代之后就很有可能得到適應(yīng)度函數(shù)值較高的個(gè)體。遺傳算法通常用在求解問(wèn)題最優(yōu)解的情況下,如函數(shù)優(yōu)化、組合優(yōu)化等。
    神經(jīng)網(wǎng)絡(luò)算法通過(guò)模擬人或動(dòng)物的神經(jīng)網(wǎng)絡(luò)傳遞和處理信息的行為特征,進(jìn)行分布式并行信息處理的算法數(shù)學(xué)模型[4]。使用神經(jīng)網(wǎng)絡(luò)算法使系統(tǒng)具有像人一樣學(xué)習(xí)的特征。初始時(shí),系統(tǒng)模塊跟初生嬰兒一樣什么也不懂,而且會(huì)經(jīng)常犯錯(cuò),但是它可用通過(guò)學(xué)習(xí),從錯(cuò)誤中吸取教訓(xùn),下一次運(yùn)行時(shí)就可能改正。
    3人工智能技術(shù)在數(shù)字地球中的應(yīng)用
    人工智能能夠使我們的計(jì)算機(jī)具有人能解決問(wèn)題的能力,使得計(jì)算機(jī)工作起來(lái)更加的高效。而且通過(guò)人工智能的學(xué)習(xí)機(jī)制,降低其出錯(cuò)的幾率。人工智能在數(shù)字地球中可以有以下幾個(gè)方面的應(yīng)用:
    3.1智能導(dǎo)航
    當(dāng)前我們主要使用gps技術(shù)來(lái)做定位和導(dǎo)航的。但是gps只能在室外及衛(wèi)星信號(hào)不被遮擋或反射的地方才能使用。因此,在室內(nèi)、茂密的樹(shù)木覆蓋處和高層建筑地下gps就很難使用了[5]。
    使用人工智能技術(shù)進(jìn)行智能導(dǎo)航,當(dāng)不能獲得gps衛(wèi)星信號(hào)時(shí),系統(tǒng)會(huì)智能的使用基于通信基站定位、互聯(lián)網(wǎng)定位等來(lái)提供導(dǎo)航。同時(shí),人工智能系統(tǒng)還可以實(shí)現(xiàn)最優(yōu)路徑規(guī)劃,周邊信息搜索等功能。
    3.2智能的人機(jī)交互
    數(shù)字地球的建設(shè)依賴于互聯(lián)網(wǎng)、虛擬現(xiàn)實(shí)等技術(shù),但是現(xiàn)在我們能做的僅僅是通過(guò)這些技術(shù)將我們所獲得的海量數(shù)據(jù)展現(xiàn)在人們面前。而顯示信息的形式主要是以瀏覽器、虛擬頭盔等,這些工具存在著不能與人友好交互的問(wèn)題。我們通常是通過(guò)人肢體來(lái)交互,而不能像現(xiàn)實(shí)生活中人們通過(guò)對(duì)話的形式交互。
    3.3專(zhuān)家系統(tǒng)
    計(jì)算機(jī)較人強(qiáng)的地方在于它的計(jì)算速度快,將計(jì)算機(jī)的高運(yùn)算速度和人的智慧集成起來(lái)構(gòu)成專(zhuān)家系統(tǒng)。專(zhuān)家系統(tǒng)使用人類(lèi)專(zhuān)家推理的模型來(lái)處理現(xiàn)實(shí)世界中需要專(zhuān)家作出解釋的復(fù)雜問(wèn)題,并得出與專(zhuān)家相同的結(jié)論[6]。
    在氣象預(yù)測(cè)中,我們要處理大量的氣象數(shù)據(jù)。使用傳統(tǒng)的計(jì)算機(jī)處理方式,我們還要對(duì)計(jì)算機(jī)的處理結(jié)果做大量的分析。但是通過(guò)專(zhuān)家系統(tǒng),不僅給出處理的數(shù)據(jù)結(jié)果,還可以給出分析的結(jié)果,以便研究人員輔助研究使用。這樣可以減少大量的人力耗費(fèi)。
    總結(jié)
    戈?duì)柨偨y(tǒng)所提出的數(shù)字地球,不僅僅是數(shù)字化的地球,其未來(lái)的發(fā)展跟應(yīng)該是在數(shù)字化的基礎(chǔ)之上的智慧地球,正如20xx年ibm所提出的“智慧地球”。未來(lái),電子設(shè)備將會(huì)更加智能化,人機(jī)交互將會(huì)更友好化。
    同時(shí)在面對(duì)海量的地理空間數(shù)據(jù)時(shí),使用人工智能技術(shù)可以拓寬我們隊(duì)這些數(shù)據(jù)的處理能力。加快數(shù)據(jù)的處理速度、精確性等。通過(guò)智能搜索,可以快速精準(zhǔn)的找到我們所需要的信息。就像google公司所做的智能周邊搜索一樣,當(dāng)人們走在城市街道上的時(shí)候,系統(tǒng)可以搜索并顯示周邊我們感興趣的一些商店、景觀、飯店等信息。并且人工智能技術(shù)還能提供智能導(dǎo)航、人機(jī)自然語(yǔ)言交互、專(zhuān)家系統(tǒng)等。未來(lái)人工智能技術(shù)將在數(shù)字地球的發(fā)展中起到更大的作用。
    人工智能論文大學(xué)生篇九
    摘要:隨著工業(yè)領(lǐng)域的迅猛發(fā)展,自動(dòng)化、智能化被當(dāng)做是電氣控制領(lǐng)域的重點(diǎn)發(fā)展趨勢(shì)。為了讓電氣自動(dòng)化控制中人工智能技術(shù)發(fā)揮更大的作用,本文概括了人工智能技術(shù),闡述了人工智能技術(shù)在電氣自動(dòng)化領(lǐng)域的使用實(shí)例,以此期望對(duì)有關(guān)工作人員能有幫助。
    關(guān)鍵詞:電氣控制;自動(dòng)化控制;人工智能
    近年來(lái)隨著國(guó)內(nèi)外人工智能研究的興起與發(fā)展,越來(lái)越多的傳統(tǒng)領(lǐng)域開(kāi)始思考能否在自己的產(chǎn)品生產(chǎn)線上使用人工智能技術(shù),所以它的實(shí)際使用領(lǐng)域廣泛?,F(xiàn)代社會(huì)的發(fā)展離不開(kāi)人工智能技術(shù)的使用,特別是在現(xiàn)代工業(yè)的領(lǐng)域,在方法上需要依靠最新的人工智能技術(shù)為支持,但要做到讓人工智能技術(shù)在電氣自動(dòng)化控制中更好的發(fā)揮作用,我們先要知道人工智能技術(shù)到底是什么樣的技術(shù)[1]。
    1人工智能技術(shù)的概述
    國(guó)內(nèi)的創(chuàng)新熱潮近幾年正在蓬勃的發(fā)展,各種新技術(shù)競(jìng)相展現(xiàn),人工智能技術(shù)也逐漸成熟了,而且它在當(dāng)今社會(huì)中的使用也更加寬泛。人工智能技術(shù)的建立,不僅要有計(jì)算機(jī)技術(shù)知識(shí)進(jìn)行有效支持,還與其他學(xué)科知識(shí)息息相關(guān),人工智能技術(shù)通俗上講就是生產(chǎn)出可以替代人類(lèi)來(lái)工作的智能化機(jī)器人,將來(lái)許多崗位都可以由機(jī)器來(lái)替代人類(lèi)工作[2]。隨著科技的日新月異,科學(xué)家們已經(jīng)成功地生產(chǎn)出了類(lèi)似于人腦一樣思考的人工大腦芯片,并將這種新技術(shù)命名為人工智能技術(shù)。在人們平常的生產(chǎn)活動(dòng)中,已有非常多的范圍都使用了人工智能技術(shù),而且它們的現(xiàn)實(shí)使用效率非常高。
    2人工智能技術(shù)在電氣自動(dòng)化中的應(yīng)用廣闊前景
    電氣自動(dòng)化中應(yīng)用人工智能技術(shù),不僅在極大程度上讓工人更好的操控電氣自動(dòng)化設(shè)備,還極大地減少了電氣自動(dòng)化的使用成本,這說(shuō)明發(fā)展人工智能技術(shù)的前景是非常有利的。
    2.1電氣自動(dòng)化控制中加入人工智能技術(shù)的重要性
    人工智能技術(shù)同人類(lèi)的工作方式相比有許多人類(lèi)不能替代的優(yōu)勢(shì),例如人工智能對(duì)于數(shù)字和程式非常敏感,可以長(zhǎng)時(shí)間的集中于處理同一個(gè)問(wèn)題,這些優(yōu)勢(shì)可以幫助人類(lèi)解決一些繁復(fù)的工作,所以電氣自動(dòng)化控制中應(yīng)用人工智能技術(shù)后,它一定可以為人類(lèi)創(chuàng)造更大的價(jià)值[3]。
    2.2人工智能技術(shù)在電氣自動(dòng)化控制中的應(yīng)用優(yōu)勢(shì)
