熱門(mén)對(duì)高等數(shù)學(xué)的體會(huì)大全(23篇)

字號(hào):

    對(duì)于每個(gè)人來(lái)說(shuō),總結(jié)都是一種重要的思維和反思方式。針對(duì)這個(gè)情況,我們需要采取更加全面和有效的措施。下面是一些總結(jié)范文供大家參考,希望能夠給大家一些啟發(fā)。
    對(duì)高等數(shù)學(xué)的體會(huì)篇一
    高等代數(shù)學(xué)習(xí)是大學(xué)數(shù)學(xué)重要的一部分,相較于初等代數(shù),高等代數(shù)更為抽象和理論化,對(duì)于學(xué)生來(lái)說(shuō)大有難度。但是隨著時(shí)間的推移,我漸漸開(kāi)始感到了高等代數(shù)的魅力,也逐漸發(fā)現(xiàn)了學(xué)習(xí)高等代數(shù)的重要性。在這篇文章中,我將分享自己在高等代數(shù)學(xué)習(xí)過(guò)程中所得到的心得和體會(huì)。
    第二段:抵抗初衷
    學(xué)習(xí)高等代數(shù)的第一階段,我感到了很大的挑戰(zhàn)和困惑。在不斷滑坡中,我內(nèi)心渴望退出,想要擺脫這門(mén)讓我疲憊的學(xué)科。四年前,我開(kāi)始學(xué)習(xí)線(xiàn)性代數(shù),我認(rèn)為自己已經(jīng)成功掌握了這種代數(shù)學(xué)基礎(chǔ),在此基礎(chǔ)上學(xué)習(xí)更高級(jí)的代數(shù)只需要一點(diǎn)點(diǎn)努力就可以了。然而,我發(fā)現(xiàn)自己所擁有的數(shù)學(xué)知識(shí)并沒(méi)有真正利于我掌握高等代數(shù)的本質(zhì)和更深層的觀念。開(kāi)始的時(shí)候,我覺(jué)得自己面對(duì)了一個(gè)難題,無(wú)法克服這個(gè)阻礙心名字邁出的頑爍。
    第三段:不斷嘗試
    然而,隨著不斷的努力、不斷的嘗試,我開(kāi)始慢慢了解到了自己所面對(duì)問(wèn)題的真正本質(zhì)。我閱讀了更多更深的數(shù)學(xué)論文,掌握了基本概念,進(jìn)而對(duì)所學(xué)的東西有了更深刻的理解。我漸漸地意識(shí)到,只是單純地閱讀數(shù)學(xué)問(wèn)題和相關(guān)理論是遠(yuǎn)遠(yuǎn)不夠的。我也需要進(jìn)行自己的實(shí)踐,去親身探究一些問(wèn)題。因?yàn)橹挥型ㄟ^(guò)實(shí)踐,才能夠找到真正有效的方法和途徑。
    第四段:逐漸領(lǐng)悟
    在實(shí)踐之中,我越來(lái)越理解到高等代數(shù)學(xué)的優(yōu)點(diǎn)。高等代數(shù)學(xué)的優(yōu)點(diǎn)在于其極具抽象性以及精致的理論系統(tǒng)。我發(fā)現(xiàn)高等代數(shù)對(duì)數(shù)學(xué)、物理、工程學(xué)以及計(jì)算機(jī)科學(xué)等方面非常重要,而且與其他學(xué)科密切相關(guān)。在我逐漸習(xí)慣、理解和掌握高等代數(shù)的過(guò)程中,我越來(lái)越喜歡它的項(xiàng)目。。我感到,高等代數(shù)不僅有助我掌握各種概覽和概念,還可以幫助我更精準(zhǔn)地理解其他學(xué)科的內(nèi)容。能夠被如此深刻的理解事物的方法,我認(rèn)為是很難得的。
    第五段:結(jié)論
    總之,學(xué)習(xí)高等代數(shù)是一個(gè)充滿(mǎn)挑戰(zhàn)性的過(guò)程。如果你認(rèn)真學(xué)習(xí),努力訓(xùn)練,并找到了有效的學(xué)習(xí)方法,那么這個(gè)過(guò)程 will將讓你受益良多,并且對(duì)我們今后的職業(yè)生涯和個(gè)人思考能力都會(huì)受益。我感謝高等代數(shù)讓我拓寬了我的視野,并讓我認(rèn)識(shí)到,對(duì)于我的專(zhuān)業(yè)及其他方面,學(xué)習(xí)和鉆研決不是終點(diǎn)。相反,它開(kāi)啟了一個(gè)探索不斷、充滿(mǎn)挑戰(zhàn)但也充滿(mǎn)可能性的新世界。
    對(duì)高等數(shù)學(xué)的體會(huì)篇二
    1.極限思想:是一種漸進(jìn)變化的數(shù)學(xué)思想。利用有限描述無(wú)限,由近似到精確的一種過(guò)程。極限思想是高等數(shù)學(xué)必不可少的一種重要方法,是高等數(shù)學(xué)與初等數(shù)學(xué)的本質(zhì)區(qū)別。利用極限思想方法解決了許多初等數(shù)學(xué)無(wú)法解決的問(wèn)題,例如,求瞬時(shí)速度、曲線(xiàn)弧長(zhǎng)、曲邊形面積、曲面體體積等問(wèn)題。
    2.函數(shù)思想:是通過(guò)構(gòu)造函數(shù),利用函數(shù)的概念、圖象和性質(zhì)去分析問(wèn)題、轉(zhuǎn)化問(wèn)題和解決問(wèn)題的思想方法。中學(xué)數(shù)學(xué)和大學(xué)數(shù)學(xué)中都有用到函數(shù)思想,而大學(xué)中是將函數(shù)進(jìn)一步深化,更復(fù)雜一些,例如,函數(shù)的極限、連續(xù)性、極值等。
    3.化歸思想:化歸思想的中心是轉(zhuǎn)化。原則是陌生問(wèn)題熟悉化,復(fù)雜問(wèn)題簡(jiǎn)單化,抽象問(wèn)題具體化,命題形式的轉(zhuǎn)化,引入輔助元素等。
    4.數(shù)形結(jié)合思想:數(shù)學(xué)是以數(shù)和形為主干,劃分為代數(shù)和幾何兩個(gè)方向,而數(shù)和形又常常結(jié)合在一起,內(nèi)容上相互聯(lián)系,方法上相互滲透,并在一定條件下相互轉(zhuǎn)化。例如,平面向量的數(shù)量關(guān)系、解析幾何中曲線(xiàn)與方程的關(guān)系等。
    5.邏輯思想:邏輯思想依賴(lài)于嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)推理。推理是多樣的,其中歸納和類(lèi)比是兩種應(yīng)用極廣的推理。
    a.歸納推理的過(guò)程:“發(fā)現(xiàn)問(wèn)題”-“觀察問(wèn)題”-“歸納問(wèn)題”-“推廣問(wèn)題”-“猜想”-“證明猜想”,例如,在某些證明中所使用的數(shù)學(xué)歸納法等。
    b.類(lèi)比:是根據(jù)兩個(gè)或兩類(lèi)對(duì)象有部分屬性相同,推出它們的其它屬性也相同。類(lèi)比方法有不同的類(lèi)型:概念間的類(lèi)比、形式間的類(lèi)比、有限與無(wú)限間的類(lèi)比等。
    對(duì)高等數(shù)學(xué)的體會(huì)篇三
    高等數(shù)學(xué)作為理工科大學(xué)生的一門(mén)必修的基礎(chǔ)課,具有高度的抽象性、嚴(yán)密的邏輯性和廣泛的應(yīng)用性的特點(diǎn),可以培養(yǎng)學(xué)生的抽象概括能力、邏輯思維能力、解決分析問(wèn)題的能力,對(duì)科技進(jìn)步也起著基礎(chǔ)性推動(dòng)作用。隨著國(guó)家高等教育從精英型轉(zhuǎn)入大眾型,學(xué)生素質(zhì)呈下降趨勢(shì),大部分學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)感到困難,從而提高高等數(shù)學(xué)教學(xué)質(zhì)量、改革高等數(shù)學(xué)教育教學(xué)方法已成為一個(gè)亟需解決的問(wèn)題。
    一、高等數(shù)學(xué)教學(xué)中學(xué)生存在的誤區(qū) 1.誤區(qū)一很多學(xué)生認(rèn)為學(xué)數(shù)學(xué)沒(méi)有用
    高中階段學(xué)生已經(jīng)接觸到了高等數(shù)學(xué)中比較簡(jiǎn)單的極限、導(dǎo)數(shù)、定積分,但沒(méi)有深入學(xué)習(xí)其概念、定義,高考也只是考了一點(diǎn)點(diǎn),學(xué)生認(rèn)為自己掌握了高等數(shù)學(xué)的知識(shí),再學(xué)了也沒(méi)有什么用,在將來(lái)實(shí)際工作中也用不到數(shù)學(xué)。
    2.誤區(qū)二高等數(shù)學(xué)具有很高的抽象性,很多學(xué)生覺(jué)得學(xué)也學(xué)不會(huì)
    現(xiàn)在學(xué)生不愿意動(dòng)腦、動(dòng)筆,碰到題目就在想答案。往往因?yàn)榇髮W(xué)的高數(shù)題運(yùn)算步驟比較多,想是想不出來(lái)的,不動(dòng)筆又不畫(huà)圖,學(xué)生坐一會(huì)就有點(diǎn)困了,自然就認(rèn)為高等數(shù)學(xué)非常難。
    3.誤區(qū)三學(xué)生習(xí)慣于用中學(xué)的思維來(lái)解題
    很多學(xué)生學(xué)習(xí)數(shù)學(xué)的一些簡(jiǎn)單想法就是來(lái)解數(shù)學(xué)題,愿意用中學(xué)的方法去解決高等數(shù)學(xué)里的題目,只要能做出答案就行。在這種思想的影響下,不愿意去掌握定義、定理,做題少步驟或只有答案,但是有的題目肯本做不出來(lái)。隨著學(xué)習(xí)的深入學(xué)生發(fā)現(xiàn)題目越來(lái)越不會(huì)做。
