專業(yè)勾股定理應(yīng)用教案(案例17篇)

字號(hào):

    教案的編寫(xiě)需要根據(jù)學(xué)生的具體情況和教學(xué)目標(biāo),靈活選擇合適的教學(xué)策略。教案的編寫(xiě)需要根據(jù)學(xué)生的實(shí)際情況和課程目標(biāo),選擇合適的評(píng)價(jià)方式和方法。這些教案范文涵蓋了不同學(xué)科和不同年級(jí)的教學(xué)內(nèi)容,適用于不同的教學(xué)環(huán)境和學(xué)生群體。
    勾股定理應(yīng)用教案篇一
    從知識(shí)結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用。
    從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;
    勾股定理又是對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。
    根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級(jí)學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識(shí)技能、數(shù)學(xué)思考、問(wèn)題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國(guó)數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛(ài)祖國(guó)悠久文化的情感。
    (二)重點(diǎn)與難點(diǎn)
    為變被動(dòng)接受為主動(dòng)探究,我確定本節(jié)課的重點(diǎn)為:勾股定理的探索過(guò)程。限于八年級(jí)學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點(diǎn),我將引導(dǎo)學(xué)生動(dòng)手實(shí)驗(yàn)突出重點(diǎn),合作交流突破難點(diǎn)。
    勾股定理應(yīng)用教案篇二
    1、知識(shí)與技能目標(biāo):探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,通過(guò)探究能夠發(fā)現(xiàn)直角三角形中兩個(gè)直角邊的平方和等于斜邊的平方和。
    2、過(guò)程與方法目標(biāo):經(jīng)歷用測(cè)量和數(shù)格子的辦法探索勾股定理的過(guò)程,進(jìn)一步發(fā)展學(xué)生的合情推理能力。
    3、情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)本節(jié)課的學(xué)習(xí),培養(yǎng)主動(dòng)探究的習(xí)慣,并進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。
    勾股定理應(yīng)用教案篇三
    1、通過(guò)拼圖,用面積的方法說(shuō)明勾股定理的正確性.
    2、通過(guò)實(shí)例應(yīng)用勾股定理,培養(yǎng)學(xué)生的知識(shí)應(yīng)用技能.
    1.用面積的方法說(shuō)明勾股定理的正確.
    2.勾股定理的應(yīng)用.
    勾股定理的應(yīng)用.
    一、學(xué)前準(zhǔn)備:
    1、閱讀課本第46頁(yè)到第47頁(yè),完成下列問(wèn)題:
    2、剪四個(gè)完全相同的直角三角形,然后將它們拼成如圖所示的'圖形。大正方形的面積可以表示為_(kāi)________________________,又可以表示為_(kāi)_________________________.對(duì)比兩種表示方法,看看能不能得到勾股定理的結(jié)論。用上面得到的完全相同的四個(gè)直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說(shuō)明勾股定理是正確的方法(請(qǐng)逐一說(shuō)明)
    二、合作探究:
    (一)自學(xué)、相信自己:
    (二)思索、交流:
    (三)應(yīng)用、探究:
    (四)鞏固練習(xí):
    1、如圖,64、400分別為所在正方形的面積,則圖中字
    母a所代表的正方形面積是_________。
    三.學(xué)習(xí)體會(huì):
    本節(jié)課我們進(jìn)一步認(rèn)識(shí)了勾股定理,并用兩種方法證明了這個(gè)定理,在應(yīng)用此定理解決問(wèn)題時(shí),應(yīng)注意只有直角三角形的三邊才有這樣的關(guān)系,如果不是直角三角形應(yīng)該構(gòu)造直角三角形來(lái)解決。
    2②圖
    四.自我測(cè)試:
    五.自我提高:
    勾股定理應(yīng)用教案篇四
    教學(xué)目標(biāo)1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來(lái)判定平行四邊形的方法.
    2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題
    教學(xué)重點(diǎn):平行四邊形的判定方法及應(yīng)用
    教學(xué)難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用
    引
    二.探
    閱讀教材p44至p45
    利用手中的學(xué)具——硬紙板條,通過(guò)觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:
    (1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?
    (2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?
    (3)你能說(shuō)出你的做法及其道理嗎?