    因?yàn)殡姎庠O(shè)備的復(fù)雜性和連貫性的要求,所以對(duì)電氣設(shè)備的設(shè)計(jì)人員就提出了非常高的專(zhuān)業(yè)要求,除了具備非常扎實(shí)的專(zhuān)業(yè)知識(shí)以外,還要求他們的設(shè)計(jì)最好可以結(jié)合最新的科學(xué)技術(shù)。在電氣自動(dòng)化控制中使用人工智能技術(shù)之后,會(huì)帶來(lái)很多便利性,具體表現(xiàn)為下面這4點(diǎn):(1)數(shù)據(jù)的收集與運(yùn)算都能利用人工智能技術(shù)來(lái)實(shí)現(xiàn),因?yàn)閾碛辛诉@一作用,以此一來(lái)就能對(duì)電氣設(shè)備的每樣數(shù)值開(kāi)展收集,還可立即對(duì)數(shù)據(jù)進(jìn)行運(yùn)算,因此能讓電氣自動(dòng)化的現(xiàn)實(shí)管控效果得以大范圍提高。(2)人工智能技術(shù)可實(shí)現(xiàn)連續(xù)的監(jiān)管并實(shí)現(xiàn)必要的報(bào)警。人工智能技術(shù)能同步監(jiān)控電氣系統(tǒng)中主要設(shè)備的模擬數(shù)據(jù)值。(3)人工智能管控的操縱監(jiān)控系統(tǒng)較高效。能夠通過(guò)鼠標(biāo)、鍵盤(pán)來(lái)對(duì)電氣設(shè)備實(shí)行自動(dòng)化管控,因?yàn)槭褂霉芸亓鞒叹湍軌驅(qū)崿F(xiàn)同步并網(wǎng)帶負(fù)荷操縱,以此以來(lái)不僅能夠大范圍減少工作人員的勞動(dòng)時(shí)間,還能讓控制效率得以提升,這同目前工業(yè)發(fā)展的`現(xiàn)實(shí)需要非常符合[4]。(4)差錯(cuò)記載功能也是人工智能技術(shù)擁有的獨(dú)特特點(diǎn),人類(lèi)可以更好的運(yùn)用這個(gè)技術(shù)來(lái)監(jiān)測(cè)每一個(gè)運(yùn)行環(huán)節(jié)中出現(xiàn)的點(diǎn)滴差池,以此來(lái)調(diào)試設(shè)備使其達(dá)到最佳的狀態(tài),這從根本上提高了電氣設(shè)備的運(yùn)行效率和使用安全度,使其更好的為人類(lèi)服務(wù)。
    3人工智能技術(shù)在電氣自動(dòng)化中的應(yīng)用分析
    因?yàn)槟壳皬母旧仙?jí)了人工智能技術(shù),加上它技術(shù)的逐漸完備,越來(lái)越多的電氣設(shè)備開(kāi)始同人工智能技術(shù)掛鉤,為了更加直觀的介紹人工智能設(shè)備的特點(diǎn)與技術(shù)屬性,筆者主要對(duì)電氣自動(dòng)化設(shè)備中人工智能技術(shù)的使用和電氣管控流程中人工智能技術(shù)的使用開(kāi)展了辨析。
    3.1人工智能技術(shù)在電氣自動(dòng)化設(shè)備中的應(yīng)用
    電氣自動(dòng)化系統(tǒng)有極大的繁雜性,它主要牽扯到許多范圍與科目,這就對(duì)操控電氣自動(dòng)化設(shè)備的員工提出了很高的要求,他們應(yīng)該擁有很高的職業(yè)素養(yǎng),而且還要有充足的知識(shí)儲(chǔ)備。因?yàn)殡姎庾詣?dòng)化體系相當(dāng)繁雜,所以在現(xiàn)實(shí)操控中的效率性要加強(qiáng),這樣才能極大程度地降低因?yàn)椴缓侠硎褂?,?dǎo)致出現(xiàn)非常規(guī)錯(cuò)誤,有時(shí)更可能導(dǎo)致安全事故等。這些問(wèn)題的解決都可憑借人工智能技術(shù)來(lái)達(dá)成,就人工智能技術(shù)自身來(lái)看,其系統(tǒng)中心主要是計(jì)算機(jī)系統(tǒng),經(jīng)由編輯每種操控系統(tǒng),能夠使計(jì)算機(jī)控制中的智能管控得以更好的施行[5]。
    3.2人工智能技術(shù)在電氣控制過(guò)程中的應(yīng)用
    就電氣自動(dòng)化的管控流程來(lái)看,人工智能可以幫助人類(lèi)更好的控制電氣設(shè)備。在電氣設(shè)備的控制系統(tǒng)中,引入人工智能的現(xiàn)金技術(shù)后,能讓實(shí)際工作操作效果在很大范圍上得以提升,還能使得整個(gè)操作過(guò)程實(shí)現(xiàn)無(wú)人化監(jiān)管,這樣一來(lái)達(dá)到了企業(yè)節(jié)約成本的目的,尤其是不用再去花費(fèi)大筆的人工費(fèi)用。除此之外就從整個(gè)控制過(guò)程來(lái)看,人工智能技術(shù)可以實(shí)現(xiàn)同多臺(tái)設(shè)備的同時(shí)控制,專(zhuān)家體系、模擬操控和神經(jīng)網(wǎng)絡(luò)操控是其首要應(yīng)用的人工智能系統(tǒng)[6]。
    4總結(jié)
    科技的發(fā)展讓人類(lèi)的生活更加便利與美好,人工智能技術(shù)的發(fā)揮在那越來(lái)越推進(jìn)了現(xiàn)代工業(yè)的更好發(fā)展。因?yàn)槿斯ぶ悄芗夹g(shù)具備相當(dāng)多的優(yōu)點(diǎn),它是這些年來(lái)發(fā)展起來(lái)的一門(mén)新興高科技技術(shù),它在實(shí)際應(yīng)用中有巨大的使用效率,不僅在電氣自動(dòng)化控制中,加入人工智能技術(shù)后,極大程度上提高了電氣設(shè)備的控制度,讓它能更好的的服務(wù)人類(lèi)生產(chǎn)活動(dòng);同時(shí)電氣設(shè)備上結(jié)合了人工智能技術(shù),讓電氣自動(dòng)化設(shè)備的操控系統(tǒng)變得更加簡(jiǎn)潔,提高了員工操控效率;降低了企業(yè)的人力物力成本,使得生產(chǎn)流程更加科學(xué)、連貫,所以大力發(fā)展人工智能技術(shù)與電氣自動(dòng)化的結(jié)合是非常有必要的研究。
    參考文獻(xiàn):
    [5]黃開(kāi)平.高級(jí)項(xiàng)目中自動(dòng)化系統(tǒng)的應(yīng)用[j].電氣時(shí)代,20xx(02).
    人工智能論文大學(xué)生篇十
    在航空業(yè)的發(fā)展中,人工智能技術(shù)起著積極的促進(jìn)作用。本文介紹了空中交通管理中的人工智能理論及方法運(yùn)用,為優(yōu)化空中交通流量管理系統(tǒng)提供理論依據(jù),更好地服務(wù)于空管系統(tǒng)。
    人工智能;空中交通;管理
    人工智能,即artificialintelligence,是計(jì)算機(jī)科學(xué)的一個(gè)分支,研究對(duì)人的意識(shí)及思維的信息過(guò)程的模擬并對(duì)其進(jìn)行延伸和擴(kuò)展,通過(guò)了解人類(lèi)智能,研究出類(lèi)似的反應(yīng)的智能機(jī)器。隨著計(jì)算機(jī)技術(shù)的發(fā)展,人工智能越來(lái)越多的運(yùn)用于民航的各個(gè)方面,如飛行間隔的控制,空中流量的預(yù)測(cè),飛行沖突的調(diào)配。但隨著民航業(yè)的飛速發(fā)展,飛行流量日益增大,需要將人工智能技術(shù)有效運(yùn)用于空中交通流量管理中,建立人工智能輔助系統(tǒng),擴(kuò)大空域容量,優(yōu)化空中交通流量,提升空管秩序。
    在空中交通流量管理(airtrafficflowcontrolmanagement)中,空中交通流量是指單位時(shí)間和空間通過(guò)的航空器數(shù)量。通過(guò)優(yōu)化空中交通流量,將空中交通管制服務(wù)與機(jī)場(chǎng)、航路有效結(jié)合,減少延誤,提高機(jī)場(chǎng)和空域的.利用率。從時(shí)間角度上,空中交通流量管理可以分為航路流量管理和機(jī)場(chǎng)終端區(qū)流量管理兩部分,從時(shí)間上又可劃分為戰(zhàn)略流量管理,預(yù)戰(zhàn)術(shù)流量管理和戰(zhàn)術(shù)流量管理。當(dāng)航空器數(shù)量飽和時(shí)就要對(duì)航空器進(jìn)行流量控制,目前的常用的控制措施如下:1)地面等待,最主要的空中交通流量管理措施,本著地面讓空中的原則,對(duì)地面航空器的起飛時(shí)間進(jìn)行限制;2)空中等待,航空器在航路上或終端區(qū)規(guī)定的等待點(diǎn)或沒(méi)有沖突的臨時(shí)等待點(diǎn)進(jìn)行盤(pán)旋等待;3)更改航路等待,當(dāng)航路航線的容量飽和時(shí),航空器可以通過(guò)選擇其他航路航線;4)控制航路間隔,通過(guò)對(duì)航空器進(jìn)入空域的間隔進(jìn)行限制,來(lái)達(dá)到流量管理的目的,吸收部分擁擠的流量。