    二、提高高等數(shù)學(xué)教學(xué)質(zhì)量的方法 1.端正學(xué)生學(xué)習(xí)態(tài)度
    許多同學(xué)認(rèn)為,考上大學(xué)就可以放松了,自我要求標(biāo)準(zhǔn)降低了。只有有了明確的學(xué)習(xí)目標(biāo),端正學(xué)習(xí)態(tài)度,才能增加學(xué)習(xí)高等數(shù)學(xué)的動(dòng)力。教師要以身作則,這要求教師熱愛(ài)數(shù)學(xué),對(duì)每節(jié)課都要以飽滿(mǎn)的激情、對(duì)數(shù)學(xué)美的無(wú)限欣賞呈現(xiàn)在學(xué)生面前,教師積極地態(tài)度從而感染學(xué)生學(xué)習(xí)高等數(shù)學(xué)的熱情。部分同學(xué)在應(yīng)試教育的影響下,應(yīng)經(jīng)形成了消極的數(shù)學(xué)態(tài)度,教師還應(yīng)該全方位、多角度扭轉(zhuǎn)學(xué)生學(xué)習(xí)態(tài)度,如課下談心談話(huà)、建立互助興趣小組、“一對(duì)一”結(jié)對(duì)子等方法,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的動(dòng)力。端正學(xué)生的學(xué)習(xí)態(tài)度首先從數(shù)學(xué)字母的寫(xiě)法、發(fā)信做起,很多學(xué)生古希臘字母不會(huì)寫(xiě)也不會(huì)讀,上課多練習(xí)幾遍,老師在做題過(guò)程中要注重解題的每一步驟,告訴學(xué)生每一步驟的重要性,做題中感受數(shù)學(xué)題的美。
    2.激發(fā)學(xué)生學(xué)習(xí)興趣
    興趣是最好的老師,只有有了學(xué)習(xí)高等數(shù)學(xué)的興趣,學(xué)生才有了學(xué)習(xí)動(dòng)力。在教學(xué)過(guò)程中,可以穿插一些關(guān)于數(shù)學(xué)的歷史,數(shù)學(xué)家的故事,數(shù)學(xué)文化,來(lái)激發(fā)學(xué)生的興趣。如定積分的講解時(shí),自然引入牛頓、萊布尼茨兩位數(shù)學(xué)家的故事。教師在課堂講解時(shí),把抽象的問(wèn)題具體化,通過(guò)幾何畫(huà)圖提高學(xué)生的理解能力,這樣學(xué)生才更容易接受。
    3.提高教師自身素質(zhì)
    教師是課堂教育的主導(dǎo)者,是良好課堂氛圍的主要營(yíng)造者,要想學(xué)生緊跟教師講課的思路,教師必須具有良好的人格魅力和深厚的專(zhuān)業(yè)功底。這就要求教師一方面要提高自身的文化底蘊(yùn),多讀一些與另一方面刻苦專(zhuān)研專(zhuān)業(yè)知識(shí)、完善知識(shí)結(jié)構(gòu)、提高教育教學(xué)能力,只有做到這樣,教師的課堂教育才能吸引學(xué)生,課下學(xué)生才愿意并主動(dòng)與教師交流、溝通。教師在上課的時(shí)候要身體力行,做題要在步驟上下功夫,解釋每一步驟的重要性,既要用最少的步驟把題做完,又要講解每一步驟的重要性。這樣雖然浪費(fèi)了一點(diǎn)時(shí)間,但是學(xué)生還是會(huì)做的,同時(shí)學(xué)生也得到了怎樣去做題以及真正的理解數(shù)學(xué)題,并從中發(fā)現(xiàn)數(shù)學(xué)美,時(shí)間長(zhǎng)了能培養(yǎng)學(xué)生良好的數(shù)學(xué)興趣、數(shù)學(xué)能力和創(chuàng)新能力。對(duì)所講授的課程要有深入的了解,知識(shí)的內(nèi)在聯(lián)系及在學(xué)生專(zhuān)業(yè)上的應(yīng)用要有所了解,可以給學(xué)生提一提,以便引起學(xué)生足夠的重視。
    4.創(chuàng)新教師教學(xué)方法
    好的教學(xué)方法能激發(fā)學(xué)生思維能力,啟迪學(xué)生的思維悟性。教師在教學(xué)方法上進(jìn)行創(chuàng)新能有效改善課堂教學(xué)的效果。如教師在講授極限時(shí),可以采用情景教學(xué)方法,把抽象的定義、定理與實(shí)際生活相聯(lián)系,營(yíng)造學(xué)生認(rèn)知懸念,從而激發(fā)學(xué)生自主探索的積極性,從而提高學(xué)生思維能力和發(fā)現(xiàn)、分析問(wèn)題的能力。在教學(xué)空閑的時(shí)候、或者學(xué)生比較累的時(shí)候、或者在講到某一個(gè)問(wèn)題時(shí),可以講一些實(shí)際的東西。如在剛開(kāi)始學(xué)極限時(shí),現(xiàn)在學(xué)生都在教學(xué)樓上課,教室里到處可見(jiàn)支撐樓的柱子。柱子不能太細(xì),細(xì)了樓就有可能倒掉,也不能非常粗,那樣雖然結(jié)實(shí)了,但是浪費(fèi)材料,建筑商也不會(huì)同意。這樣柱子肯定要通過(guò)數(shù)學(xué)計(jì)算得到一個(gè)合理的數(shù)值,既要能承重又要節(jié)約材料,這個(gè)確定的數(shù)就可以認(rèn)為是一個(gè)極限。
    5.建立良好的師生關(guān)系
    在教育教學(xué)活動(dòng)中,良好的師生關(guān)系是保證教育效果和質(zhì)量的前提。新時(shí)代的大學(xué)生具有自我意識(shí)強(qiáng),個(gè)性張揚(yáng)等特點(diǎn),要提高課堂教育效果,必須建立良好的師生關(guān)系。只有師生間相互了解、相互尊重、相互賞識(shí),把教學(xué)過(guò)程看做是教師與學(xué)生的交流、交往過(guò)程,才能建立輕松、和諧的課堂氛圍,從而才能提高課堂教育效果和教學(xué)質(zhì)量。教師在教學(xué)的過(guò)程中,要學(xué)會(huì)換位思考,站在學(xué)生的角度估計(jì)講授問(wèn)題的難易程度。對(duì)學(xué)生容易出錯(cuò)或者經(jīng)常犯錯(cuò)誤的地方,上課要強(qiáng)調(diào)知識(shí)的重要性,舉例說(shuō)明讓學(xué)生理解知識(shí)點(diǎn)及了解出錯(cuò)的原因。
    6.重視作業(yè)中存在的問(wèn)題
    作業(yè)是學(xué)生學(xué)習(xí)知識(shí)好壞的一面鏡子,雖然現(xiàn)在學(xué)生有抄襲作業(yè)的現(xiàn)象,但是大部分學(xué)生還是自己做作業(yè)。從作業(yè)中可以看出學(xué)生對(duì)知識(shí)掌握的程度,沒(méi)掌握好的話(huà),想辦法用最簡(jiǎn)單的題目來(lái)說(shuō)明問(wèn)題。也許作業(yè)有可能做的非常好,這就要求教師對(duì)知識(shí)有很好的理解,對(duì)學(xué)生容易出錯(cuò)的地方,上課時(shí)可以提問(wèn)學(xué)生做過(guò)的題目或者讓學(xué)生課前上黑板重新做。這樣一學(xué)期下來(lái),學(xué)生對(duì)難點(diǎn)重點(diǎn)會(huì)掌握的很好,考試成績(jī)自然會(huì)很好,同時(shí)對(duì)高等數(shù)學(xué)理解的程度也會(huì)很高。學(xué)生取得了好的成績(jī),對(duì)高等數(shù)學(xué)了解的多了,自然對(duì)高等數(shù)學(xué)學(xué)習(xí)興趣提高了。在以后的學(xué)習(xí)過(guò)程中,自然會(huì)對(duì)各種數(shù)學(xué)課更加努力的去學(xué)習(xí),從而對(duì)其本專(zhuān)業(yè)課也起到了很好的促進(jìn)作用。最終學(xué)生會(huì)發(fā)現(xiàn)大學(xué)生活是非常快樂(lè)的,學(xué)到了很多知識(shí),學(xué)校也培養(yǎng)出了合格的大學(xué)生。
    對(duì)高等數(shù)學(xué)的體會(huì)篇四
    原本以為憑借小學(xué)到高中這十余年所總結(jié)出的數(shù)學(xué)學(xué)習(xí)方法,就能輕松應(yīng)對(duì)大學(xué)高等數(shù)學(xué)的學(xué)習(xí)。
    然而,經(jīng)過(guò)一個(gè)多學(xué)期的學(xué)習(xí),我真正體會(huì)到高等數(shù)學(xué)的學(xué)習(xí)特點(diǎn)與以往所學(xué)習(xí)的數(shù)學(xué)大相徑庭。因此,我必須在學(xué)習(xí)過(guò)程中找到高等數(shù)學(xué)的獨(dú)特之處,總結(jié)出一套新的有效的方法,才能在高等數(shù)學(xué)的學(xué)習(xí)中做到游刃有余。
    就我個(gè)人而言,我認(rèn)為高等數(shù)學(xué)有以下幾個(gè)顯著特點(diǎn):
    (1)識(shí)記的知識(shí)相對(duì)減少,理解的知識(shí)點(diǎn)相對(duì)增加;
    (2)不僅要求會(huì)運(yùn)用所學(xué)的知識(shí)解題,還要明白其來(lái)龍去脈;