    (4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語(yǔ)言表述出來(lái)嗎?
    (5)你還能找出其他方法嗎?
    從探究中得到:
    平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
    平行四邊形判定方法2對(duì)角線互相平分的四邊形是平行四邊形。
    證一證
    平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
    證明:(畫(huà)出圖形)
    平行四邊形判定方法2一組對(duì)邊平行且相等的四邊形是平行四邊形。
    證明:(畫(huà)出圖形)
    三.結(jié)
    兩組對(duì)邊分別相等的四邊形是平行四邊形。
    對(duì)角線互相平分的四邊形是平行四邊形。
    四.用
    勾股定理應(yīng)用教案篇五
    本節(jié)課探究體驗(yàn)貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
    采用“七巧板”代替教材中“畢達(dá)哥拉斯地板磚”利用我國(guó)傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國(guó)數(shù)學(xué)文化為主線這一設(shè)計(jì)理念,展現(xiàn)了我國(guó)古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。
    勾股定理應(yīng)用教案篇六
    本節(jié)將利用勾股定理及其逆定理解決一些具體的實(shí)際問(wèn)題,其中需要學(xué)生了解空間圖形、對(duì)一些空間圖形進(jìn)行展開(kāi)、折疊等活動(dòng).學(xué)生在學(xué)習(xí)七年級(jí)上第一章時(shí)對(duì)生活中的立體圖形已經(jīng)有了一定的認(rèn)識(shí),并從事過(guò)相應(yīng)的實(shí)踐活動(dòng),因而學(xué)生已經(jīng)具備解決本課問(wèn)題所需的知識(shí)基礎(chǔ)和活動(dòng)經(jīng)驗(yàn)基礎(chǔ).
    二、教學(xué)任務(wù)分析
    本節(jié)是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書(shū)八年級(jí)(上)第一章《勾股定理》第3節(jié).具體內(nèi)容是運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題.當(dāng)然,在這些具體問(wèn)題的解決過(guò)程中,需要經(jīng)歷幾何圖形的抽象過(guò)程,需要借助觀察、操作等實(shí)踐活動(dòng),這些都有助于發(fā)展學(xué)生的分析問(wèn)題、解決問(wèn)題能力和應(yīng)用意識(shí);一些探究活動(dòng)具體一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力.
    本節(jié)課的教學(xué)目標(biāo)是:
    1.通過(guò)觀察圖形,探索圖形間的關(guān)系,發(fā)展學(xué)生的空間觀念.
    2.在將實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題的過(guò)程中,提高分析問(wèn)題、解決問(wèn)題的能力及滲透數(shù)學(xué)建模的思想.
    3.在利用勾股定理解決實(shí)際問(wèn)題的過(guò)程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性.
    利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問(wèn)題是本節(jié)課的重點(diǎn)也是難點(diǎn).
    四、教法學(xué)法
    1.教學(xué)方法
    引導(dǎo)—探究—?dú)w納
    本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)教強(qiáng),思維活躍,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):
    (1)從創(chuàng)設(shè)問(wèn)題情景入手,通過(guò)知識(shí)再現(xiàn),孕育教學(xué)過(guò)程;
    (2)從學(xué)生活動(dòng)出發(fā),順勢(shì)教學(xué)過(guò)程;
    (3)利用探索研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程.
    2.課前準(zhǔn)備
    教具:教材、電腦、多媒體課件.
    學(xué)具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習(xí)本、文具.
    五、教學(xué)過(guò)程分析
    本節(jié)課設(shè)計(jì)了七個(gè)環(huán) 節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè).
    勾股定理應(yīng)用教案篇七
    勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.
    即直角三角形兩直角的平方和等于斜邊的平方.
    因此,在運(yùn)用勾股定理計(jì)算三角形的邊長(zhǎng)時(shí),要注意如下三點(diǎn):
    (2)注意分清斜邊和直角邊,避免盲目代入公式致錯(cuò);
    2.學(xué)會(huì)用拼圖法驗(yàn)證勾股定理
    如,利用四個(gè)如圖1所示的直角三角形三角形,拼出如圖2所示的三個(gè)圖形.
    請(qǐng)讀者證明.
    請(qǐng)同學(xué)們自己證明圖(2)、(3).