    agent在人工智能的研究中,指能自主活動(dòng)的軟件或者硬件實(shí)體,目前國(guó)內(nèi)普遍翻譯為智能體。在人工智能中,設(shè)計(jì)關(guān)鍵智能體,對(duì)于研究人工智能的應(yīng)用是非常重要的。在空中交通流量管理中,設(shè)計(jì)如下關(guān)鍵智能體:航班智能體、航路智能體和機(jī)場(chǎng)終端區(qū)智能體。航班智能體的屬性有高度、速度、上升/下降率、起飛機(jī)場(chǎng)、目的地等。航班智能體可以與區(qū)域內(nèi)或終端區(qū)的其他航班智能體建立通信,通過(guò)獲取航班信息和邏輯判斷,結(jié)合周?chē)h(huán)境與自身狀況,指導(dǎo)控制自身行為。如果航班智能體需要做出相應(yīng)的調(diào)整如改變高度航向等,需要給上級(jí)的航路智能體或機(jī)場(chǎng)終端區(qū)智能體發(fā)出申請(qǐng),上級(jí)智能體批準(zhǔn)后,航班智能體才能采取相應(yīng)的調(diào)整,作出相應(yīng)的控制行為,才能通過(guò)交互環(huán)境反饋相應(yīng)結(jié)果。在實(shí)際工作中,這個(gè)過(guò)程是通過(guò)空中交通管制員指揮航空器實(shí)現(xiàn)的。空中交通管制員在實(shí)際指揮工作中,需要結(jié)合當(dāng)時(shí)的空中交通狀況和自身的經(jīng)驗(yàn)知識(shí)。航路智能體的主要屬性有航路的高度、寬度、容量等。航路智能體需要對(duì)航班智能體進(jìn)行指揮,管理航路上的智能體,同時(shí)與其他航路智能體和機(jī)場(chǎng)終端區(qū)智能體進(jìn)行通信,對(duì)航班智能體進(jìn)入和離開(kāi)航路的時(shí)機(jī)進(jìn)行協(xié)調(diào),記錄流量信息并報(bào)告給上級(jí)流量管理部門(mén),接收上級(jí)智能體的指令。在航班智能體進(jìn)入航路之前首先要進(jìn)行容量評(píng)估。通過(guò)評(píng)估后的航班智能體回收到航路智能體發(fā)出的放行許可才能進(jìn)入航路。如果沒(méi)有通過(guò)容量評(píng)估,則要向上級(jí)智能體發(fā)送將流量限制的申請(qǐng),發(fā)布流量限制后航路就不能批準(zhǔn)航班智能體的進(jìn)入,通過(guò)減少航班智能體的數(shù)量,控制航路交通流量。機(jī)場(chǎng)終端區(qū)智能體:在實(shí)際工作中,機(jī)場(chǎng)終端區(qū)的航班管理包括管制指揮、流量控制、地面場(chǎng)面監(jiān)視、進(jìn)離場(chǎng)等,難度較大。終端區(qū)智能體(通常運(yùn)行中為塔臺(tái)管制)首先要處理所收到的信息,如天氣雷達(dá)信息、地面運(yùn)行信息和情報(bào)信息等等,結(jié)合已有知識(shí)開(kāi)展機(jī)場(chǎng)的容量評(píng)估。如遇到低云低能見(jiàn)度、雷雨等天氣時(shí)可以調(diào)低終端區(qū)/機(jī)場(chǎng)容量,對(duì)進(jìn)入離開(kāi)的航空器進(jìn)行限制。通過(guò)容量評(píng)估,塔臺(tái)會(huì)給航班智能體一個(gè)slottime,航班智能體按照塔臺(tái)的slottime起飛或降落,從而達(dá)到流量控制。如果沒(méi)有通過(guò)容量評(píng)估,則需要通過(guò)上級(jí)的智能體批準(zhǔn),發(fā)布流量控制,限制終端區(qū)的流量,通過(guò)控制進(jìn)入或離開(kāi)的航空器數(shù)量達(dá)到流量限制的目的。機(jī)場(chǎng)終端區(qū)智能體(塔臺(tái))對(duì)終端區(qū)的航空器進(jìn)行管理,還需要與航路智能體和平級(jí)的終端去智能體進(jìn)行通信,對(duì)航班進(jìn)出的slottime進(jìn)行協(xié)調(diào),并將流量管理信息報(bào)告給上級(jí)流量管理部門(mén),接收上級(jí)智能體的命令。如果出現(xiàn)擁堵機(jī)場(chǎng)終端區(qū)智能體需要通過(guò)一些措施來(lái)管理流量,如分配slottime、指揮航空器地面或空中盤(pán)旋等待。
    綜上所述,以往在模擬空中交通流量進(jìn)行研究的時(shí)候,首先制定流量控制信息,再在系統(tǒng)模擬航班飛行計(jì)劃。這樣的模擬過(guò)程不能解決容量告警問(wèn)題。如果流量控制不合理,只能重新設(shè)定流控信息,再次進(jìn)行模擬,因而加大模擬過(guò)程的工作量。而通過(guò)智能體的運(yùn)用,可以在模擬中不斷調(diào)整智能體來(lái)模擬空中流量,增加了模擬流量過(guò)程中的靈活性,將人工智能運(yùn)用于模擬中,借助智能體來(lái)模擬空中流量,可以更好的分析空中交通流量問(wèn)題。
    [2]甘鑫鑫基于多agent的空中交通協(xié)同流量管理研究[j].科學(xué)與財(cái)富,2015(30):278.
    [5]陳言俊,劉甜甜.人工智能與機(jī)器人.[6]黃昱斌.基于multi-agent的空中交通流量的探究[j].科技創(chuàng)新與應(yīng)用,2015(14):57-57.
    人工智能論文大學(xué)生篇十一
    人工智能、基因工程、納米科學(xué)被認(rèn)定是21世紀(jì)的三大頂端高科技,其中人工智能在近些年來(lái)其研究領(lǐng)域不斷擴(kuò)大,涉及到哲學(xué)、神經(jīng)生理學(xué)、心理學(xué)、計(jì)算機(jī)科學(xué)以及仿生學(xué)等多個(gè)科學(xué)領(lǐng)域的研究,其科技成果也層出不群,被廣泛應(yīng)用于科學(xué)研究以及工業(yè)生產(chǎn)中[1].工業(yè)生產(chǎn)過(guò)程中采用電氣自動(dòng)化生產(chǎn)模式,能夠大大降低勞動(dòng)成本,提高生產(chǎn)效率的同時(shí)還能保證產(chǎn)品質(zhì)量,因此被眾多企業(yè)用于生產(chǎn)實(shí)踐中,而在電氣自動(dòng)化控制系統(tǒng)中應(yīng)用人工智能技術(shù),可謂是如虎添翼,保障了生產(chǎn)環(huán)節(jié)控制的高效性和科學(xué)性。
    1人工智能在電氣自動(dòng)化控制中的應(yīng)用優(yōu)勢(shì)
    1.1受干擾程度低
    以往工業(yè)生產(chǎn)中的電氣自動(dòng)化控制都是依靠既定的程序和管理器來(lái)實(shí)現(xiàn)的,管控系統(tǒng)根據(jù)各個(gè)生產(chǎn)環(huán)節(jié)儀器儀表中傳遞的數(shù)據(jù)進(jìn)行分析,套入固定的問(wèn)題處理軟件上,選擇指令發(fā)布,不具備具體問(wèn)題具體分析的能力,會(huì)受到多個(gè)生產(chǎn)因素的干擾。人工智能技術(shù)其神奇之處就在于智能,不需要精確的動(dòng)態(tài)模型和具體參數(shù)的設(shè)置,就能夠有效處理生產(chǎn)信息,調(diào)控電氣化生產(chǎn)設(shè)備。除此之外,人工智能技術(shù)能夠?qū)崿F(xiàn)調(diào)控的一致性,掌控全局進(jìn)行智能調(diào)控,根據(jù)生產(chǎn)信息作出有效應(yīng)答,而不會(huì)局限于某一固定生產(chǎn)指令,只調(diào)控某一環(huán)節(jié)的生產(chǎn)設(shè)備。
    1.2操作誤差小
    人工智能本身的運(yùn)行條件沒(méi)有太多的限制,與因此與傳統(tǒng)的控制器相比,本身的操作誤差更小,基本上不會(huì)受到外界因素的干擾[2].一般來(lái)說(shuō),人工智能技術(shù)在電氣自動(dòng)化控制體系中應(yīng)用,會(huì)現(xiàn)根據(jù)實(shí)際生產(chǎn)需求設(shè)置參數(shù),隨后又人工智能系統(tǒng)進(jìn)行統(tǒng)一的調(diào)控,而在實(shí)際應(yīng)用過(guò)程中,這些參數(shù)是基本上不會(huì)因?yàn)橥饨绺蓴_而改變的,這也就保證了人工之能夠系統(tǒng)的管控質(zhì)量,不會(huì)因?yàn)楸旧淼墓收隙饹Q策的失誤,大大降低了操作誤差,使得各個(gè)生產(chǎn)環(huán)節(jié)能夠按照預(yù)先設(shè)想的方案有序進(jìn)行。操作誤差小,是人工調(diào)控與傳統(tǒng)控制都不具備的特點(diǎn),完全符合機(jī)械化自動(dòng)生產(chǎn)的理念。
    1.3調(diào)節(jié)效率高
    人工智能其數(shù)據(jù)處理分析能力更為強(qiáng)大,因此在實(shí)際應(yīng)用過(guò)程中,即使生產(chǎn)環(huán)節(jié)發(fā)生了變化,需要調(diào)整人工智能控制系統(tǒng)的一些參數(shù),其難度也是相對(duì)更低的,不需要專(zhuān)門(mén)的技術(shù)專(zhuān)家來(lái)進(jìn)行指導(dǎo),只要調(diào)整部分參數(shù),人工智能體系就能捕捉到生產(chǎn)環(huán)節(jié)的變化,執(zhí)行調(diào)整管控模式。例如,在生產(chǎn)環(huán)節(jié)中,產(chǎn)品種類(lèi)發(fā)生了變化,如果是傳統(tǒng)的電氣自動(dòng)化控制體系,就可能要重新輸入控制參數(shù),調(diào)整控制程序,而人工智能系統(tǒng)能夠根據(jù)收集到的生產(chǎn)信息,進(jìn)行合理的自我調(diào)整,操作簡(jiǎn)便快捷[3].