    (3)系實(shí)際多,對(duì)專(zhuān)業(yè)學(xué)習(xí)幫助大;
    (4)教師授課速度快,課下復(fù)習(xí)與預(yù)習(xí)必不可少。
    以前上數(shù)學(xué)課,老師在黑板上寫(xiě)滿(mǎn)各種公式和結(jié)論,我便一邊在書(shū)上勾畫(huà),一邊在筆記本上記錄。
    然后像背單詞一樣,把一堆公式與結(jié)論死記硬背下來(lái)。
    哪種類(lèi)型的題目用哪個(gè)公式、哪條結(jié)論,老師都已一一總結(jié)出來(lái),我只需要將其對(duì)號(hào)入座,便可將問(wèn)題解答出來(lái)。
    而現(xiàn)在,我不再有那么多需要識(shí)記的結(jié)論。
    唯一需要記住的只是數(shù)目不多的一些定義、定理和推論。
    老師也不會(huì)給出固定的解題套路。因?yàn)楦叩葦?shù)學(xué)與中學(xué)數(shù)學(xué)不同,它更要求理解。只要充分理解了各個(gè)知識(shí)點(diǎn),遇到題目可以自己分析出正確的解題思路。
    所以,學(xué)習(xí)高等數(shù)學(xué),記憶的負(fù)擔(dān)輕了,但對(duì)思維的要求卻提高了。
    每一次高數(shù)課,都是一次大腦的思維訓(xùn)練,都是一次提升理解力的好機(jī)會(huì)。
    高等數(shù)學(xué)的學(xué)習(xí)目的不是為了應(yīng)付考試,因此,我們的學(xué)習(xí)不能停留在以解出答案為目標(biāo)。
    我們必須知道解題過(guò)程中每一步的依據(jù)。正如我前面所提到的,中學(xué)時(shí)期學(xué)過(guò)的許多定理并不特別要求我們理解其結(jié)論的推導(dǎo)過(guò)程。
    而高等數(shù)學(xué)課本中的每一個(gè)定理都有詳細(xì)的證明。
    最初,我以為只要把定理內(nèi)容記住,能做題就行了。
    然而,漸漸地,我發(fā)現(xiàn)如果沒(méi)有真正明白每個(gè)定理的來(lái)龍去脈,就不能真正掌握它,更談不上什么運(yùn)用自如了。
    于是,我開(kāi)始認(rèn)真地學(xué)習(xí)每一個(gè)定理的推導(dǎo)。有時(shí)候,某些地方很難理解,我便反復(fù)思考,或請(qǐng)教老師、同學(xué)。盡管這個(gè)過(guò)程并不輕松,但我卻認(rèn)為非常值得。
    因?yàn)橹挥型ㄟ^(guò)自己去探索的知識(shí),才是掌握得最好的。
    總而言之,高等數(shù)學(xué)的以上幾個(gè)特點(diǎn),使我的數(shù)學(xué)學(xué)習(xí)歷程充滿(mǎn)了挑戰(zhàn),同時(shí)也給了我難得的鍛煉機(jī)會(huì),讓我收獲多多。
    進(jìn)入大學(xué)之前,我們都是學(xué)習(xí)基礎(chǔ)的數(shù)學(xué)知識(shí),聯(lián)系實(shí)際的東西并不多。在大學(xué)卻不同了。
    不同專(zhuān)業(yè)的學(xué)生學(xué)習(xí)的數(shù)學(xué)是不同的。
    正是因?yàn)槿绱?,高等?shù)學(xué)的課本上有了更多與實(shí)際內(nèi)容相關(guān)的`內(nèi)容,這對(duì)專(zhuān)業(yè)學(xué)習(xí)的幫助是不可低估的。
    比如“常用簡(jiǎn)單經(jīng)濟(jì)函數(shù)介紹”中所列舉的需求函數(shù),供給函數(shù),生產(chǎn)函數(shù)等等在西方經(jīng)濟(jì)學(xué)的學(xué)習(xí)中都有用到。
    而“極值原理在經(jīng)濟(jì)管理和經(jīng)濟(jì)分析中的應(yīng)用”這一節(jié)與經(jīng)濟(jì)學(xué)中的“邊際問(wèn)題”密切相關(guān)。如果沒(méi)有這些知識(shí)作為基礎(chǔ),經(jīng)濟(jì)學(xué)中的許多問(wèn)題都無(wú)法解決。
    當(dāng)我親身學(xué)習(xí)了高等數(shù)學(xué),并試圖把它運(yùn)用到經(jīng)濟(jì)問(wèn)題的分析中時(shí),才真正體會(huì)到了數(shù)學(xué)方法是經(jīng)濟(jì)學(xué)中最重要的方法之一,是經(jīng)濟(jì)理論取得突破性發(fā)展的重要工具。這也堅(jiān)定了我努力學(xué)好高等數(shù)學(xué)的決心。希望未來(lái)自己可以憑借扎實(shí)的數(shù)理基礎(chǔ),在經(jīng)濟(jì)領(lǐng)域里大展鴻圖。
    高等數(shù)學(xué)作為大學(xué)的一門(mén)課程,自然與其它課程有著共同之處,那就是講課速度快。
    剛開(kāi)始,我非常不適應(yīng)。上一題還沒(méi)有消化,老師已經(jīng)講完下一題了。帶著幾分焦慮,我向?qū)W長(zhǎng)請(qǐng)教學(xué)習(xí)經(jīng)驗(yàn),才明白大學(xué)學(xué)習(xí)的重點(diǎn)不僅僅是課堂,課下的預(yù)習(xí)與復(fù)習(xí)是學(xué)好高數(shù)的必要條件。
    于是,每節(jié)課前我都認(rèn)真預(yù)習(xí),把不懂的地方作上記號(hào)。課堂上有選擇、有計(jì)劃地聽(tīng)講。
    課后及時(shí)復(fù)習(xí),歸納總結(jié)。逐漸地,我便感到高數(shù)課變得輕松有趣。只要肯努力,高等數(shù)學(xué)并不會(huì)太難。
    高等數(shù)學(xué)有其獨(dú)特之處,但它畢竟是數(shù)學(xué),那么一定量的習(xí)題自然必不可少。
    通過(guò)練習(xí),才能更深入地理解,運(yùn)用。
    以上便是本人一個(gè)多學(xué)期以來(lái),學(xué)習(xí)高等數(shù)學(xué)的一些體會(huì)。
    希望自己能在以后的學(xué)習(xí)中更上一層樓!
    對(duì)高等數(shù)學(xué)的體會(huì)篇五
    高等數(shù)學(xué)是大學(xué)數(shù)學(xué)教學(xué)中的一門(mén)重要課程,它深入探討了微積分、常微分方程、多元函數(shù)等數(shù)學(xué)領(lǐng)域的理論與應(yīng)用。作為一名學(xué)習(xí)高等數(shù)學(xué)的學(xué)生,通過(guò)學(xué)習(xí)本學(xué)期下冊(cè)的高等數(shù)學(xué)課程,我有了一些心得體會(huì)。在這篇文章中,我將分享我對(duì)于高等數(shù)學(xué)下冊(cè)的認(rèn)識(shí)和體悟,以及它對(duì)于我的學(xué)習(xí)和思維方式的影響。
    第一段:高等數(shù)學(xué)下冊(cè)的知識(shí)體系
    高等數(shù)學(xué)下冊(cè)是高等數(shù)學(xué)課程的延續(xù),它包含了微分方程、重積分、無(wú)窮級(jí)數(shù)和場(chǎng)論等內(nèi)容。與上冊(cè)相比,下冊(cè)的內(nèi)容更加深入和細(xì)致。通過(guò)學(xué)習(xí)下冊(cè)的課程,我對(duì)高等數(shù)學(xué)的整體框架有了更加清晰的認(rèn)識(shí),同時(shí)也加深了對(duì)微積分的理解。微分方程是高等數(shù)學(xué)下冊(cè)的重點(diǎn)之一,它在科學(xué)研究和工程應(yīng)用中具有重要意義。通過(guò)學(xué)習(xí)微分方程,我對(duì)于它在實(shí)際問(wèn)題中的應(yīng)用有了更深刻的認(rèn)識(shí),從而增強(qiáng)了我的問(wèn)題解決能力。
    第二段:高等數(shù)學(xué)下冊(cè)的邏輯思維
    高等數(shù)學(xué)下冊(cè)的學(xué)習(xí)過(guò)程強(qiáng)調(diào)了邏輯思維的培養(yǎng)。在解題過(guò)程中,我學(xué)會(huì)了運(yùn)用嚴(yán)密的邏輯推理和抽象思維來(lái)分析問(wèn)題,從而解決復(fù)雜的數(shù)學(xué)問(wèn)題。在學(xué)習(xí)重積分和無(wú)窮級(jí)數(shù)時(shí),尤其需要運(yùn)用邏輯思維進(jìn)行推導(dǎo)和證明。通過(guò)這些習(xí)題的解答,我逐漸培養(yǎng)出了邏輯思維的能力,提高了自己的數(shù)學(xué)素養(yǎng)。我相信,邏輯思維的培養(yǎng)不僅對(duì)于學(xué)習(xí)數(shù)學(xué)有著重要意義,也對(duì)于我們?nèi)粘I詈吐殬I(yè)發(fā)展具有積極影響。
    第三段:高等數(shù)學(xué)下冊(cè)的實(shí)踐能力
    學(xué)習(xí)高等數(shù)學(xué)下冊(cè)的過(guò)程中,我發(fā)現(xiàn)課本中的理論和知識(shí)需要通過(guò)實(shí)踐來(lái)加深理解。例如,在學(xué)習(xí)微分方程時(shí),我們需要通過(guò)實(shí)際問(wèn)題的建模和求解,來(lái)驗(yàn)證所學(xué)知識(shí)的正確性和適用性。通過(guò)課堂上的實(shí)例和作業(yè)的練習(xí),我提高了自己的實(shí)踐能力。而這種實(shí)踐能力也是在工程和科技領(lǐng)域中所必須具備的。通過(guò)實(shí)踐能力的培養(yǎng),我相信自己在未來(lái)的學(xué)習(xí)和工作中能夠更好地應(yīng)對(duì)各種挑戰(zhàn)。