    3.在數(shù)軸上表示無(wú)理數(shù)
    二、典例精析
    解:由勾股定理,得
    132-52=144,所以另一條直角邊的長(zhǎng)為12.
    所以這個(gè)直角三角形的面積是×12×5=30(cm2).
    例2如圖3(1),一只螞蟻沿棱長(zhǎng)為a的正方體表面從頂點(diǎn)a爬到
    頂點(diǎn)b,則它走過(guò)的最短路程為
    a.b.c.3ad.分析:本題顯然與例2屬同種類型,思路相同.但正方體的
    各棱長(zhǎng)相等,因此只有一種展開(kāi)圖.
    解:將正方體側(cè)面展開(kāi)
    勾股定理應(yīng)用教案篇八
    本節(jié)課教學(xué)模式主要采用“互動(dòng)式”教學(xué)模式及“類比”的教學(xué)方法.通過(guò)前面所學(xué)的垂直平分線定理及其逆定理,做類比對(duì)象,讓學(xué)生自己提出問(wèn)題并解決問(wèn)題.在課堂教學(xué)中營(yíng)造輕松、活潑的課堂氣氛.通過(guò)師生互動(dòng)、生生互動(dòng)、學(xué)生與教材之間的互動(dòng),造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達(dá)到培養(yǎng)學(xué)生思維能力的目的.具體說(shuō)明如下:
    (1)讓學(xué)生主動(dòng)提出問(wèn)題
    (2)讓學(xué)生自己解決問(wèn)題
    (3)通過(guò)實(shí)際問(wèn)題的解決,培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí).
    勾股定理應(yīng)用教案篇九
    一、輸入少量拼音。
    如果需要的拼音不多,可插入文本框,用小寫(xiě)英文來(lái)輸入不含聲調(diào)的音節(jié),再借助中文輸入法工具條上的軟鍵盤(pán)插入含聲調(diào)的元音字母。
    圖片1:輸入無(wú)聲調(diào)音節(jié)
    圖片2:用軟鍵盤(pán)輸入含聲調(diào)的元音字母
    二、拼音的顯示與隱藏
    如果想控制拼音的顯示和隱藏,只要設(shè)置拼音的“自定義動(dòng)畫(huà)”效果為單擊相應(yīng)漢字時(shí)出現(xiàn)即可。
    三、整行漢字輸入拼音
    1、輸入漢字,用拼音指南加強(qiáng)版添加拼音。
    2、用wps應(yīng)用中心集成的屏幕截圖功能分別截取拼音和漢字,到wps演示中粘貼。
    四、制作“看拼音寫(xiě)漢字”幻燈片
    期中、期末復(fù)習(xí)少不了要出大量的看拼音寫(xiě)漢字題目給學(xué)生練習(xí),用幻燈片向?qū)W生出示題目是個(gè)好辦法。制作步驟與上面的操作類似。
    1、輸入詞語(yǔ)加拼音。
    2、用拼音指南加強(qiáng)版隱藏漢字。
    3、在每個(gè)詞語(yǔ)的各個(gè)漢字之間插入空格調(diào)整間距。
    4、截取拼音圖片到演示文稿。
    5、插入文本框,以添加括號(hào)。
    勾股定理應(yīng)用教案篇十
    了解勾股定理的一些證明方法,會(huì)簡(jiǎn)單應(yīng)用勾股定理解決問(wèn)題
    在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過(guò)程中,發(fā)展合情推理,體會(huì)數(shù)形結(jié)合、從特殊到一般等數(shù)學(xué)思想。
    通過(guò)對(duì)我國(guó)古代研究勾股定理的成就介紹,培養(yǎng)學(xué)生的民族自豪感。
    1、創(chuàng)設(shè)情境
    師生活動(dòng):教師引導(dǎo)學(xué)生尋找圖形中的直角三角形和正方形等,并引導(dǎo)學(xué)生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過(guò)今天的學(xué)習(xí),就能理解會(huì)徽?qǐng)D案的含義。
    設(shè)計(jì)意圖:本節(jié)課是本章的起始課,重視引言教學(xué),從國(guó)際數(shù)學(xué)家大會(huì)的會(huì)徽說(shuō)起,設(shè)置懸念,引入課題。
    2、探究勾股定理
    觀看洋蔥數(shù)學(xué)中關(guān)于勾股定理引入的視頻,讓我們一起走進(jìn)神奇的數(shù)學(xué)世界
    追問(wèn):由這三個(gè)正方形的邊長(zhǎng)構(gòu)成的等腰直角三角形三條邊長(zhǎng)之間又有怎么樣的關(guān)系?