    1.4降低生產(chǎn)成本
    在電氣自動(dòng)化控制系統(tǒng)中還沒(méi)有應(yīng)用人工智能技術(shù)之前,生產(chǎn)雖然已經(jīng)不要使用人力,但是在其他環(huán)節(jié)比如設(shè)備故障檢查以及設(shè)備整理仍然需要人工來(lái)完成,這樣不僅耗費(fèi)時(shí)間,而且產(chǎn)生了一定的人工費(fèi)用,一直是限制電氣自動(dòng)化生產(chǎn)的一個(gè)問(wèn)題。人工智能能夠?qū)崿F(xiàn)器械故障的自動(dòng)檢測(cè),實(shí)現(xiàn)工業(yè)生產(chǎn)的全方位管理,確保所有的電氣設(shè)備都按照設(shè)定好的方案進(jìn)行工作,消除了生產(chǎn)過(guò)程中一些常見(jiàn)的生產(chǎn)問(wèn)題。
    2人工智能在電氣自動(dòng)化控制中的實(shí)際應(yīng)用
    人工智能技術(shù)的實(shí)際應(yīng)用主要有專(zhuān)家系統(tǒng)、人工神經(jīng)網(wǎng)絡(luò)、啟發(fā)式搜索以及模糊集理論,這些運(yùn)作體系是其應(yīng)用于生產(chǎn)實(shí)踐的基礎(chǔ)。一直以來(lái),人工智能技術(shù)的目標(biāo)就是為了讓機(jī)器能夠擁有與人相同的智力,具備接受信息處理事情的能力[4].計(jì)算機(jī)技術(shù)的發(fā)展,使得工業(yè)生產(chǎn)實(shí)現(xiàn)了初步實(shí)現(xiàn)了電氣自動(dòng)化生產(chǎn)的目標(biāo),但是要想這一管控體系進(jìn)一步發(fā)展,還需要更為先進(jìn)的機(jī)器調(diào)控技術(shù),人工智能正好符合這一發(fā)展要求,為電氣自動(dòng)化生產(chǎn)的進(jìn)一步發(fā)展提供了無(wú)限的可能。
    2.1電氣產(chǎn)品的優(yōu)化設(shè)計(jì)
    一直以來(lái),電氣產(chǎn)品的優(yōu)化設(shè)計(jì)是一項(xiàng)巨大的工程,受限你要掌握市場(chǎng)行情,融合更為先進(jìn)的科學(xué)技術(shù),根據(jù)以往的產(chǎn)品設(shè)計(jì)經(jīng)驗(yàn),進(jìn)一步優(yōu)化產(chǎn)品的性能,才能確保產(chǎn)品的銷(xiāo)售額度,保證企業(yè)的市場(chǎng)占有率。這一研發(fā)環(huán)節(jié),不能過(guò)長(zhǎng),因?yàn)槿缃竦氖袌?chǎng)雪球變化極快,而且市場(chǎng)競(jìng)爭(zhēng)較大,必須搶占先機(jī),但是又不能以為追求研發(fā)速度而忽視質(zhì)量。隨著人工智能技術(shù)的應(yīng)用,目前產(chǎn)品的優(yōu)化設(shè)計(jì)模式已經(jīng)有純?nèi)斯げ僮鬓D(zhuǎn)變?yōu)槿斯ぶ悄茌o助設(shè)計(jì),大大縮短了產(chǎn)品的研發(fā)周期,并且在人工智能的幫助下,產(chǎn)品參數(shù)的設(shè)置更為合理,數(shù)據(jù)精確度大大提升。
    2.2電氣設(shè)備的故障診斷
    在工業(yè)生產(chǎn)過(guò)程中,往往是多個(gè)生產(chǎn)環(huán)節(jié)數(shù)千臺(tái)機(jī)器一同運(yùn)轉(zhuǎn),單靠人工或者是笨拙的控制器,是無(wú)法找出具體故障設(shè)備的,需要花費(fèi)大量的時(shí)間,而為了保證生產(chǎn)安全,就必須停下可疑范圍內(nèi)的所有電器設(shè)備,對(duì)于電器自動(dòng)化生產(chǎn)來(lái)說(shuō),時(shí)間就是金錢(qián),這樣會(huì)嚴(yán)重耽誤產(chǎn)品的生產(chǎn),給公司造成巨大的經(jīng)濟(jì)損失[5].人工智能技術(shù)在電氣自動(dòng)化控制體系中的應(yīng)用,很好地解決了這一難題,通過(guò)專(zhuān)家系統(tǒng)和模糊理論的結(jié)合,分析各個(gè)生產(chǎn)環(huán)節(jié)中儀器儀表的數(shù)據(jù)信息,系統(tǒng)能有效掌握全部的生產(chǎn)信息,實(shí)現(xiàn)電氣自動(dòng)化生產(chǎn)的智能控制,及時(shí)發(fā)現(xiàn)設(shè)備故障問(wèn)題,停止故障設(shè)備,將生產(chǎn)損失降低到最小,切實(shí)保障企業(yè)的生產(chǎn)效益。
    2.3運(yùn)行過(guò)程的智能控制
    社會(huì)在不斷發(fā)展,數(shù)年前機(jī)械化生產(chǎn)代替了人工生產(chǎn),而隨著社會(huì)需求的不斷擴(kuò)大,企業(yè)生產(chǎn)效率也必須不斷提高,才能在激烈的市場(chǎng)競(jìng)爭(zhēng)中站穩(wěn)腳跟。人工智能技術(shù)的發(fā)展,為實(shí)現(xiàn)電氣自動(dòng)化的智能控制帶來(lái)了希望的曙光。在大數(shù)據(jù)時(shí)代背景下,工業(yè)生產(chǎn)中設(shè)計(jì)到的生產(chǎn)信息量是極為龐大的,人工無(wú)法快速處理這些信息作出有效決策,智能依靠計(jì)算機(jī)技術(shù)的使用,而計(jì)算機(jī)信息技術(shù)都是依靠固定的程序來(lái)處理信息,只有將二者結(jié)合,才能實(shí)現(xiàn)電氣自動(dòng)化生產(chǎn)的有效管控。人工智能系統(tǒng)是初步具備了人類(lèi)智力的機(jī)械系統(tǒng),具有計(jì)算速度快的優(yōu)點(diǎn),能夠在短時(shí)間內(nèi)處理大量信息,得出正確的結(jié)果,及時(shí)作出生產(chǎn)決策。
    3結(jié)語(yǔ)
    機(jī)械技術(shù)與計(jì)算機(jī)信息技術(shù)的結(jié)合,實(shí)現(xiàn)了工業(yè)生產(chǎn)的電氣自動(dòng)化控制,大部分的生產(chǎn)過(guò)程都是有機(jī)械完成的,然而在生產(chǎn)實(shí)踐中,還是需要人工進(jìn)行調(diào)控,及時(shí)調(diào)整機(jī)器的運(yùn)行狀態(tài),定期檢修器械,以免發(fā)生故障影響生產(chǎn)效率[6].人工智能技術(shù)的出現(xiàn),實(shí)現(xiàn)了電氣自動(dòng)化的智能控制,與傳統(tǒng)人工控制相比,其調(diào)控效率更高,能夠直接處理各個(gè)生產(chǎn)環(huán)節(jié)中出現(xiàn)的一些問(wèn)題,而且基本上不會(huì)受到外界因素的干擾,決策科學(xué),管理高效,絕對(duì)是一項(xiàng)值得信賴的尖端技術(shù)。人工智能的應(yīng)用,能夠保證生產(chǎn)質(zhì)量的統(tǒng)一性,優(yōu)化產(chǎn)品設(shè)計(jì),在生產(chǎn)過(guò)程中,及時(shí)發(fā)現(xiàn)電氣設(shè)備運(yùn)行故障的問(wèn)題并進(jìn)行有效處理,實(shí)現(xiàn)了電氣化生產(chǎn)的實(shí)時(shí)動(dòng)態(tài)管控。
    參考文獻(xiàn):
    [5]陳坤,史策,季永春.人工智能技術(shù)在電氣自動(dòng)化控制中的應(yīng)用思考[j].藝術(shù)科技,20xx(08):76.
    [6]姜關(guān)勝.人工智能技術(shù)在電氣自動(dòng)化控制中的應(yīng)用問(wèn)題探討[j].電子技術(shù)與軟件工程,20xx(20):150.