    第四段:高等數(shù)學(xué)下冊(cè)的學(xué)習(xí)方法
    面對(duì)高等數(shù)學(xué)下冊(cè)的內(nèi)容,我深刻體會(huì)到了合理的學(xué)習(xí)方法的重要性。在解決數(shù)學(xué)問(wèn)題時(shí),我逐漸掌握了一些學(xué)習(xí)技巧。例如,在學(xué)習(xí)微分方程和重積分時(shí),我會(huì)先了解和理解基本概念,然后通過(guò)刻意練習(xí)來(lái)掌握解題方法,并在課后復(fù)習(xí)中加深對(duì)知識(shí)的理解。這些學(xué)習(xí)方法的應(yīng)用使我在高等數(shù)學(xué)下冊(cè)的學(xué)習(xí)中事半功倍。我認(rèn)為,學(xué)習(xí)方法的培養(yǎng)是學(xué)習(xí)高等數(shù)學(xué)下冊(cè)的必要過(guò)程,也是提高學(xué)習(xí)效率的關(guān)鍵。
    第五段:高等數(shù)學(xué)下冊(cè)的啟示和反思
    通過(guò)學(xué)習(xí)高等數(shù)學(xué)下冊(cè),我認(rèn)識(shí)到高等數(shù)學(xué)不僅僅是一門(mén)課程,更是培養(yǎng)學(xué)生綜合素質(zhì)的重要途徑。通過(guò)學(xué)習(xí)高等數(shù)學(xué),我不僅僅掌握了數(shù)學(xué)知識(shí),更學(xué)會(huì)了思考問(wèn)題、理解問(wèn)題和解決問(wèn)題的方法。高等數(shù)學(xué)下冊(cè)的學(xué)習(xí),培養(yǎng)了我對(duì)于數(shù)學(xué)的興趣和學(xué)術(shù)追求。同時(shí),我也反思了自己在學(xué)習(xí)中存在的不足,例如在理解概念和應(yīng)用推導(dǎo)方面有待提高。在今后的學(xué)業(yè)中,我會(huì)更加注重培養(yǎng)自己的邏輯思維和實(shí)踐能力,提高學(xué)習(xí)方法的靈活應(yīng)用,以達(dá)到更好的學(xué)習(xí)效果。
    總結(jié)起來(lái),通過(guò)對(duì)高等數(shù)學(xué)下冊(cè)的學(xué)習(xí),我對(duì)于高等數(shù)學(xué)的知識(shí)體系、邏輯思維、實(shí)踐能力和學(xué)習(xí)方法有了更深入的理解和認(rèn)識(shí)。同時(shí),我也發(fā)現(xiàn)高等數(shù)學(xué)不僅僅是一門(mén)學(xué)科,更是培養(yǎng)學(xué)生思維能力和解決問(wèn)題能力的過(guò)程。通過(guò)學(xué)習(xí)高等數(shù)學(xué)下冊(cè),我不僅提高了自己的數(shù)學(xué)水平,也增強(qiáng)了自信和對(duì)學(xué)習(xí)的熱愛(ài)。我相信,在今后的學(xué)習(xí)和人生中,我會(huì)繼續(xù)努力,追求更高的數(shù)學(xué)境界和學(xué)術(shù)成就。
    對(duì)高等數(shù)學(xué)的體會(huì)篇六
    經(jīng)濟(jì)學(xué)是考察社會(huì)經(jīng)濟(jì)現(xiàn)象、行為及其規(guī)律的學(xué)科,而計(jì)量經(jīng)濟(jì)學(xué)則是揭示經(jīng)濟(jì)學(xué)理論所考察的社會(huì)經(jīng)濟(jì)現(xiàn)象之間的數(shù)量規(guī)律。計(jì)量經(jīng)濟(jì)學(xué)的學(xué)習(xí)與應(yīng)用能力,關(guān)鍵取決于能否運(yùn)用經(jīng)濟(jì)學(xué)的思維方式觀察理解經(jīng)濟(jì)現(xiàn)象,能否構(gòu)建恰當(dāng)?shù)慕?jīng)濟(jì)模型,能否準(zhǔn)確進(jìn)行參數(shù)估計(jì)與模型檢驗(yàn),使研究結(jié)論客觀反映經(jīng)濟(jì)規(guī)律,進(jìn)而為政策決策提供有意義的參考。目前,雖然計(jì)量經(jīng)濟(jì)學(xué)已被列為高等院校經(jīng)管類(lèi)各專(zhuān)業(yè)的重要課程,但我國(guó)計(jì)量經(jīng)濟(jì)學(xué)教學(xué)與研究與發(fā)達(dá)國(guó)家相比還有較大差距,進(jìn)一步培養(yǎng)好計(jì)量經(jīng)濟(jì)學(xué)人才任重道遠(yuǎn)。為更好提升學(xué)生學(xué)習(xí)和應(yīng)用能力,應(yīng)著重從以下方面入手進(jìn)行計(jì)量經(jīng)濟(jì)學(xué)人才的培養(yǎng)。
    (一)有助于培養(yǎng)學(xué)生觀察與分析經(jīng)濟(jì)現(xiàn)象的能力
    計(jì)量經(jīng)濟(jì)學(xué)重在培養(yǎng)學(xué)生基于經(jīng)濟(jì)學(xué)理論觀察社會(huì)經(jīng)濟(jì)現(xiàn)象,勇于提出問(wèn)題。譬如,在研究通貨膨脹時(shí),學(xué)生應(yīng)回顧成本推動(dòng)型、需求拉動(dòng)型等通脹形成機(jī)制,思考這些理論能否解釋現(xiàn)實(shí)。以始于2009年下半年的通貨膨脹為例,顯然,每個(gè)人都經(jīng)歷與感知到了該輪通貨膨脹對(duì)自身的影響,企業(yè)家感覺(jué)到原材料上漲,居民感覺(jué)到菜價(jià)上漲,學(xué)生發(fā)現(xiàn)食堂飯菜價(jià)格上升。對(duì)于計(jì)量經(jīng)濟(jì)學(xué)的學(xué)生來(lái)說(shuō),首先要思考此輪通脹的原因與貨幣供給過(guò)多是否相關(guān),進(jìn)而要思考此輪通脹與過(guò)去通脹是否存在相同特征。教師要將這些問(wèn)題引入課堂,適時(shí)引導(dǎo)學(xué)生思考與研究社會(huì)經(jīng)濟(jì)現(xiàn)象,這實(shí)質(zhì)就是培養(yǎng)學(xué)生學(xué)習(xí)與研究計(jì)量經(jīng)濟(jì)學(xué)的能力。
    (二)有助于培養(yǎng)學(xué)生研究社會(huì)經(jīng)濟(jì)現(xiàn)象的能力
    計(jì)量經(jīng)濟(jì)學(xué)教學(xué)是引導(dǎo)學(xué)生應(yīng)用經(jīng)濟(jì)學(xué)理論理解經(jīng)濟(jì)問(wèn)題的過(guò)程。由于社會(huì)經(jīng)濟(jì)現(xiàn)象的形成機(jī)制非常復(fù)雜,對(duì)同一經(jīng)濟(jì)現(xiàn)象經(jīng)濟(jì)學(xué)家存在不同的看法。經(jīng)濟(jì)學(xué)理論和計(jì)量經(jīng)濟(jì)學(xué)方法發(fā)展日新月異,這種快速的知識(shí)更新使得師生需要不斷學(xué)習(xí)與研究。此外,經(jīng)濟(jì)現(xiàn)象本身也伴隨經(jīng)濟(jì)體制、運(yùn)行機(jī)制與經(jīng)濟(jì)結(jié)構(gòu)的變化而發(fā)生復(fù)雜變化,對(duì)這些日益復(fù)雜的現(xiàn)實(shí)經(jīng)濟(jì)現(xiàn)象的深入考察,也考驗(yàn)著我們運(yùn)用計(jì)量經(jīng)濟(jì)模型的能力。因此,深刻理解經(jīng)濟(jì)現(xiàn)象及其背后的機(jī)制,重在能否正確應(yīng)用計(jì)量經(jīng)濟(jì)學(xué)。仍以通脹現(xiàn)象為例,學(xué)生可能首先聯(lián)想到的是貨幣需求函數(shù),此時(shí),教師可以引導(dǎo)學(xué)生比較分析消費(fèi)價(jià)格指數(shù)(cpi)與廣義貨幣(m2)的時(shí)間序列數(shù)據(jù)。通過(guò)觀察,m2增速于2009年起快速下降,但與此同時(shí),通脹卻表現(xiàn)出持續(xù)上漲的態(tài)勢(shì)。該現(xiàn)象提醒我們,若以非線(xiàn)性貨幣需求函數(shù)建模,則可以揭示通脹與貨幣需求間的復(fù)雜關(guān)系。為此,適時(shí)引導(dǎo)學(xué)生針對(duì)我國(guó)特定的數(shù)據(jù),探索性研究通脹與貨幣需求間的復(fù)雜關(guān)系,能夠培養(yǎng)其學(xué)習(xí)與解決問(wèn)題的能力。
    (三)有助于培養(yǎng)學(xué)生研究計(jì)量經(jīng)濟(jì)理論的能力