    師生活動(dòng):教師引導(dǎo)學(xué)生發(fā)現(xiàn)正方形的面積等于邊長(zhǎng)的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。
    設(shè)計(jì)意圖:從最特殊的等腰直角三角形入手,便于學(xué)生觀察得到結(jié)論
    問(wèn)題3:數(shù)學(xué)研究遵循從特殊到一般的數(shù)學(xué)思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測(cè)在一般的直角三角形(在下圖的方格紙中,每個(gè)方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。
    師生活動(dòng):學(xué)生獨(dú)立思考后小組討論,難點(diǎn)是如何證明求以斜邊為邊長(zhǎng)的正方形的面積,可由師生共同總結(jié)得出可以通過(guò)割、補(bǔ)兩種方法,求出其面積。
    勾股定理應(yīng)用教案篇十一
    答案
    解:總差為17+10=27(塊);
    分配之差為7-4=3(塊);
    所以有少先隊(duì)員27÷3=9(人)
    共有磚:4×9+17=53(塊).
    答:這個(gè)班少先隊(duì)有9個(gè)人,要搬的磚共有53塊。
    考點(diǎn):盈虧問(wèn)題,一盈一虧
    解:第一次盈22人,第二次多出一個(gè)房間則是虧3+5=8(人);
    總差為22+8=30(人);
    兩次分配之差為5人,
    所以宿舍有30÷5=6(間),
    新生共有3×6+22=40(人).
    答:宿舍有6間,新生有40人。
    考點(diǎn):盈虧問(wèn)題
    注意點(diǎn):空出一個(gè)房間,則是少了8人入住,則是虧8人
    解:其中兩人分4個(gè),其余每人分2個(gè),則多出4個(gè)“轉(zhuǎn)化為”全家每人都分2個(gè),
    多出4+2×(4-2)=8個(gè);
    一人分6個(gè),其余每人分4個(gè),則缺少12個(gè)“轉(zhuǎn)化為”全家每人都分4個(gè),
    缺少12-(6-4)=10個(gè);
    由盈虧問(wèn)題基本公式可知:全家的人數(shù)有(8+10)÷(4-2)=9(人)
    買(mǎi)來(lái)橘子2×9+8=26(個(gè))
    勾股定理應(yīng)用教案篇十二
    教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個(gè)直角的"形"的特點(diǎn),轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計(jì)算問(wèn)題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說(shuō)明勾股定理的正確性。
    學(xué)生分析:
    1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過(guò)三角尺的同學(xué)并不多,通過(guò)這樣的情景設(shè)計(jì),能非常簡(jiǎn)單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。
    2、以與勾股定理有關(guān)的人文歷史知識(shí)為背景展開(kāi)對(duì)直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。
    設(shè)計(jì)理念:本教案以學(xué)生手中舞動(dòng)的三角尺為知識(shí)背景展開(kāi),以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對(duì)勾股定理的發(fā)展過(guò)程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗(yàn)勾股定理的探索和運(yùn)用過(guò)程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過(guò)向?qū)W生介紹我國(guó)古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
    教學(xué)目標(biāo):
    1、經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過(guò)程,培養(yǎng)學(xué)生主動(dòng)探究意識(shí),發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
    2、經(jīng)歷用多種割、補(bǔ)圖形的方法驗(yàn)證勾股定理的過(guò)程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界和有條理地思考能力以及語(yǔ)言表達(dá)能力等,感受勾股定理的文化價(jià)值。
    3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛(ài)國(guó)熱情。
    4、欣賞設(shè)計(jì)圖形美。
    教學(xué)準(zhǔn)備階段:
    學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
    老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
    (一)引入
    同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時(shí),你是否想過(guò):他們的邊有什么關(guān)系呢?今天我們來(lái)探索這一小秘密。(板書(shū)課題:探索直角三角形三邊關(guān)系)
    (二)實(shí)驗(yàn)探究
    設(shè)網(wǎng)格正方形的邊長(zhǎng)為1,直角三角形的直角邊分別為a、b ,斜邊為c ,觀察并計(jì)算每個(gè)正方形的面積,以四人小組為單位填寫(xiě)下表:
    (討論難點(diǎn):以斜邊為邊的正方形的面積找法)
    交流后得出一般結(jié)論: (用關(guān)于a、b、c的式子表示)
    (三)探索所得結(jié)論的正確性
    當(dāng)直角三角形的直角邊分別為a 、b,斜邊為c時(shí), 是否一定成立?