    人工智能論文大學(xué)生篇十二
    圖像識(shí)別技術(shù)是信息時(shí)代的一門(mén)重要的技術(shù),其產(chǎn)生目的是為了讓計(jì)算機(jī)代替人類(lèi)去處理大量的物理信息。隨著計(jì)算機(jī)技術(shù)的發(fā)展,人類(lèi)對(duì)圖像識(shí)別技術(shù)的認(rèn)識(shí)越來(lái)越深刻。圖像識(shí)別技術(shù)的過(guò)程分為信息的獲取、預(yù)處理、特征抽取和選擇、分類(lèi)器設(shè)計(jì)和分類(lèi)決策。文章簡(jiǎn)單分析了圖像識(shí)別技術(shù)的引入、其技術(shù)原理以及模式識(shí)別等,之后介紹了神經(jīng)網(wǎng)絡(luò)的圖像識(shí)別技術(shù)和非線性降維的圖像識(shí)別技術(shù)及圖像識(shí)別技術(shù)的應(yīng)用。從中可以總結(jié)出圖像處理技術(shù)的應(yīng)用廣泛,人類(lèi)的生活將無(wú)法離開(kāi)圖像識(shí)別技術(shù),研究圖像識(shí)別技術(shù)具有重大意義。
    1圖像識(shí)別技術(shù)的引入
    圖像識(shí)別是人工智能科技的一個(gè)重要領(lǐng)域。圖像識(shí)別的發(fā)展經(jīng)歷了三個(gè)階段:文字識(shí)別、數(shù)字圖像處理與識(shí)別、物體識(shí)別。圖像識(shí)別,顧名思義,就是對(duì)圖像做出各種處理、分析,最終識(shí)別我們所要研究的目標(biāo)。今天所指的圖像識(shí)別并不僅僅是用人類(lèi)的肉眼,而是借助計(jì)算機(jī)技術(shù)進(jìn)行識(shí)別。雖然人類(lèi)的識(shí)別能力很強(qiáng)大,但是對(duì)于高速發(fā)展的社會(huì),人類(lèi)自身識(shí)別能力已經(jīng)滿足不了我們的需求,于是就產(chǎn)生了基于計(jì)算機(jī)的圖像識(shí)別技術(shù)。這就像人類(lèi)研究生物細(xì)胞,完全靠肉眼觀察細(xì)胞是不現(xiàn)實(shí)的,這樣自然就產(chǎn)生了顯微鏡等用于精確觀測(cè)的儀器。通常一個(gè)領(lǐng)域有固有技術(shù)無(wú)法解決的需求時(shí),就會(huì)產(chǎn)生相應(yīng)的新技術(shù)。圖像識(shí)別技術(shù)也是如此,此技術(shù)的產(chǎn)生就是為了讓計(jì)算機(jī)代替人類(lèi)去處理大量的物理信息,解決人類(lèi)無(wú)法識(shí)別或者識(shí)別率特別低的信息。
    1.1圖像識(shí)別技術(shù)原理
    其實(shí),圖像識(shí)別技術(shù)背后的原理并不是很難,只是其要處理的信息比較繁瑣。計(jì)算機(jī)的任何處理技術(shù)都不是憑空產(chǎn)生的,它都是學(xué)者們從生活實(shí)踐中得到啟發(fā)而利用程序?qū)⑵淠M實(shí)現(xiàn)的。計(jì)算機(jī)的圖像識(shí)別技術(shù)和人類(lèi)的圖像識(shí)別在原理上并沒(méi)有本質(zhì)的區(qū)別,只是機(jī)器缺少人類(lèi)在感覺(jué)與視覺(jué)差上的影響罷了。人類(lèi)的圖像識(shí)別也不單單是憑借整個(gè)圖像存儲(chǔ)在腦海中的記憶來(lái)識(shí)別的,我們識(shí)別圖像都是依靠圖像所具有的本身特征而先將這些圖像分了類(lèi),然后通過(guò)各個(gè)類(lèi)別所具有的特征將圖像識(shí)別出來(lái)的,只是很多時(shí)候我們沒(méi)有意識(shí)到這一點(diǎn)。當(dāng)看到一張圖片時(shí),我們的大腦會(huì)迅速感應(yīng)到是否見(jiàn)過(guò)此圖片或與其相似的圖片。其實(shí)在“看到”與“感應(yīng)到”的中間經(jīng)歷了一個(gè)迅速識(shí)別過(guò)程,這個(gè)識(shí)別的過(guò)程和搜索有些類(lèi)似。在這個(gè)過(guò)程中,我們的大腦會(huì)根據(jù)存儲(chǔ)記憶中已經(jīng)分好的類(lèi)別進(jìn)行識(shí)別,查看是否有與該圖像具有相同或類(lèi)似特征的存儲(chǔ)記憶,從而識(shí)別出是否見(jiàn)過(guò)該圖像。機(jī)器的圖像識(shí)別技術(shù)也是如此,通過(guò)分類(lèi)并提取重要特征而排除多余的信息來(lái)識(shí)別圖像。機(jī)器所提取出的這些特征有時(shí)會(huì)非常明顯,有時(shí)又是很普通,這在很大的程度上影響了機(jī)器識(shí)別的速率??傊?,在計(jì)算機(jī)的視覺(jué)識(shí)別中,圖像的內(nèi)容通常是用圖像特征進(jìn)行描述。
    1.2模式識(shí)別
    模式識(shí)別是人工智能和信息科學(xué)的重要組成部分。模式識(shí)別是指對(duì)表示事物或現(xiàn)象的不同形式的信息做分析和處理從而得到一個(gè)對(duì)事物或現(xiàn)象做出描述、辨認(rèn)和分類(lèi)等的過(guò)程。
    計(jì)算機(jī)的圖像識(shí)別技術(shù)就是模擬人類(lèi)的圖像識(shí)別過(guò)程。在圖像識(shí)別的過(guò)程中進(jìn)行模式識(shí)別是必不可少的。模式識(shí)別原本是人類(lèi)的一項(xiàng)基本智能。但隨著計(jì)算機(jī)的發(fā)展和人工智能的興起,人類(lèi)本身的模式識(shí)別已經(jīng)滿足不了生活的需要,于是人類(lèi)就希望用計(jì)算機(jī)來(lái)代替或擴(kuò)展人類(lèi)的部分腦力勞動(dòng)。這樣計(jì)算機(jī)的模式識(shí)別就產(chǎn)生了。簡(jiǎn)單地說(shuō),模式識(shí)別就是對(duì)數(shù)據(jù)進(jìn)行分類(lèi),它是一門(mén)與數(shù)學(xué)緊密結(jié)合的科學(xué),其中所用的思想大部分是概率與統(tǒng)計(jì)。模式識(shí)別主要分為三種:統(tǒng)計(jì)模式識(shí)別、句法模式識(shí)別、模糊模式識(shí)別。
    2圖像識(shí)別技術(shù)的過(guò)程
    既然計(jì)算機(jī)的圖像識(shí)別技術(shù)與人類(lèi)的圖像識(shí)別原理相同,那它們的過(guò)程也是大同小異的。圖像識(shí)別技術(shù)的過(guò)程分以下幾步:信息的獲取、預(yù)處理、特征抽取和選擇、分類(lèi)器設(shè)計(jì)和分類(lèi)決策。
    信息的獲取是指通過(guò)傳感器,將光或聲音等信息轉(zhuǎn)化為電信息。也就是獲取研究對(duì)象的基本信息并通過(guò)某種方法將其轉(zhuǎn)變?yōu)闄C(jī)器能夠認(rèn)識(shí)的信息。
    預(yù)處理主要是指圖像處理中的去噪、平滑、變換等的操作,從而加強(qiáng)圖像的重要特征。
    特征抽取和選擇是指在模式識(shí)別中,需要進(jìn)行特征的抽取和選擇。簡(jiǎn)單的理解就是我們所研究的圖像是各式各樣的,如果要利用某種方法將它們區(qū)分開(kāi),就要通過(guò)這些圖像所具有的本身特征來(lái)識(shí)別,而獲取這些特征的過(guò)程就是特征抽取。在特征抽取中所得到的特征也許對(duì)此次識(shí)別并不都是有用的,這個(gè)時(shí)候就要提取有用的特征,這就是特征的選擇。特征抽取和選擇在圖像識(shí)別過(guò)程中是非常關(guān)鍵的技術(shù)之一,所以對(duì)這一步的理解是圖像識(shí)別的重點(diǎn)。
    分類(lèi)器設(shè)計(jì)是指通過(guò)訓(xùn)練而得到一種識(shí)別規(guī)則,通過(guò)此識(shí)別規(guī)則可以得到一種特征分類(lèi),使圖像識(shí)別技術(shù)能夠得到高識(shí)別率。分類(lèi)決策是指在特征空間中對(duì)被識(shí)別對(duì)象進(jìn)行分類(lèi),從而更好地識(shí)別所研究的對(duì)象具體屬于哪一類(lèi)。
    3圖像識(shí)別技術(shù)的分析
    隨著計(jì)算機(jī)技術(shù)的迅速發(fā)展和科技的不斷進(jìn)步,圖像識(shí)別技術(shù)已經(jīng)在眾多領(lǐng)域中得到了應(yīng)用。20xx年2月15日新浪科技發(fā)布一條新聞:“微軟最近公布了一篇關(guān)于圖像識(shí)別的研究論文,在一項(xiàng)圖像識(shí)別的基準(zhǔn)測(cè)試中,電腦系統(tǒng)識(shí)別能力已經(jīng)超越了人類(lèi)。人類(lèi)在歸類(lèi)數(shù)據(jù)庫(kù)imagenet中的圖像識(shí)別錯(cuò)誤率為5.1%,而微軟研究小組的這個(gè)深度學(xué)習(xí)系統(tǒng)可以達(dá)到4.94%的錯(cuò)誤率。”從這則新聞中我們可以看出圖像識(shí)別技術(shù)在圖像識(shí)別方面已經(jīng)有要超越人類(lèi)的圖像識(shí)別能力的趨勢(shì)。這也說(shuō)明未來(lái)圖像識(shí)別技術(shù)有更大的研究意義與潛力。而且,計(jì)算機(jī)在很多方面確實(shí)具有人類(lèi)所無(wú)法超越的優(yōu)勢(shì),也正是因?yàn)檫@樣,圖像識(shí)別技術(shù)才能為人類(lèi)社會(huì)帶來(lái)更多的應(yīng)用。