    高等教育的重要落腳點(diǎn)是開(kāi)發(fā)學(xué)生創(chuàng)新能力。在計(jì)量經(jīng)濟(jì)學(xué)學(xué)習(xí)中,學(xué)生的創(chuàng)新能力體現(xiàn)于能否發(fā)展計(jì)量經(jīng)濟(jì)學(xué)理論。比如,通過(guò)引導(dǎo)學(xué)生觀察通脹現(xiàn)象,逐步提出以下問(wèn)題:如何檢驗(yàn)通貨膨脹與m2是否是平穩(wěn)序列?這兩個(gè)變量是否存在協(xié)整關(guān)系?該關(guān)系是否具有非對(duì)稱(chēng)、非線(xiàn)性的特征?怎樣檢驗(yàn)與估計(jì)非對(duì)稱(chēng)、非線(xiàn)性的長(zhǎng)期均衡關(guān)系?要回答以上問(wèn)題,必須學(xué)習(xí)與發(fā)展計(jì)量理論,這需要我們拓展既有非平穩(wěn)時(shí)間序列分析的理論與方法。因此,在研究中準(zhǔn)確理解與應(yīng)用相關(guān)理論與方法,特別是針對(duì)數(shù)據(jù)特征拓展計(jì)量理論,是培養(yǎng)與提升學(xué)生學(xué)習(xí)與應(yīng)用能力的重點(diǎn)。
    二、計(jì)量經(jīng)濟(jì)學(xué)教學(xué)實(shí)踐改革路徑
    現(xiàn)代計(jì)量經(jīng)濟(jì)學(xué)的主要內(nèi)容有:?jiǎn)挝桓鶛z驗(yàn)與基于非平穩(wěn)變量的建模技術(shù);描述經(jīng)濟(jì)現(xiàn)象復(fù)雜動(dòng)態(tài)性的模型;使用面板數(shù)據(jù)建立的模型。這些理論與方法與之前的經(jīng)典計(jì)量經(jīng)濟(jì)學(xué)相比存在較大區(qū)別,為使教學(xué)與現(xiàn)代計(jì)量經(jīng)濟(jì)學(xué)的發(fā)展相適應(yīng),許多教師從教材改革、教學(xué)方法創(chuàng)新、突出實(shí)驗(yàn)教學(xué)等角度思考了計(jì)量經(jīng)濟(jì)學(xué)的教學(xué)方法改革。基于培養(yǎng)學(xué)生能力這一角度,借鑒以往教學(xué)改革的有益建議,結(jié)合我國(guó)計(jì)量經(jīng)濟(jì)學(xué)教學(xué)的現(xiàn)實(shí)狀況,在計(jì)量經(jīng)濟(jì)學(xué)教學(xué)實(shí)踐中,嘗試從以下方面踐行教學(xué)活動(dòng)。
    (一)立足引導(dǎo)與啟發(fā)
    首先要清晰講授相關(guān)概念、理論和方法,梳理知識(shí)之間的內(nèi)在聯(lián)系,適時(shí)對(duì)學(xué)生提出問(wèn)題,培養(yǎng)其智能。例如,在講解參數(shù)估計(jì)量的線(xiàn)性無(wú)偏最小方差性質(zhì)中,應(yīng)分析估計(jì)量是被解釋變量的線(xiàn)性樣本組合,從而引導(dǎo)學(xué)生認(rèn)識(shí)估計(jì)量的本質(zhì),在理解估計(jì)量為一個(gè)隨機(jī)變量的基礎(chǔ)上,提出其是否服從特定的分布,最終引導(dǎo)學(xué)生理解估計(jì)量的方差以及對(duì)備選估計(jì)量的方差分析比較?;诠烙?jì)量的有效性,再講解漸進(jìn)無(wú)偏與漸進(jìn)最優(yōu)估計(jì)量。接下來(lái),適時(shí)展示線(xiàn)性無(wú)偏最小方差估計(jì)量的仿真結(jié)果,以此引導(dǎo)學(xué)生理解基本的計(jì)量經(jīng)濟(jì)理論,把引導(dǎo)學(xué)生學(xué)習(xí)和“教會(huì)學(xué)生學(xué)習(xí)”一體化。
    (二)貫穿“理論、方法和應(yīng)用”三位一體
    在教學(xué)中因勢(shì)利導(dǎo),從經(jīng)典計(jì)量經(jīng)濟(jì)學(xué)適當(dāng)拓展到現(xiàn)代計(jì)量經(jīng)濟(jì)學(xué),并據(jù)此闡釋計(jì)量經(jīng)濟(jì)學(xué)的相關(guān)理論,注重學(xué)生的學(xué)習(xí)反應(yīng),清晰介紹相關(guān)前沿理論。培養(yǎng)學(xué)生學(xué)習(xí)與應(yīng)用計(jì)量經(jīng)濟(jì)學(xué)的能力重在:一要闡釋回歸分析的產(chǎn)生背景及其內(nèi)涵;二是要培養(yǎng)學(xué)生根據(jù)我國(guó)數(shù)據(jù)構(gòu)建計(jì)量模型的能力;三是要根據(jù)學(xué)生的實(shí)際情況對(duì)講授內(nèi)容進(jìn)行延伸。計(jì)量經(jīng)濟(jì)學(xué)前沿的理論與方法集中在文獻(xiàn)中,應(yīng)根據(jù)學(xué)生的知識(shí)基礎(chǔ)與結(jié)構(gòu)從教材延伸至文獻(xiàn)中。比如,在講授異方差時(shí),適時(shí)引出arch模型及其應(yīng)用;在講授面板模型時(shí),適時(shí)延伸到動(dòng)態(tài)面板模型與廣義矩估計(jì),并結(jié)合我國(guó)各省市城鎮(zhèn)居民收入的面板數(shù)據(jù),介紹動(dòng)態(tài)面板模型和廣義矩估計(jì)的分析思路。這種適時(shí)適度地引申新的知識(shí),不但使學(xué)生深入理解基礎(chǔ)概念,還啟發(fā)學(xué)生拓展知識(shí)進(jìn)行應(yīng)用研究。
    (三)充分利用蒙特卡洛仿真技術(shù)
    針對(duì)學(xué)生對(duì)計(jì)量經(jīng)濟(jì)學(xué)理論望而生畏的現(xiàn)狀,我們利用蒙特卡洛仿真技術(shù),通過(guò)編程將計(jì)量經(jīng)濟(jì)學(xué)中晦澀難懂的估計(jì)與檢驗(yàn)理論轉(zhuǎn)化為仿真結(jié)果,使得學(xué)生對(duì)抽象數(shù)學(xué)公式的模糊認(rèn)識(shí),轉(zhuǎn)化為對(duì)仿真圖形直觀深入的理解。比如,線(xiàn)性無(wú)偏有效估計(jì)量的統(tǒng)計(jì)含義,既是參數(shù)估計(jì)中最基礎(chǔ)的知識(shí),又是大多數(shù)學(xué)生難懂的部分。在教學(xué)中采用仿真實(shí)驗(yàn)和仿真圖形,讓學(xué)生對(duì)抽象的計(jì)量理論產(chǎn)生直觀的認(rèn)識(shí)。又如,模型的誤設(shè)定(如隨機(jī)誤差項(xiàng)的異方差性)及其導(dǎo)致的相應(yīng)后果,是學(xué)習(xí)傳統(tǒng)線(xiàn)性計(jì)量模型基本假設(shè)的重點(diǎn),由于需要較強(qiáng)的數(shù)理統(tǒng)計(jì)學(xué)基礎(chǔ),這部分內(nèi)容不但學(xué)生難理解,也是教師難以詮釋清楚的問(wèn)題。通過(guò)仿真實(shí)驗(yàn)結(jié)果能夠形象展示違背經(jīng)典計(jì)量經(jīng)濟(jì)假設(shè)下所導(dǎo)致的結(jié)果,促進(jìn)學(xué)生對(duì)設(shè)定正確模型的重要意義產(chǎn)生深刻理解。這種仿真實(shí)驗(yàn)的教學(xué)模式不僅避免數(shù)學(xué)方面繁雜的推導(dǎo)過(guò)程,防止學(xué)生對(duì)計(jì)量經(jīng)濟(jì)理論“望而生畏”,還培養(yǎng)了其創(chuàng)新性的學(xué)習(xí)與研究能力。
    三、計(jì)量經(jīng)濟(jì)學(xué)教學(xué)創(chuàng)新策略
    不斷創(chuàng)新教學(xué)方法,培養(yǎng)學(xué)生對(duì)計(jì)量經(jīng)濟(jì)學(xué)的學(xué)習(xí)興趣與解決問(wèn)題的能力,是“學(xué)生主動(dòng)學(xué)習(xí)”與“干中學(xué)”這種新型教學(xué)理念的出發(fā)點(diǎn)與落腳點(diǎn)。在教學(xué)實(shí)踐中,我們采用如下策略。
    1.在課堂講授中有意識(shí)地提出問(wèn)題,與學(xué)生互動(dòng),共同討論問(wèn)題,適時(shí)延伸問(wèn)題,將學(xué)生引入到對(duì)相關(guān)前沿文獻(xiàn)的學(xué)習(xí)。例如,為何采用標(biāo)準(zhǔn)差衡量估計(jì)量的精度?ols與廣義gmm的估計(jì)原理區(qū)別在哪?單位根檢驗(yàn)統(tǒng)計(jì)量的概率分布為何區(qū)別于常規(guī)分布?通過(guò)不斷提出類(lèi)似問(wèn)題,與學(xué)生“互動(dòng)式”討論并且解答問(wèn)題,不僅可以啟發(fā)學(xué)生的思維向深度與廣度發(fā)展,還有助于激發(fā)其學(xué)習(xí)積極性。
    2.在課堂教學(xué)中協(xié)調(diào)理論講授、案例分析、實(shí)驗(yàn)教學(xué)之間的關(guān)系。課堂教學(xué)的核心是模型設(shè)定、參數(shù)估計(jì)與假設(shè)檢驗(yàn)等,案例分析和實(shí)驗(yàn)教學(xué)的目的在于幫助學(xué)生直觀理解理論和方法,并促進(jìn)其學(xué)以致用,能夠進(jìn)行經(jīng)濟(jì)學(xué)研究,但絕對(duì)不應(yīng)以軟件操作教學(xué)替代基礎(chǔ)理論的教學(xué)。在講解理論的基礎(chǔ)上,適時(shí)操作相關(guān)的計(jì)量經(jīng)濟(jì)學(xué)軟件,解釋軟件輸出結(jié)果,是實(shí)現(xiàn)理論教學(xué)和實(shí)驗(yàn)教學(xué)融合的有效路徑。