    1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計(jì)合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)
    在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來(lái)交流講解,并引導(dǎo)學(xué)生進(jìn)行說(shuō)理:
    如圖2(用補(bǔ)的方法說(shuō)明)
    師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門(mén)就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來(lái)尺子和筆又量又畫(huà),他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對(duì)角線為邊向形外作正方形的面積。于是他回到家里立刻對(duì)他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來(lái)西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為"畢達(dá)哥拉斯定理"。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計(jì)的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見(jiàn)課本52頁(yè)彩圖2—1,欣賞圖片)
    如圖3(用割的方法去探索)
    師介紹: (出示圖片) 中國(guó)古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個(gè)結(jié)論。早在公元前2000年左右,大禹治水時(shí)期,就曾經(jīng)用過(guò)此方法測(cè)量土地的`等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測(cè)量土地,他們對(duì)這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國(guó)時(shí)期吳國(guó)數(shù)學(xué)家趙爽曾構(gòu)造此圖驗(yàn)證了這一結(jié)論的正確性。他的這個(gè)證明,可謂別具匠心,極富創(chuàng)新意識(shí),他用幾何圖形的割、來(lái)證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國(guó)古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹(shù)立了一個(gè)典范。他是我國(guó)有記載以來(lái)第一個(gè)證明這一結(jié)論的數(shù)學(xué)家。我國(guó)數(shù)學(xué)家們?yōu)榱思o(jì)念我國(guó)在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。(點(diǎn)題)
    20xx年,世界數(shù)學(xué)家大會(huì)在中國(guó)北京召開(kāi),當(dāng)時(shí)選用這個(gè)圖案作為會(huì)場(chǎng)主圖,它標(biāo)志著我國(guó)古代數(shù)學(xué)的輝煌成就。(見(jiàn)課本50頁(yè)彩圖,欣賞圖片)
    如圖4(構(gòu)造新圖形的方法去探索)
    本節(jié)課學(xué)習(xí)的勾股定理用語(yǔ)言敘說(shuō)為:
    1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問(wèn)題并交流。
    2、探索勾股定理的運(yùn)用。
    勾股定理應(yīng)用教案篇十三
    1.理解勾股定理的逆定理的證明方法和證明過(guò)程;
    2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是直角三角形;
    二數(shù)學(xué)思考
    1.通過(guò)勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生發(fā)展與形成的過(guò)程;
    2.通過(guò)三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)形結(jié)合法的應(yīng)用.
    三解決問(wèn)題
    通過(guò)勾股定理的逆定理的證明及其應(yīng)用,體會(huì)數(shù)形結(jié)合法在問(wèn)題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問(wèn)題.
    四情感態(tài)度
    2.在探究勾股定理的逆定理的證明及應(yīng)用的活動(dòng)中,通過(guò)一系列富有探究性的問(wèn)題,滲透與他人交流合作的意識(shí)和探究精神.