    3.1神經(jīng)網(wǎng)絡(luò)的圖像識(shí)別技術(shù)
    神經(jīng)網(wǎng)絡(luò)圖像識(shí)別技術(shù)是一種比較新型的圖像識(shí)別技術(shù),是在傳統(tǒng)的圖像識(shí)別方法和基礎(chǔ)上融合神經(jīng)網(wǎng)絡(luò)算法的一種圖像識(shí)別方法。這里的神經(jīng)網(wǎng)絡(luò)是指人工神經(jīng)網(wǎng)絡(luò),也就是說(shuō)這種神經(jīng)網(wǎng)絡(luò)并不是動(dòng)物本身所具有的真正的神經(jīng)網(wǎng)絡(luò),而是人類(lèi)模仿動(dòng)物神經(jīng)網(wǎng)絡(luò)后人工生成的。在神經(jīng)網(wǎng)絡(luò)圖像識(shí)別技術(shù)中,遺傳算法與bp網(wǎng)絡(luò)相融合的神經(jīng)網(wǎng)絡(luò)圖像識(shí)別模型是非常經(jīng)典的,在很多領(lǐng)域都有它的應(yīng)用。在圖像識(shí)別系統(tǒng)中利用神經(jīng)網(wǎng)絡(luò)系統(tǒng),一般會(huì)先提取圖像的特征,再利用圖像所具有的特征映射到神經(jīng)網(wǎng)絡(luò)進(jìn)行圖像識(shí)別分類(lèi)。以汽車(chē)拍照自動(dòng)識(shí)別技術(shù)為例,當(dāng)汽車(chē)通過(guò)的時(shí)候,汽車(chē)自身具有的檢測(cè)設(shè)備會(huì)有所感應(yīng)。此時(shí)檢測(cè)設(shè)備就會(huì)啟用圖像采集裝置來(lái)獲取汽車(chē)正反面的圖像。獲取了圖像后必須將圖像上傳到計(jì)算機(jī)進(jìn)行保存以便識(shí)別。最后車(chē)牌定位模塊就會(huì)提取車(chē)牌信息,對(duì)車(chē)牌上的字符進(jìn)行識(shí)別并顯示最終的結(jié)果。在對(duì)車(chē)牌上的字符進(jìn)行識(shí)別的過(guò)程中就用到了基于模板匹配算法和基于人工神經(jīng)網(wǎng)絡(luò)算法。
    3.2非線性降維的圖像識(shí)別技術(shù)
    計(jì)算機(jī)的圖像識(shí)別技術(shù)是一個(gè)異常高維的識(shí)別技術(shù)。不管圖像本身的分辨率如何,其產(chǎn)生的數(shù)據(jù)經(jīng)常是多維性的,這給計(jì)算機(jī)的識(shí)別帶來(lái)了非常大的困難。想讓計(jì)算機(jī)具有高效地識(shí)別能力,最直接有效的方法就是降維。降維分為線性降維和非線性降維。例如主成分分析(pca)和線性奇異分析(lda)等就是常見(jiàn)的線性降維方法,它們的特點(diǎn)是簡(jiǎn)單、易于理解。但是通過(guò)線性降維處理的是整體的數(shù)據(jù)集合,所求的是整個(gè)數(shù)據(jù)集合的最優(yōu)低維投影。經(jīng)過(guò)驗(yàn)證,這種線性的降維策略計(jì)算復(fù)雜度高而且占用相對(duì)較多的時(shí)間和空間,因此就產(chǎn)生了基于非線性降維的圖像識(shí)別技術(shù),它是一種極其有效的非線性特征提取方法。此技術(shù)可以發(fā)現(xiàn)圖像的非線性結(jié)構(gòu)而且可以在不破壞其本征結(jié)構(gòu)的基礎(chǔ)上對(duì)其進(jìn)行降維,使計(jì)算機(jī)的圖像識(shí)別在盡量低的維度上進(jìn)行,這樣就提高了識(shí)別速率。例如人臉圖像識(shí)別系統(tǒng)所需的維數(shù)通常很高,其復(fù)雜度之高對(duì)計(jì)算機(jī)來(lái)說(shuō)無(wú)疑是巨大的“災(zāi)難”。由于在高維度空間中人臉圖像的不均勻分布,使得人類(lèi)可以通過(guò)非線性降維技術(shù)來(lái)得到分布緊湊的人臉圖像,從而提高人臉識(shí)別技術(shù)的高效性。
    3.3圖像識(shí)別技術(shù)的應(yīng)用及前景
    計(jì)算機(jī)的圖像識(shí)別技術(shù)在公共安全、生物、工業(yè)、農(nóng)業(yè)、交通、醫(yī)療等很多領(lǐng)域都有應(yīng)用。例如交通方面的車(chē)牌識(shí)別系統(tǒng);公共安全方面的人臉識(shí)別技術(shù)、指紋識(shí)別技術(shù);農(nóng)業(yè)方面的種子識(shí)別技術(shù)、食品品質(zhì)檢測(cè)技術(shù);醫(yī)學(xué)方面的心電圖識(shí)別技術(shù)等。隨著計(jì)算機(jī)技術(shù)的不斷發(fā)展,圖像識(shí)別技術(shù)也在不斷地優(yōu)化,其算法也在不斷地改進(jìn)。圖像是人類(lèi)獲取和交換信息的主要來(lái)源,因此與圖像相關(guān)的圖像識(shí)別技術(shù)必定也是未來(lái)的研究重點(diǎn)。以后計(jì)算機(jī)的圖像識(shí)別技術(shù)很有可能在更多的領(lǐng)域嶄露頭角,它的應(yīng)用前景也是不可限量的,人類(lèi)的生活也將更加離不開(kāi)圖像識(shí)別技術(shù)。
    4總結(jié)
    圖像識(shí)別技術(shù)雖然是剛興起的技術(shù),但其應(yīng)用已是相當(dāng)廣泛。并且,圖像識(shí)別技術(shù)也在不斷地成長(zhǎng),隨著科技的不斷進(jìn)步,人類(lèi)對(duì)圖像識(shí)別技術(shù)的認(rèn)識(shí)也會(huì)更加深刻。未來(lái)圖像識(shí)別技術(shù)將會(huì)更加強(qiáng)大,更加智能地出現(xiàn)在我們的生活中,為人類(lèi)社會(huì)的更多領(lǐng)域帶來(lái)重大的應(yīng)用。在21世紀(jì)這個(gè)信息化的時(shí)代,我們無(wú)法想象離開(kāi)了圖像識(shí)別技術(shù)以后我們的生活會(huì)變成什么樣。圖像識(shí)別技術(shù)是人類(lèi)現(xiàn)在以及未來(lái)生活必不可少的一項(xiàng)技術(shù)。
    人工智能論文大學(xué)生篇十三
    在二十一世紀(jì)的將來(lái),寧波市室驗(yàn)小學(xué)的中心,有一座巨大的建筑物――大本鐘。
    這不是大本鐘的仿照,而是一座高科技的智能教學(xué)樓。這座樓分成一個(gè)個(gè)小小的圓,那是一個(gè)個(gè)教室?,F(xiàn)在,可以讓你見(jiàn)識(shí)見(jiàn)識(shí)所謂的“高科技”啦。走上樓梯,來(lái)到四(五)班的教室門(mén)口,門(mén)口擺著好多雙鞋,不用驚奇,教室是圓的,固然得穿特別的鞋啦。在門(mén)框上,有一個(gè)指甲大小的洞,那是微形錄像頭,假如你晚到了便會(huì)自動(dòng)發(fā)信息給教師,以防你不誠(chéng)懇,偷偷溜進(jìn)來(lái)。教室的中心有一大個(gè)一大個(gè)的沙包,那是學(xué)生座椅,你任憑怎么坐都可以,由于它有一個(gè)芯片,可以測(cè)你的心理,只要在聽(tīng)課就可以。假如沒(méi)聽(tīng)課,它就會(huì)像一把扎滿釘子的“活火山”,把你弄得苦痛不堪。教室里沒(méi)有桌子,一人一個(gè)平板電腦,教師講課的板書(shū)占一半,不用怕看不見(jiàn),在為可以放大。另一半是錄像機(jī),把教師講的課全程錄像。
    教室前面的講臺(tái)更牛,還有那個(gè)“大本鐘”語(yǔ)。數(shù)教師(包括全部教師)要拖課,那把教室建成大本鐘干嗎?鐘一響,學(xué)生倒安平穩(wěn)穩(wěn)的,教師在講臺(tái)上卻被震得象在12級(jí)地震現(xiàn)場(chǎng),五臟六腑都“蹦”了出來(lái)。假如學(xué)生很喜愛(ài),只要在“課后評(píng)分”地方點(diǎn)一個(gè)好,教師就會(huì)留下來(lái)?!皦Α鄙系暮诎逡灿行酒?,教師不用找文件,心里一想,文件就會(huì)立即翻開(kāi)。芯片還能識(shí)別人。同學(xué)假如在動(dòng),不到5秒,電腦就會(huì)自動(dòng)關(guān)機(jī),以防壞掉。黑板角落一個(gè)個(gè)白色的,上面畫(huà)有圖案的是教室按扭,一按,相應(yīng)的教室布置,讓同學(xué)們和教師不會(huì)為沒(méi)有教室而苦惱。
    教室后邊的圖書(shū)角也很奇妙。想到什么書(shū),什么書(shū)就會(huì)被推出一個(gè)角,不用我們一本本地找了。圖書(shū)角的邊上有一個(gè)生物角,透亮的玻璃里一個(gè)“動(dòng)物園”一樣的地方。每天都會(huì)引來(lái)很多奇怪的眼睛,里面除了兇狠的野獸,其它動(dòng)物幾乎都不缺。進(jìn)入邊上的“更衣室”,一套適合你的衣服就穿在了你身上,再走進(jìn)“迷你動(dòng)物園”,邊上不是透亮的了,而是一望無(wú)際的“動(dòng)物天堂”。盡管知道這是幻覺(jué),但學(xué)是很吸引人。走近那些動(dòng)物,衣服起了作用,讓人聽(tīng)懂了它們的語(yǔ)言,還能和它們溝通呢!
    不止這些呢,節(jié)日里,“天花板”上的燈會(huì)身出五彩的`光線,平常只會(huì)在摔倒時(shí)變軟的“地板”現(xiàn)在一不當(dāng)心踩著了哪塊,“砰”地一下就會(huì)炸出五色的彩帶,立即又自動(dòng)恢復(fù),為節(jié)日增加不少樂(lè)趣。
    噢,差點(diǎn)遺忘了,教室是園的,真正的目的就是不讓教師體罰學(xué)生。由于那把“沙包椅”已經(jīng)起到這個(gè)作用了啦!