    3.通過(guò)案例與數(shù)據(jù)分析,建立恰當(dāng)?shù)挠?jì)量經(jīng)濟(jì)學(xué)模型,引導(dǎo)學(xué)生靈活運(yùn)用。不管是經(jīng)濟(jì)學(xué)理論,還是計(jì)量經(jīng)濟(jì)學(xué)的研究,經(jīng)濟(jì)現(xiàn)象及其背后的運(yùn)行規(guī)律是學(xué)生關(guān)注的問(wèn)題。基于我國(guó)的實(shí)際例子講授計(jì)量模型,容易激發(fā)學(xué)生對(duì)計(jì)量經(jīng)濟(jì)學(xué)的學(xué)習(xí)興趣,能夠有效促進(jìn)學(xué)生應(yīng)用所學(xué)知識(shí)解決現(xiàn)實(shí)經(jīng)濟(jì)問(wèn)題的能力。針對(duì)計(jì)量經(jīng)濟(jì)學(xué)“難教、難學(xué)、難懂”,上述教學(xué)方法體現(xiàn)“學(xué)生主動(dòng)學(xué)習(xí)”和“干中學(xué)”等先進(jìn)教學(xué)理論的精神實(shí)質(zhì),不僅使學(xué)生帶著濃厚的興趣學(xué)習(xí)計(jì)量經(jīng)濟(jì)學(xué),也開(kāi)拓了其知識(shí)視野,培養(yǎng)學(xué)習(xí)、研究與應(yīng)用計(jì)量經(jīng)濟(jì)學(xué)的能力。
    [高等數(shù)學(xué)經(jīng)濟(jì)學(xué)論文]
    將本文的word文檔下載到電腦,方便收藏和打印
    推薦度:
    點(diǎn)擊下載文檔
    搜索文檔
    對(duì)高等數(shù)學(xué)的體會(huì)篇七
    高等數(shù)學(xué)是理工科專(zhuān)業(yè)必修的一門(mén)重要課程,對(duì)于提升數(shù)學(xué)思維,培養(yǎng)分析和解決實(shí)際問(wèn)題的能力有著重要的作用。在高等數(shù)學(xué)下冊(cè)學(xué)習(xí)的過(guò)程中,我深感受益匪淺。下面就是我對(duì)高等數(shù)學(xué)下冊(cè)的心得體會(huì)。
    首先,高等數(shù)學(xué)下冊(cè)強(qiáng)調(diào)的是更深入的數(shù)學(xué)理論和應(yīng)用。在上冊(cè)我們學(xué)習(xí)了微積分的基礎(chǔ)知識(shí),在下冊(cè)我們進(jìn)一步學(xué)習(xí)了微分方程、多元函數(shù)、空間解析幾何等內(nèi)容。這些內(nèi)容對(duì)于學(xué)習(xí)者來(lái)說(shuō)都是比較新穎和抽象的,要求我們更深入地理解和掌握數(shù)學(xué)的概念和方法。通過(guò)學(xué)習(xí)下冊(cè)高等數(shù)學(xué),我逐漸明白了數(shù)學(xué)是一門(mén)探索自然規(guī)律和解決實(shí)際問(wèn)題的學(xué)科,數(shù)學(xué)理論與實(shí)際應(yīng)用是密不可分的。
    其次,高等數(shù)學(xué)下冊(cè)的學(xué)習(xí)注重于培養(yǎng)學(xué)生的邏輯思維和問(wèn)題解決能力。數(shù)學(xué)是一門(mén)以邏輯為基礎(chǔ)的學(xué)科,通過(guò)學(xué)習(xí)高等數(shù)學(xué)下冊(cè),我更加深刻地理解了邏輯思維和問(wèn)題解決能力的重要性。在解題過(guò)程中,我們需要根據(jù)所學(xué)的數(shù)學(xué)理論與知識(shí),運(yùn)用邏輯推理,靈活運(yùn)用解題方法,從而解決各種復(fù)雜的數(shù)學(xué)問(wèn)題。通過(guò)不斷練習(xí)和思考,我逐漸提升了我的邏輯思維和問(wèn)題解決能力,并且在其他學(xué)科中也能夠得到運(yùn)用和提升。
    第三,高等數(shù)學(xué)下冊(cè)的學(xué)習(xí)培養(yǎng)了我的數(shù)學(xué)抽象和建模能力。數(shù)學(xué)作為一門(mén)抽象的學(xué)科,需要我們學(xué)會(huì)抽象問(wèn)題、建立數(shù)學(xué)模型,并在模型的基礎(chǔ)上進(jìn)行分析和解決問(wèn)題。在學(xué)習(xí)下冊(cè)高等數(shù)學(xué)的過(guò)程中,我有了更多的機(jī)會(huì)進(jìn)行數(shù)學(xué)建模,并且通過(guò)實(shí)例分析和計(jì)算來(lái)驗(yàn)證和應(yīng)用模型。這種訓(xùn)練不僅提高了我的數(shù)學(xué)抽象思維能力,還培養(yǎng)了我應(yīng)對(duì)實(shí)際問(wèn)題的能力。數(shù)學(xué)建模能力是未來(lái)工作和研究中必不可少的能力,通過(guò)學(xué)習(xí)下冊(cè)高等數(shù)學(xué),我在這方面的能力得到了提升。
    第四,高等數(shù)學(xué)下冊(cè)的學(xué)習(xí)強(qiáng)調(diào)了數(shù)學(xué)與實(shí)際問(wèn)題的聯(lián)系。數(shù)學(xué)作為一門(mén)工具學(xué)科,它的應(yīng)用范圍廣泛,與物理、化學(xué)、經(jīng)濟(jì)和工程等學(xué)科存在著密切的聯(lián)系。在學(xué)習(xí)下冊(cè)高等數(shù)學(xué)的過(guò)程中,我通過(guò)一些實(shí)際問(wèn)題的分析和解決,深刻體會(huì)到了數(shù)學(xué)的實(shí)際應(yīng)用。例如,在學(xué)習(xí)微分方程時(shí),我們可以通過(guò)微分方程來(lái)描述一些物理現(xiàn)象、生態(tài)系統(tǒng)的變化規(guī)律等。這樣的學(xué)習(xí)過(guò)程增強(qiáng)了我對(duì)數(shù)學(xué)與實(shí)際問(wèn)題之間聯(lián)系的認(rèn)識(shí),也讓我更加明確了數(shù)學(xué)的重要性。
    最后,高等數(shù)學(xué)下冊(cè)的學(xué)習(xí)給我?guī)?lái)了很多的快樂(lè)。數(shù)學(xué)是一門(mén)極具美感的學(xué)科,通過(guò)解題和推導(dǎo),我們可以發(fā)現(xiàn)數(shù)學(xué)之美。在學(xué)習(xí)下冊(cè)高等數(shù)學(xué)的過(guò)程中,我常常感受到當(dāng)成功解答一個(gè)困難的問(wèn)題時(shí)的喜悅和成就感,這也激發(fā)了我對(duì)數(shù)學(xué)的興趣和熱愛(ài)。在解題過(guò)程中,我探索、思考和創(chuàng)新,不斷挑戰(zhàn)自己,這種過(guò)程本身就是一種樂(lè)趣。
    總之,通過(guò)學(xué)習(xí)高等數(shù)學(xué)下冊(cè),我不僅在數(shù)學(xué)理論和應(yīng)用上有了更深入的了解和認(rèn)識(shí),也發(fā)現(xiàn)了邏輯思維和問(wèn)題解決能力在學(xué)習(xí)和工作中的重要性,培養(yǎng)了數(shù)學(xué)抽象和建模能力,增強(qiáng)了數(shù)學(xué)與實(shí)際問(wèn)題之間的聯(lián)系,同時(shí)也感受到了數(shù)學(xué)學(xué)習(xí)的樂(lè)趣和成就感。這些都使我對(duì)高等數(shù)學(xué)下冊(cè)留下了深刻的印象和珍貴的回憶。我相信,通過(guò)對(duì)高等數(shù)學(xué)下冊(cè)的學(xué)習(xí)和體會(huì),我將在今后的學(xué)習(xí)和工作中更好地運(yùn)用數(shù)學(xué),更好地解決各種實(shí)際問(wèn)題。
    對(duì)高等數(shù)學(xué)的體會(huì)篇八
    1.提前預(yù)習(xí):上課前抽出一個(gè)鐘或半個(gè)鐘的時(shí)間,預(yù)習(xí)一下要學(xué)習(xí)的東西,不明白的做筆記,帶著問(wèn)題有目的的聽(tīng)講。
    2.借助外部力量:可以借助一些輔導(dǎo)書(shū),習(xí)題冊(cè),幫助自己更好的理解。
    3.概念反復(fù)研究:概念性的知識(shí)缺乏直接的經(jīng)驗(yàn),因此需要反復(fù)的研究演練。
    4.數(shù)學(xué)語(yǔ)言:多練習(xí)運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行描述,數(shù)學(xué)語(yǔ)言是符號(hào)語(yǔ)言,簡(jiǎn)明準(zhǔn)確,自成體系,是數(shù)學(xué)思維的基礎(chǔ)。
    5.知識(shí)系統(tǒng)化:
    a.理脈絡(luò):極限思想貫穿高等數(shù)學(xué)始終,其它主要知識(shí)體系的建立、主要問(wèn)題的解決都依賴(lài)于它。
    b.知基礎(chǔ):例如,導(dǎo)數(shù)是微分的基礎(chǔ),牛頓—萊布尼茲公式是積分學(xué)的基礎(chǔ)。
    c.分層次:采用化歸的數(shù)學(xué)思想。例如,定積分、重積分、曲線(xiàn)積分、曲面積分等都是和式的極限,層層深入提高,而解題方法又都?xì)w結(jié)到不定積分的基礎(chǔ)上來(lái)。
    d.舉反例:例如,函數(shù)在某點(diǎn)的極限存在,而在該點(diǎn)處卻不連續(xù)。