    勾股定理應(yīng)用教案篇十四
    這節(jié)課重在導(dǎo)入,引起學(xué)生的興趣,現(xiàn)談?wù)劚竟?jié)課的反思:
    1、從生活出發(fā)的教學(xué)讓學(xué)生感受到學(xué)習(xí)的快樂(lè)。
    在“勾股定理”這節(jié)課中,一開(kāi)始引入情景:
    平平湖水清可鑒,荷花半尺出水面。
    忽來(lái)一陣狂風(fēng)急,吹倒荷花水中偃。
    湖面之上不復(fù)見(jiàn),入秋漁翁始發(fā)現(xiàn)。
    花離根二尺遠(yuǎn),試問(wèn)水深尺若干。
    知識(shí)回味:復(fù)習(xí)勾股定理及它的公式變形,然后是幾組簡(jiǎn)單的計(jì)算。
    2、走進(jìn)生活:以裝修房子為主線,設(shè)計(jì)木板能否通過(guò)門(mén)框,梯子底端滑出多少,求螞蟻爬的最短距離,這些都是勾股定理應(yīng)用的典型例題。
    3、在教學(xué)應(yīng)用勾股定理時(shí),老是運(yùn)用公式計(jì)算,學(xué)生感覺(jué)比較厭倦,為了吸引學(xué)生注意力,活躍課堂氣氛,拓寬學(xué)生思路,運(yùn)用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問(wèn)題。并且將問(wèn)題用動(dòng)畫(huà)的形式展現(xiàn)出來(lái),不僅將問(wèn)題形象化,又提高了學(xué)生的學(xué)習(xí)興趣。同時(shí)將實(shí)際的問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題的過(guò)程用直觀的圖形表示,在降低難度的同時(shí)又鼓勵(lì)了學(xué)生能夠看到身邊的數(shù)學(xué),從而做到學(xué)以致用。最后讓學(xué)生互相討論,就這樣讓學(xué)生在開(kāi)放自由的情況下解決了該題,同時(shí)培養(yǎng)了學(xué)生之間的合作。
    4、最后介紹了勾股定理的歷史,并且推薦了一些網(wǎng)站,讓學(xué)生下課之后進(jìn)行查閱、了解。這是為了方便學(xué)生到更廣闊的知識(shí)海洋中去尋找知識(shí)寶藏,利用網(wǎng)絡(luò)檢索相關(guān)信息,充實(shí)、豐富、拓展課堂學(xué)習(xí)資源,提供各種學(xué)習(xí)方式,讓學(xué)生學(xué)會(huì)選擇、整理、重組、再用這些更廣泛的資源。這種對(duì)網(wǎng)絡(luò)資源的重新組織,使學(xué)生對(duì)知識(shí)的需求由窄到寬,有力的促進(jìn)了自主學(xué)習(xí)。這樣學(xué)生不僅能在課堂上學(xué)習(xí)到知識(shí),還讓他們有了怎樣學(xué)習(xí)知識(shí)的方法。這就達(dá)到了新課標(biāo)新理念的預(yù)定目標(biāo)。
    通過(guò)本節(jié)課的教學(xué),學(xué)生在勾股定理的學(xué)習(xí)中能感受“數(shù)形結(jié)合”和“轉(zhuǎn)化”的數(shù)學(xué)思想,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值和滲透數(shù)學(xué)思想給解題帶來(lái)的便利;感受人類文明的力量,了解勾股定理的重要性。真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習(xí)。這堂課將信息技術(shù)融入課堂,有利于創(chuàng)設(shè)教學(xué)環(huán)境,教學(xué)模式將從以教師講授為主轉(zhuǎn)為以學(xué)生動(dòng)腦動(dòng)手自主研究、小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)為“數(shù)學(xué)實(shí)驗(yàn)室”,學(xué)生通過(guò)自己的活動(dòng)得出結(jié)論、使創(chuàng)新精神與實(shí)踐能力得到了發(fā)展。不足之處:學(xué)生合作意識(shí)不強(qiáng),討論氣氛不夠活躍;計(jì)算不熟練,書(shū)寫(xiě)不規(guī)范。
    勾股定理應(yīng)用教案篇十五
    勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進(jìn)一步刻畫(huà)了直角三角形的特點(diǎn)。學(xué)習(xí)勾股定理極其逆定理是進(jìn)一步認(rèn)識(shí)和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運(yùn)算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)?!缎掳鏀?shù)學(xué)課程標(biāo)準(zhǔn)》對(duì)勾股定理教學(xué)內(nèi)容的要求是:
    1、在研究圖形性質(zhì)和運(yùn)動(dòng)等過(guò)程中,進(jìn)一步發(fā)展空間觀念;
    2、在多種形式的數(shù)學(xué)活動(dòng)中,發(fā)展合情推理能力;
    3、經(jīng)歷從不同角度分析問(wèn)題和解決問(wèn)題的方法的過(guò)程,體驗(yàn)解決問(wèn)題方法的多樣性;
    4、探索勾股定理及其逆定理,并能運(yùn)用它們解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
    本節(jié)課的教學(xué)目標(biāo)是:
    1、能正確運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題。
    教學(xué)重點(diǎn)和難點(diǎn):
    應(yīng)用勾股定理及其逆定理解決實(shí)際問(wèn)題是重點(diǎn)。
    把實(shí)際問(wèn)題化歸成數(shù)學(xué)模型是難點(diǎn)。
    根據(jù)新課標(biāo)提出的“要從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋和運(yùn)用的同時(shí),在思維能力情感態(tài)度和價(jià)值觀等方面得到進(jìn)步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的實(shí)際問(wèn)題情境 ,使教學(xué)活動(dòng)充滿趣味性和吸引力,讓他們?cè)谧灾魈骄浚献鹘涣髦蟹治鰡?wèn)題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問(wèn)題。在教學(xué)過(guò)程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學(xué)生在獲得知識(shí)的同時(shí)提高能力。