    這樣一個(gè)智能教室,肯定會(huì)在21世紀(jì)被創(chuàng)造出來(lái)讓我們用的。我們肯定要去研發(fā)出這種高科技的智能教室。
    人工智能論文大學(xué)生篇十四
    簡(jiǎn)要地介紹了人工智能科技技術(shù)的基本概念。對(duì)專(zhuān)家系統(tǒng)、人工神經(jīng)網(wǎng)絡(luò)、模糊理論、遺傳算法等人工智能技術(shù)的含義進(jìn)行了介紹,并對(duì)這些技術(shù)在電力系統(tǒng)中的應(yīng)用和存在問(wèn)題進(jìn)行了分析。
    人工智能技術(shù)(ai artificial intelligence)是一項(xiàng)將人類(lèi)知識(shí)轉(zhuǎn)化為機(jī)器智能的技術(shù)。它研究的是怎樣用機(jī)器模仿人腦從事推理、規(guī)劃、設(shè)計(jì)、思考和學(xué)習(xí)等思維活動(dòng),解決需要由專(zhuān)家才能處理好的復(fù)雜問(wèn)題。在應(yīng)用方面,以專(zhuān)家系統(tǒng)、人工神經(jīng)網(wǎng)絡(luò)、遺傳算法等最為普遍 。
    1.1 專(zhuān)家系統(tǒng)(es)
    專(zhuān)家系統(tǒng)是利用知識(shí)和推理來(lái)解決專(zhuān)家不能解決的問(wèn)題。傳統(tǒng)程序需要固定程序和復(fù)雜算法,輸入數(shù)據(jù)并得出結(jié)果。專(zhuān)家系統(tǒng)集中大量的符號(hào)處理,采用啟發(fā)式方法模擬專(zhuān)家的推理過(guò)程,通過(guò)推理,利用知識(shí)解決問(wèn)題。它具有邏輯思維和符號(hào)處理能力,能修改原來(lái)知識(shí),適合于電力系統(tǒng)問(wèn)題的分析。
    1.2 人工神經(jīng)網(wǎng)絡(luò)(ann)
    人工神經(jīng)網(wǎng)絡(luò)是大量處理單元廣泛互聯(lián)而成的網(wǎng)絡(luò),是一種模擬動(dòng)物神經(jīng)系統(tǒng)的技術(shù)。神經(jīng)網(wǎng)絡(luò)具有自適應(yīng)和自學(xué)習(xí)的能力,能并行處理分布信息。電力系統(tǒng)應(yīng)用人工神經(jīng)網(wǎng)絡(luò)可以進(jìn)行實(shí)時(shí)控制、狀態(tài)評(píng)估等。
    1.3 遺傳算法(ga)
    遺傳算法是一種進(jìn)化論的數(shù)學(xué)模型,借鑒自然遺傳機(jī)制的隨機(jī)搜索算法。它的主要特征是群體搜索和群體中個(gè)體之間的信息交換。該方法適用于處理傳統(tǒng)搜索方法難以解決的非線性問(wèn)題。
    1.4 模糊邏輯(fl)
    當(dāng)輸入是離散的變量,難以建立數(shù)學(xué)模型。而模糊邏輯則成功地應(yīng)用在潮流計(jì)算、系統(tǒng)規(guī)劃、故障診斷等電力系統(tǒng)問(wèn)題。
    1.5 混合技術(shù)
    以上各種智能控制方法各有局限性,有些甚至難以處理電力系統(tǒng)實(shí)際問(wèn)題。因此需要結(jié)合各個(gè)算法的優(yōu)勢(shì),采用人工智能混合技術(shù)。其中包括:模糊專(zhuān)家系統(tǒng)、神經(jīng)網(wǎng)絡(luò)模糊系統(tǒng)、神經(jīng)網(wǎng)絡(luò)專(zhuān)家系統(tǒng)等技術(shù)。
    2.1在電能質(zhì)量研究中的應(yīng)用
    人工智能技術(shù)可以對(duì)電壓波動(dòng)、電壓不平衡、電網(wǎng)諧波等電能質(zhì)量參數(shù)進(jìn)行在線監(jiān)測(cè)和分析。在檢測(cè)和識(shí)別電能質(zhì)量擾動(dòng)時(shí)能克服傳統(tǒng)方法的缺陷。專(zhuān)家系統(tǒng)隨著經(jīng)驗(yàn)的積累、擾動(dòng)類(lèi)型變化而不斷擴(kuò)充和修改,便于用戶的.掌握[3] 。
    此外,專(zhuān)家系統(tǒng)和模糊邏輯可用于培訓(xùn)變電站工作人員。智能軟件可以模擬故障情形,有利于提高運(yùn)行人員的操作技能。
    2.2 變壓器狀態(tài)監(jiān)測(cè)與故障診斷專(zhuān)家系統(tǒng)
    變壓器事故原因判斷起來(lái)十分復(fù)雜。判斷過(guò)程中,必須通過(guò)內(nèi)外部的檢測(cè)等各種方法綜合分析作出判斷。變壓器監(jiān)測(cè)和診斷專(zhuān)家系統(tǒng)首先對(duì)油中氣體進(jìn)行分析。異常時(shí),根據(jù)異常程度結(jié)合試驗(yàn)進(jìn)行分析,決定變壓器的停運(yùn)檢查。若經(jīng)分析發(fā)現(xiàn)變壓器已嚴(yán)重故障,需立即退出運(yùn)行,則要結(jié)合電氣試驗(yàn)手段對(duì)變壓器的故障性質(zhì)及部位做出確診。
    變壓器監(jiān)測(cè)和診斷專(zhuān)家系統(tǒng)通過(guò)診斷模塊和推理機(jī)制,能診斷出變壓器的故障并提出相應(yīng)對(duì)策,提高了變壓器內(nèi)部故障的診斷水平,實(shí)現(xiàn)了電力變壓器狀態(tài)檢修和在線監(jiān)測(cè)。
    2.3 人工智能技術(shù)在低壓電器中的應(yīng)用
    低壓電器的設(shè)計(jì)以實(shí)驗(yàn)為基礎(chǔ),需要分析靜態(tài)模型和動(dòng)態(tài)過(guò)程。人工智能技術(shù)能進(jìn)行分段過(guò)程的動(dòng)態(tài)設(shè)計(jì),對(duì)變化規(guī)律進(jìn)行曲線擬合并進(jìn)行人工神經(jīng)網(wǎng)絡(luò)訓(xùn)練,建立變化規(guī)律預(yù)測(cè)模型,降低了開(kāi)發(fā)成本。
    低壓電器需要通過(guò)試驗(yàn)進(jìn)行性能認(rèn)證。而低壓電器的壽命很難進(jìn)行評(píng)價(jià)。模糊識(shí)別方法,從考慮產(chǎn)品性能的角度出發(fā),將動(dòng)態(tài)測(cè)得的反映性能的特性指標(biāo)作為模糊識(shí)別的變量特征值,能夠建立評(píng)估電器性能的模糊識(shí)別模型。
    2.4 人工智能在電力系統(tǒng)無(wú)功優(yōu)化中的應(yīng)用
    無(wú)功優(yōu)化是保證電力系統(tǒng)安全,提高運(yùn)行經(jīng)濟(jì)性的手段之一。通過(guò)無(wú)功優(yōu)化,可以使各個(gè)性能指標(biāo)達(dá)到最優(yōu)。但是無(wú)功優(yōu)化是一個(gè)復(fù)雜的非線性問(wèn)題 。
    人工智能算法能應(yīng)用于電力系統(tǒng)無(wú)功優(yōu)化。如改進(jìn)的模擬退火算法,在求解高中壓配電網(wǎng)的無(wú)功優(yōu)化問(wèn)題中,采用了記憶指導(dǎo)搜索方法來(lái)加快搜索速度。模式法進(jìn)行局部尋優(yōu)以增加獲得全局最優(yōu)解的可能性,能夠以較大概率獲得全局最優(yōu)解,提高了收斂穩(wěn)定性。禁忌搜索方法尋優(yōu)速度較快,在跳出局部最優(yōu)解方面有較大優(yōu)勢(shì)。遺傳算法在解決多變量、非線性、離散性的問(wèn)題時(shí)有極大的優(yōu)勢(shì)。要求較少的求解信息的,模型簡(jiǎn)單,適用范圍廣。
    2.5 人工智能在電力系統(tǒng)繼電保護(hù)中應(yīng)用
    自適應(yīng)型繼電保護(hù)裝置能地適應(yīng)各種變化,改善保護(hù)的性能,使之適應(yīng)各種運(yùn)行方式和故障類(lèi)型。它能夠有效地處理各種故障信息,獲得可靠的保護(hù)。
    借助于人工智能技術(shù)不但能夠提取故障信息,還能利用其自學(xué)習(xí)和自適應(yīng)能力,根據(jù)不同運(yùn)行工況,自適應(yīng)地調(diào)整保護(hù)定值和動(dòng)作特性。
    2.6 人工智能在抑制電力系統(tǒng)低頻振蕩的應(yīng)用
    大規(guī)模電網(wǎng)互聯(lián)易產(chǎn)生低頻振蕩,嚴(yán)重威脅著電力系統(tǒng)的安全。人工智能為電力系統(tǒng)低頻振蕩的控制提供了技術(shù)支持。神經(jīng)網(wǎng)絡(luò)、模糊理論、ga等人工智能技術(shù)應(yīng)用于facts控制器和自適應(yīng)pss的研究,為抑制電力系統(tǒng)低頻振蕩提供了新的手段。
    作為一門(mén)交叉學(xué)科,人工智能將隨著其他理論的發(fā)展而進(jìn)入新的發(fā)展階段。應(yīng)用新方法解決問(wèn)題,或促進(jìn)各種方法的融合,保持簡(jiǎn)單的數(shù)學(xué)模型和全局尋優(yōu)情況下,尋求到更少的運(yùn)算量,提高算法效率,將是未來(lái)發(fā)展的趨勢(shì)。