    e.找特例:采用從特殊到一般的數(shù)學(xué)思想,再把特例中的條件更換為一般的條件,即可得出一般性的結(jié)論。
    f.明了知識(shí)的交叉點(diǎn):例如,微分學(xué)與解析幾何的某些知識(shí)點(diǎn)的結(jié)合,產(chǎn)生了微分幾何的初步知識(shí)—曲率、切線(xiàn)、切平面、法線(xiàn)、法平面等。
    g.幾何直觀:采用數(shù)形結(jié)合的數(shù)學(xué)思想,使抽象的函數(shù)關(guān)系變?yōu)樾蜗蟮膸缀螆D形,使概念、定理更易于理解和掌握。
    6.要適當(dāng)多做習(xí)題,注意積累解題經(jīng)驗(yàn),及時(shí)總結(jié):
    a.分題型:按數(shù)學(xué)思想及方法的不同分清不同題型,即可達(dá)到事半功倍的學(xué)習(xí)效果。
    b.重方法:注意平時(shí)做題方法的積累,例如,條件極值問(wèn)題和部分不等式的證明,引入輔助函數(shù)的方法。
    c.按步驟:根據(jù)步驟一步一步進(jìn)行解答,不要嫌麻煩,例如,求最值問(wèn)題。
    d.找規(guī)律:某些問(wèn)題可以按照一定的規(guī)律解決。
    對(duì)高等數(shù)學(xué)的體會(huì)篇九
    高等數(shù)學(xué)是大學(xué)必修課程之一,是數(shù)學(xué)學(xué)科的重要組成部分。在我小學(xué)和初中的數(shù)學(xué)課上,我一直都是數(shù)學(xué)的優(yōu)等生,但是對(duì)于高等數(shù)學(xué),我卻感到了困惑和挑戰(zhàn)。在大學(xué)一年級(jí)的時(shí)候,我開(kāi)始接觸高等數(shù)學(xué)課程,剛開(kāi)始覺(jué)得不太適應(yīng),因此在此期間感覺(jué)相當(dāng)壓抑。隨著時(shí)間的推移,我開(kāi)始更深入地研究這門(mén)學(xué)科,并嘗試各種不同的學(xué)習(xí)方法,以便提高自己的成績(jī)。最終,在經(jīng)過(guò)無(wú)數(shù)次的努力后,我克服了困難,考出了令人滿(mǎn)意的高等數(shù)學(xué)成績(jī)。
    第二段:回顧高等數(shù)學(xué)的考試經(jīng)驗(yàn)
    在學(xué)習(xí)高等數(shù)學(xué)的過(guò)程中,我不僅學(xué)到了許多知識(shí)和技能,也經(jīng)歷了很多考試。這些考試無(wú)疑是對(duì)我學(xué)習(xí)成果的檢驗(yàn),也讓我有機(jī)會(huì)去發(fā)現(xiàn)自己的弱點(diǎn),找到不足之處,并嘗試改進(jìn)和克服它們。另外,這些考試還讓我體會(huì)到了競(jìng)爭(zhēng)的壓力和緊張氣氛,這些因素都激發(fā)了我更深入地學(xué)習(xí)高等數(shù)學(xué)的熱情。
    第三段:總結(jié)高等數(shù)學(xué)的重要性
    高等數(shù)學(xué)的學(xué)習(xí)不僅僅關(guān)乎學(xué)習(xí)數(shù)學(xué)知識(shí),更重要的是培養(yǎng)了我學(xué)習(xí)的能力。在學(xué)習(xí)過(guò)程中,我不斷努力,練習(xí)思考和分析的能力,提高了自己的邏輯推理和解決問(wèn)題的能力。這些都是遠(yuǎn)遠(yuǎn)超出課程范圍的技能,對(duì)我的職業(yè)生涯和個(gè)人發(fā)展有著深遠(yuǎn)的影響。此外,學(xué)習(xí)高等數(shù)學(xué)還讓我感受到了知識(shí)的博大精深和對(duì)未知事物探索的熱情,這些元素也能夠?qū)ξ椅磥?lái)的發(fā)展起到重要的支持作用。
    第四段:點(diǎn)評(píng)吳昊的體會(huì)和經(jīng)驗(yàn)
    吳昊是我身邊一個(gè)優(yōu)秀的同學(xué),在高等數(shù)學(xué)的學(xué)習(xí)中他取得了出色的成績(jī)。他的學(xué)習(xí)經(jīng)驗(yàn)和體會(huì)也對(duì)我啟發(fā)和影響很大。從吳昊的學(xué)習(xí)經(jīng)驗(yàn)中,我們可以看到他在學(xué)習(xí)過(guò)程中非常注重理論知識(shí)的掌握和實(shí)踐能力的培養(yǎng)。而且,吳昊非常善于把理論知識(shí)和實(shí)踐技能有機(jī)結(jié)合起來(lái),不斷地總結(jié)和反思,從而實(shí)現(xiàn)了對(duì)高等數(shù)學(xué)的深入理解。這些學(xué)習(xí)方法和態(tài)度對(duì)我指引良多,讓我對(duì)高等數(shù)學(xué)的學(xué)習(xí)也有了更多的信心和動(dòng)力。
    第五段:思考未來(lái)發(fā)展方向
    在未來(lái)的學(xué)習(xí)過(guò)程中,我還需要不斷地探索和尋求新的機(jī)遇和挑戰(zhàn),以提高自己的學(xué)習(xí)能力和職業(yè)素養(yǎng)。高等數(shù)學(xué)作為一門(mén)必修課程,是培養(yǎng)我學(xué)習(xí)能力和解決問(wèn)題能力的重要途徑。在今后的學(xué)習(xí)和生活中,我將會(huì)更加努力和專(zhuān)注于高等數(shù)學(xué)的學(xué)習(xí),以完成自己的職業(yè)規(guī)劃和個(gè)人發(fā)展目標(biāo)。
    對(duì)高等數(shù)學(xué)的體會(huì)篇十
    作為一門(mén)數(shù)學(xué)專(zhuān)業(yè)的必修課程,高等數(shù)學(xué)對(duì)學(xué)生來(lái)說(shuō)并不易于掌握,需要在學(xué)習(xí)中不斷地消化吸收。而吳昊,則是一位對(duì)高等數(shù)學(xué)有深入研究,并且在教學(xué)中取得了較好成績(jī)的老師。因此,我們會(huì)特別關(guān)注吳昊的高等數(shù)學(xué)心得體會(huì),從中汲取經(jīng)驗(yàn),提高學(xué)習(xí)效率。
    第二段:心得體會(huì)一:高等數(shù)學(xué)需要系統(tǒng)性學(xué)習(xí)
    吳昊表示,高等數(shù)學(xué)知識(shí)體系龐雜,而且知識(shí)之間的聯(lián)系非常緊密。因此,學(xué)生需要先從系統(tǒng)性入手,掌握高等數(shù)學(xué)的整體框架和學(xué)習(xí)路線(xiàn)。在學(xué)習(xí)中要注意先后順序,不能掉以輕心,否則就會(huì)遇到迷失方向的情況。
    第三段:心得體會(huì)二:掌握基礎(chǔ)知識(shí)是關(guān)鍵
    高等數(shù)學(xué)中的每一個(gè)概念,都是建立在基礎(chǔ)之上的。如果基礎(chǔ)學(xué)習(xí)不扎實(shí),那么后期的學(xué)習(xí)也無(wú)從談起。因此,吳昊建議學(xué)生在學(xué)習(xí)高等數(shù)學(xué)之前,先重視基礎(chǔ)概念的學(xué)習(xí),鞏固數(shù)學(xué)的基礎(chǔ)知識(shí),才能更好地理解和掌握高等數(shù)學(xué)。
    第四段:心得體會(huì)三:靈活運(yùn)用解題思路
    高等數(shù)學(xué)中的問(wèn)題并不單一,其解題方法也需要靈活變通。吳昊提醒學(xué)生,在學(xué)習(xí)高等數(shù)學(xué)時(shí),不能僅僅停留在概念和公式的記憶,而應(yīng)該注重解決具體問(wèn)題的能力。在解題過(guò)程中,應(yīng)該運(yùn)用多種思路,靈活變換解題方法,從而提高解題的效率和準(zhǔn)確性。
    第五段:結(jié)尾及總結(jié)
    高等數(shù)學(xué)在數(shù)學(xué)專(zhuān)業(yè)中占據(jù)著重要的地位,不僅有助于理論的研究,還能為工程應(yīng)用提供數(shù)學(xué)依據(jù)。吳昊的高等數(shù)學(xué)心得體會(huì)不僅是學(xué)生能夠?qū)W好高等數(shù)學(xué)的經(jīng)驗(yàn)之談,也能幫助教師對(duì)高等數(shù)學(xué)教學(xué)的優(yōu)化。通過(guò)吳昊的經(jīng)驗(yàn)與體會(huì),我們可以更加準(zhǔn)確地把握高等數(shù)學(xué)的學(xué)習(xí)方向,提高學(xué)習(xí)效率,做好學(xué)科的拓展與深化。
    對(duì)高等數(shù)學(xué)的體會(huì)篇十一
    高等數(shù)學(xué)是大學(xué)重要的數(shù)學(xué)基礎(chǔ)課程,涉及到微積分、線(xiàn)性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)等多個(gè)學(xué)科領(lǐng)域,為學(xué)生的數(shù)學(xué)素養(yǎng)和綜合能力的提高帶來(lái)了巨大的幫助。如今,我已經(jīng)學(xué)習(xí)高等數(shù)學(xué)一年多,并考取了高分。在學(xué)習(xí)中,我積累了一些心得體會(huì),現(xiàn)在愿意分享給大家。
    一、認(rèn)真理解概念