    在教學(xué)設(shè)計(jì)中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識(shí)由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。
    本節(jié)課設(shè)計(jì)了七個(gè)環(huán) 《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)節(jié)、第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):變式訓(xùn)練;第四環(huán)節(jié):議一議;第五環(huán)節(jié):做一做;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
    第一環(huán)節(jié):情境引入
    情景1:復(fù)習(xí)提 問(wèn):勾股定理的語(yǔ)言表述以及幾何語(yǔ)言表達(dá)?
    設(shè)計(jì)意圖:溫習(xí)舊知識(shí),規(guī)范語(yǔ)言及數(shù)學(xué)表達(dá),體現(xiàn)
    設(shè)計(jì)意圖:既靈活考察學(xué)生對(duì)勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。
    第二環(huán)節(jié):合作探究(圓柱體表面路程最短問(wèn)題)
    情景3:課本引例(螞蟻怎樣走最近)
    第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問(wèn)題逐步變?yōu)殚L(zhǎng)方體表面的距離最短問(wèn)題)
    設(shè)計(jì)意圖:將問(wèn)題的條件稍做改變,讓學(xué)生嘗試獨(dú)立解決,拓展學(xué)生視野,又加深他們對(duì)知識(shí)的理解和鞏固。再將圓柱問(wèn)題變?yōu)檎襟w長(zhǎng)方體問(wèn)題,學(xué)生有了之前的經(jīng)驗(yàn),自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長(zhǎng)方體問(wèn)題中學(xué)生會(huì)有不同的做法,正好透分類討論思想。
    第四環(huán)節(jié):議一議
    內(nèi)容:李叔叔想要檢測(cè)雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺:
    (1)你能替他想辦法完成任務(wù)嗎?
    設(shè)計(jì)意圖:
    第五環(huán)節(jié):方程與勾股定理
    在我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問(wèn)題,這個(gè)問(wèn)題的意思是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池的中央有一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面,請(qǐng)問(wèn)這個(gè)水池的深度和這根蘆葦?shù)拈L(zhǎng)度各是多 少尺?《意圖:學(xué)生可以進(jìn)一步了解勾股定理的悠久歷史和廣泛應(yīng)用,了解我國(guó)古代人民的聰明才智;學(xué)會(huì)運(yùn)用方程的思想借助勾股定理解決實(shí)際問(wèn)題。
    第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
    1、解決實(shí)際問(wèn)題的方法是建立數(shù)學(xué)模型求解、
    2、在尋求最短路徑時(shí),往往把空間問(wèn)題平面化,利用勾股定理及其逆定理解決實(shí)際問(wèn)題、
    3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
    第七環(huán)作業(yè)設(shè)計(jì):
    第一道題難度較小,大部分學(xué)生可以獨(dú)立完成,第二道題有較大難度,可以交流討論完成。
    勾股定理應(yīng)用教案篇十六
    教學(xué)目標(biāo):
    1、知識(shí)與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
    2、過(guò)程與方法目標(biāo):通過(guò)觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
    3、情感、態(tài)度與價(jià)值觀目標(biāo):了解中國(guó)古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛(ài)國(guó)熱情;學(xué)生通過(guò)自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
    教學(xué)重點(diǎn):
    引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
    教學(xué)難點(diǎn):
    用面積法方法證明勾股定理
    課前準(zhǔn)備:
    多媒體ppt,相關(guān)圖片
    教學(xué)過(guò)程:
    (一)情境導(dǎo)入
    1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹(shù),國(guó)際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過(guò)圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。
    勾股定理應(yīng)用教案篇十七
    勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書(shū)所體現(xiàn)的主要思想。教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。