    隨著電力系統(tǒng)的發(fā)展,電力系統(tǒng)的復(fù)雜性不斷增加,不確定因素越來(lái)越多。隨著人工智能技術(shù)的不斷發(fā)展和提高,利用人工智能技術(shù)來(lái)解決電力系統(tǒng)的問(wèn)題將會(huì)受到越來(lái)越多的重視。
    隨著我國(guó)電力系統(tǒng)的持續(xù)穩(wěn)步發(fā)展,電力系統(tǒng)數(shù)據(jù)量不斷增加,管理上復(fù)雜程度大幅度增長(zhǎng),市場(chǎng)競(jìng)爭(zhēng)的加大,為人工智能技術(shù)在電力系統(tǒng)的應(yīng)用提供了廣闊前景。
    但人工智能技術(shù)的基本理論還不成熟,只是停留在仿真和實(shí)驗(yàn)階段。人工智能的開(kāi)發(fā)是一個(gè)長(zhǎng)期的過(guò)程,需要不斷改進(jìn)和完善,并在實(shí)際應(yīng)用中接受檢驗(yàn)。
    人工智能論文大學(xué)生篇十五
    摘要:在航空業(yè)的發(fā)展中,人工智能技術(shù)起著積極的促進(jìn)作用。本文介紹了空中交通管理中的人工智能理論及方法運(yùn)用,為優(yōu)化空中交通流量管理系統(tǒng)提供理論依據(jù),更好地服務(wù)于空管系統(tǒng)。
    關(guān)鍵詞:人工智能;空中交通;管理
    人工智能,即artificialintelligence,是計(jì)算機(jī)科學(xué)的一個(gè)分支,研究對(duì)人的意識(shí)及思維的信息過(guò)程的模擬并對(duì)其進(jìn)行延伸和擴(kuò)展,通過(guò)了解人類(lèi)智能,研究出類(lèi)似的反應(yīng)的智能機(jī)器。隨著計(jì)算機(jī)技術(shù)的發(fā)展,人工智能越來(lái)越多的運(yùn)用于民航的各個(gè)方面,如飛行間隔的控制,空中流量的預(yù)測(cè),飛行沖突的調(diào)配。但隨著民航業(yè)的飛速發(fā)展,飛行流量日益增大,需要將人工智能技術(shù)有效運(yùn)用于空中交通流量管理中,建立人工智能輔助系統(tǒng),擴(kuò)大空域容量,優(yōu)化空中交通流量,提升空管秩序。
    1空中交通流量管理探討
    在空中交通流量管理(airtrafficflowcontrolmanagement)中,空中交通流量是指單位時(shí)間和空間通過(guò)的航空器數(shù)量。通過(guò)優(yōu)化空中交通流量,將空中交通管制服務(wù)與機(jī)場(chǎng)、航路有效結(jié)合,減少延誤,提高機(jī)場(chǎng)和空域的利用率。從時(shí)間角度上,空中交通流量管理可以分為航路流量管理和機(jī)場(chǎng)終端區(qū)流量管理兩部分,從時(shí)間上又可劃分為戰(zhàn)略流量管理,預(yù)戰(zhàn)術(shù)流量管理和戰(zhàn)術(shù)流量管理。當(dāng)航空器數(shù)量飽和時(shí)就要對(duì)航空器進(jìn)行流量控制,目前的常用的控制措施如下:1)地面等待,最主要的空中交通流量管理措施,本著地面讓空中的原則,對(duì)地面航空器的起飛時(shí)間進(jìn)行限制;2)空中等待,航空器在航路上或終端區(qū)規(guī)定的等待點(diǎn)或沒(méi)有沖突的臨時(shí)等待點(diǎn)進(jìn)行盤(pán)旋等待;3)更改航路等待,當(dāng)航路航線的容量飽和時(shí),航空器可以通過(guò)選擇其他航路航線;4)控制航路間隔,通過(guò)對(duì)航空器進(jìn)入空域的間隔進(jìn)行限制,來(lái)達(dá)到流量管理的目的,吸收部分擁擠的流量。
    2人工智能的應(yīng)用研究探討
    agent在人工智能的研究中,指能自主活動(dòng)的軟件或者硬件實(shí)體,目前國(guó)內(nèi)普遍翻譯為智能體。在人工智能中,設(shè)計(jì)關(guān)鍵智能體,對(duì)于研究人工智能的應(yīng)用是非常重要的。在空中交通流量管理中,設(shè)計(jì)如下關(guān)鍵智能體:航班智能體、航路智能體和機(jī)場(chǎng)終端區(qū)智能體。航班智能體的屬性有高度、速度、上升/下降率、起飛機(jī)場(chǎng)、目的地等。航班智能體可以與區(qū)域內(nèi)或終端區(qū)的其他航班智能體建立通信,通過(guò)獲取航班信息和邏輯判斷,結(jié)合周?chē)h(huán)境與自身狀況,指導(dǎo)控制自身行為。如果航班智能體需要做出相應(yīng)的調(diào)整如改變高度航向等,需要給上級(jí)的航路智能體或機(jī)場(chǎng)終端區(qū)智能體發(fā)出申請(qǐng),上級(jí)智能體批準(zhǔn)后,航班智能體才能采取相應(yīng)的調(diào)整,作出相應(yīng)的控制行為,才能通過(guò)交互環(huán)境反饋相應(yīng)結(jié)果。在實(shí)際工作中,這個(gè)過(guò)程是通過(guò)空中交通管制員指揮航空器實(shí)現(xiàn)的??罩薪煌ü苤茊T在實(shí)際指揮工作中,需要結(jié)合當(dāng)時(shí)的空中交通狀況和自身的經(jīng)驗(yàn)知識(shí)。航路智能體的主要屬性有航路的`高度、寬度、容量等。航路智能體需要對(duì)航班智能體進(jìn)行指揮,管理航路上的智能體,同時(shí)與其他航路智能體和機(jī)場(chǎng)終端區(qū)智能體進(jìn)行通信,對(duì)航班智能體進(jìn)入和離開(kāi)航路的時(shí)機(jī)進(jìn)行協(xié)調(diào),記錄流量信息并報(bào)告給上級(jí)流量管理部門(mén),接收上級(jí)智能體的指令。在航班智能體進(jìn)入航路之前首先要進(jìn)行容量評(píng)估。通過(guò)評(píng)估后的航班智能體回收到航路智能體發(fā)出的放行許可才能進(jìn)入航路。如果沒(méi)有通過(guò)容量評(píng)估,則要向上級(jí)智能體發(fā)送將流量限制的申請(qǐng),發(fā)布流量限制后航路就不能批準(zhǔn)航班智能體的進(jìn)入,通過(guò)減少航班智能體的數(shù)量,控制航路交通流量。機(jī)場(chǎng)終端區(qū)智能體:在實(shí)際工作中,機(jī)場(chǎng)終端區(qū)的航班管理包括管制指揮、流量控制、地面場(chǎng)面監(jiān)視、進(jìn)離場(chǎng)等,難度較大。終端區(qū)智能體(通常運(yùn)行中為塔臺(tái)管制)首先要處理所收到的信息,如天氣雷達(dá)信息、地面運(yùn)行信息和情報(bào)信息等等,結(jié)合已有知識(shí)開(kāi)展機(jī)場(chǎng)的容量評(píng)估。如遇到低云低能見(jiàn)度、雷雨等天氣時(shí)可以調(diào)低終端區(qū)/機(jī)場(chǎng)容量,對(duì)進(jìn)入離開(kāi)的航空器進(jìn)行限制。通過(guò)容量評(píng)估,塔臺(tái)會(huì)給航班智能體一個(gè)slottime,航班智能體按照塔臺(tái)的slottime起飛或降落,從而達(dá)到流量控制。如果沒(méi)有通過(guò)容量評(píng)估,則需要通過(guò)上級(jí)的智能體批準(zhǔn),發(fā)布流量控制,限制終端區(qū)的流量,通過(guò)控制進(jìn)入或離開(kāi)的航空器數(shù)量達(dá)到流量限制的目的。機(jī)場(chǎng)終端區(qū)智能體(塔臺(tái))對(duì)終端區(qū)的航空器進(jìn)行管理,還需要與航路智能體和平級(jí)的終端去智能體進(jìn)行通信,對(duì)航班進(jìn)出的slottime進(jìn)行協(xié)調(diào),并將流量管理信息報(bào)告給上級(jí)流量管理部門(mén),接收上級(jí)智能體的命令。如果出現(xiàn)擁堵機(jī)場(chǎng)終端區(qū)智能體需要通過(guò)一些措施來(lái)管理流量,如分配slottime、指揮航空器地面或空中盤(pán)旋等待。
    3結(jié)論
    綜上所述,以往在模擬空中交通流量進(jìn)行研究的時(shí)候,首先制定流量控制信息,再在系統(tǒng)模擬航班飛行計(jì)劃。這樣的模擬過(guò)程不能解決容量告警問(wèn)題。如果流量控制不合理,只能重新設(shè)定流控信息,再次進(jìn)行模擬,因而加大模擬過(guò)程的工作量。而通過(guò)智能體的運(yùn)用,可以在模擬中不斷調(diào)整智能體來(lái)模擬空中流量,增加了模擬流量過(guò)程中的靈活性,將人工智能運(yùn)用于模擬中,借助智能體來(lái)模擬空中流量,可以更好的分析空中交通流量問(wèn)題。
    參考文獻(xiàn)
    [2]甘鑫鑫基于多agent的空中交通協(xié)同流量管理研究[j].科學(xué)與財(cái)富,20xx(30):278.
    [5]陳言俊,劉甜甜.人工智能與機(jī)器人.[6]黃昱斌.基于multi-agent的空中交通流量的探究[j].科技創(chuàng)新與應(yīng)用,20xx(14):57-57.