    本節(jié)教科書(shū)從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說(shuō)談起,讓學(xué)生通過(guò)觀察計(jì)算一些以直角三角形兩條直角邊為邊長(zhǎng)的小正方形的面積與以斜邊為邊長(zhǎng)的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書(shū)以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書(shū)正文中介紹了我國(guó)古人趙爽的證法。之后,通過(guò)三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問(wèn)題和解決數(shù)學(xué)問(wèn)題中的應(yīng)用,使學(xué)生對(duì)勾股定理的作用有一定的認(rèn)識(shí)。
    一、知識(shí)與技能
    1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
    2、應(yīng)用勾股定理解決簡(jiǎn)單的實(shí)際問(wèn)題
    3學(xué)會(huì)簡(jiǎn)單的合情推理與數(shù)學(xué)說(shuō)理
    二、過(guò)程與方法
    引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過(guò)動(dòng)手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識(shí)。
    三、情感與態(tài)度目標(biāo)
    通過(guò)對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對(duì)勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,以及自主學(xué)習(xí)的能力。
    四、重點(diǎn)與難點(diǎn)
    1、探索和證明勾股定理
    2、熟練運(yùn)用勾股定理
    一、創(chuàng)設(shè)情景,揭示課題
    1、教師展示圖片并介紹第一情景
    以中國(guó)最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開(kāi)頭為引,介紹周公向商高請(qǐng)教數(shù)學(xué)知識(shí)時(shí)的對(duì)話,為勾股定理的出現(xiàn)埋下伏筆。
    周公問(wèn):“竊聞乎大夫善數(shù)也,請(qǐng)問(wèn)古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請(qǐng)問(wèn)數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤(pán).得成三、四、五,兩矩共長(zhǎng)二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?BR>    2、教師展示圖片并介紹第二情景
    畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
    二、師生協(xié)作,探究問(wèn)題
    1、現(xiàn)在請(qǐng)你也動(dòng)手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
    2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?
    3、你能得到什么結(jié)論嗎?
    三、得出命題
    勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國(guó)古代把直角三角形中較短的直角邊稱為勾,較長(zhǎng)的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
    四、勾股定理的證明
    第一種方法:邊長(zhǎng)為 的正方形可以看作是由4個(gè)直角邊分別為 、,斜邊為 的直角三角形圍在外面形成的。因?yàn)檫呴L(zhǎng)為 的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡(jiǎn)得 。
    第二種方法:邊長(zhǎng)為 的正方形可以看作是由4個(gè)直角邊分別為 、,斜邊為 的
    角三角形拼接形成的(虛線表示),不過(guò)中間缺出一個(gè)邊長(zhǎng)為 的正方形“小洞”。
    因?yàn)檫呴L(zhǎng)為 的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡(jiǎn)得 。
    這種證明方法很簡(jiǎn)明,很直觀,它表現(xiàn)了我國(guó)古代數(shù)學(xué)家趙爽高超的證題思想和對(duì)數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。
    五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
    勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問(wèn)題,今天我們就來(lái)運(yùn)用勾股定理解決一些問(wèn)題,你可以嗎?試一試。
    六、歸納總結(jié)
    2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫(huà)一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。
    七、討論交流
    讓學(xué)生發(fā)表自己的意見(jiàn),提出他們模糊不清的概念,給他們一個(gè)梳理知識(shí)的機(jī)會(huì),通過(guò)提示性的引導(dǎo),讓學(xué)生對(duì)勾股定理的概念豁然開(kāi)朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
    我們班的同學(xué)很聰明。大家很快就通過(guò)數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來(lái)交流一下。請(qǐng)同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。