    高等數(shù)學(xué)中包含了大量的數(shù)學(xué)概念,這些概念是該學(xué)科的基礎(chǔ)。我們要經(jīng)常復(fù)習(xí)、深刻理解這些概念,才能更好地庖闡數(shù)學(xué)原理,推導(dǎo)出數(shù)學(xué)公式。對(duì)于某些難以理解的概念,可以尋找一些相關(guān)的實(shí)例進(jìn)行解釋?zhuān)蛘吆屯瑢W(xué)一起討論,共同掌握這些概念,這樣才能更好地理解后面的內(nèi)容。
    二、透徹掌握習(xí)題
    高等數(shù)學(xué)的習(xí)題類(lèi)型較多,需要我們不斷地練習(xí),從而鞏固和提高自己的掌握程度。在做習(xí)題時(shí),我們要遵循“由易到難”的原則,先做容易的,逐漸增加難度,提升自身的解題水平。做題時(shí),也要注意拓展視野,不要僅局限于老師講授的范圍,多嘗試一些新的方法和角度。
    三、整合思維方式
    高等數(shù)學(xué)的學(xué)習(xí)需要我們具有一定的數(shù)學(xué)思維能力,這也是高等數(shù)學(xué)和初等數(shù)學(xué)一份四的區(qū)別所在。在學(xué)習(xí)中,我們要注重培養(yǎng)自己的數(shù)學(xué)思考能力,學(xué)會(huì)用多種方式解決一道問(wèn)題,整合不同的思維方式,拓展自己的思路。這種能力的培養(yǎng)要靠平時(shí)的訓(xùn)練,結(jié)合習(xí)題、考試和解題課等多種形式進(jìn)行。
    四、注重細(xì)節(jié)處理
    在高等數(shù)學(xué)課程中,一個(gè)小小的細(xì)節(jié)往往決定著整道題的成敗。因此,在學(xué)習(xí)高等數(shù)學(xué)時(shí),我們必須將注意力集中在題目的細(xì)節(jié)上,嚴(yán)謹(jǐn)?shù)貙?duì)待每一步計(jì)算,避免出現(xiàn)計(jì)算錯(cuò)誤。同時(shí),在做習(xí)題和考試時(shí),我們也要注意填寫(xiě)卷面和計(jì)算器的使用規(guī)范,這樣才能避免走彎路,保證高分通過(guò)。
    五、多方面尋求幫助
    高等數(shù)學(xué)作為一門(mén)比較重要的基礎(chǔ)課程,難度比較大,我們學(xué)習(xí)中難免會(huì)遇到困難。遇到問(wèn)題時(shí),我們應(yīng)該多方面尋求幫助,可以找老師、同學(xué)或者其他渠道,與他人交流和探討,相互幫助提高解決問(wèn)題的能力。此外,也要注重查找有關(guān)的參考書(shū)籍和一些網(wǎng)上的研究綜述,引領(lǐng)自己更快地掌握課程要點(diǎn)。
    總之,高等數(shù)學(xué)雖然難,但只要認(rèn)真刻苦,多方尋求幫助,注重方向且扎實(shí)整合思維方式,嚴(yán)謹(jǐn)處理學(xué)習(xí)細(xì)節(jié),逐漸提升自己的數(shù)學(xué)素養(yǎng)和思維能力,就可以取得好成績(jī),為自己的學(xué)業(yè)和未來(lái)的發(fā)展提供堅(jiān)實(shí)的保障。
    對(duì)高等數(shù)學(xué)的體會(huì)篇十二
    【摘 要】本文根據(jù)筆者自身的教學(xué)經(jīng)驗(yàn),提出大學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)存在認(rèn)為學(xué)習(xí)高等數(shù)學(xué)沒(méi)有用、學(xué)也學(xué)不會(huì)、學(xué)習(xí)思維定式三大誤區(qū),并針對(duì)三大誤區(qū)提出端正學(xué)習(xí)態(tài)度、激發(fā)學(xué)生學(xué)習(xí)興趣、提高教師自身素質(zhì)、創(chuàng)新教師教學(xué)方法、建立良好的師生關(guān)系等方法,從而提高高等數(shù)學(xué)教學(xué)質(zhì)量,改善教學(xué)效果。
    【關(guān)鍵詞】高等數(shù)學(xué)教學(xué);教學(xué)質(zhì)量;心得體會(huì)
    高等數(shù)學(xué)作為理工科大學(xué)生的一門(mén)必修的基礎(chǔ)課,具有高度的抽象性、嚴(yán)密的邏輯性和廣泛的應(yīng)用性的特點(diǎn),可以培養(yǎng)學(xué)生的抽象概括能力、邏輯思維能力、解決分析問(wèn)題的能力,對(duì)科技進(jìn)步也起著基礎(chǔ)性推動(dòng)作用。隨著國(guó)家高等教育從精英型轉(zhuǎn)入大眾型,學(xué)生素質(zhì)呈下降趨勢(shì),大部分學(xué)生在學(xué)習(xí)高等數(shù)學(xué)時(shí)感到困難,從而提高高等數(shù)學(xué)教學(xué)質(zhì)量、改革高等數(shù)學(xué)教育教學(xué)方法已成為一個(gè)亟需解決的問(wèn)題。
    1 高等數(shù)學(xué)教學(xué)中學(xué)生存在的誤區(qū)
    1.1 誤區(qū)一很多學(xué)生認(rèn)為學(xué)數(shù)學(xué)沒(méi)有用
    高中階段學(xué)生已經(jīng)接觸到了高等數(shù)學(xué)中比較簡(jiǎn)單的極限、導(dǎo)數(shù)、定積分,但沒(méi)有深入學(xué)習(xí)其概念、定義,高考也只是考了一點(diǎn)點(diǎn),學(xué)生認(rèn)為自己掌握了高等數(shù)學(xué)的知識(shí),再學(xué)了也沒(méi)有什幺用,在將來(lái)實(shí)際工作中也用不到數(shù)學(xué)。
    1.2 誤區(qū)二高等數(shù)學(xué)具有很高的抽象性,很多學(xué)生覺(jué)得學(xué)也學(xué)不會(huì)
    現(xiàn)在學(xué)生不愿意動(dòng)腦、動(dòng)筆,碰到題目就在想答案。往往因?yàn)榇髮W(xué)的高數(shù)題運(yùn)算步驟比較多,想是想不出來(lái)的,不動(dòng)筆又不畫(huà)圖,學(xué)生坐一會(huì)就有點(diǎn)困了,自然就認(rèn)為高等數(shù)學(xué)非常難。
    1.3 誤區(qū)三學(xué)生習(xí)慣于用中學(xué)的思維來(lái)解題
    很多學(xué)生學(xué)習(xí)數(shù)學(xué)的一些簡(jiǎn)單想法就是來(lái)解數(shù)學(xué)題,愿意用中學(xué)的方法去解決高等數(shù)學(xué)里的題目,只要能做出答案就行。在這種思想的影響下,不愿意去掌握定義、定理,做題少步驟或只有答案,但是有的題目肯本做不出來(lái)。隨著學(xué)習(xí)的深入學(xué)生發(fā)現(xiàn)題目越來(lái)越不會(huì)做。
    2 提高高等數(shù)學(xué)教學(xué)質(zhì)量的方法
    2.1 端正學(xué)生學(xué)習(xí)態(tài)度
    許多同學(xué)認(rèn)為,考上大學(xué)就可以放松了,自我要求標(biāo)準(zhǔn)降低了。只有有了明確的學(xué)習(xí)目標(biāo),端正學(xué)習(xí)態(tài)度,才能增加學(xué)習(xí)高等數(shù)學(xué)的動(dòng)力。教師要以身作則,這要求教師熱愛(ài)數(shù)學(xué),對(duì)每節(jié)課都要以飽滿(mǎn)的激情、對(duì)數(shù)學(xué)美的無(wú)限欣賞呈現(xiàn)在學(xué)生面前,教師積極地態(tài)度從而感染學(xué)生學(xué)習(xí)高等數(shù)學(xué)的熱情。部分同學(xué)在應(yīng)試教育的影響下,應(yīng)經(jīng)形成了消極的數(shù)學(xué)態(tài)度,教師還應(yīng)該全方位、多角度扭轉(zhuǎn)學(xué)生學(xué)習(xí)態(tài)度,如課下談心談話(huà)、建立互助興趣小組、“一對(duì)一”結(jié)對(duì)子等方法,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的動(dòng)力。端正學(xué)生的學(xué)習(xí)態(tài)度首先從數(shù)學(xué)字母的寫(xiě)法、發(fā)信做起,很多學(xué)生古希臘字母不會(huì)寫(xiě)也不會(huì)讀,上課多練習(xí)幾遍,老師在做題過(guò)程中要注重解題的每一步驟,告訴學(xué)生每一步驟的重要性,做題中感受數(shù)學(xué)題的美。
    2.2 激發(fā)學(xué)生學(xué)習(xí)興趣
    興趣是最好的老師,只有有了學(xué)習(xí)高等數(shù)學(xué)的興趣,學(xué)生才有了學(xué)習(xí)動(dòng)力。在教學(xué)過(guò)程中,可以穿插一些關(guān)于數(shù)學(xué)的歷史,數(shù)學(xué)家的故事,數(shù)學(xué)文化,來(lái)激發(fā)學(xué)生的興趣。如定積分的講解時(shí),自然引入牛頓、萊布尼茨兩位數(shù)學(xué)家的故事。教師在課堂講解時(shí),把抽象的問(wèn)題具體化,通過(guò)幾何畫(huà)圖提高學(xué)生的理解能力,這樣學(xué)生才更容易接受。
    2.3 提高教師自身素質(zhì)
    教師是課堂教育的主導(dǎo)者,是良好課堂氛圍的主要營(yíng)造者,要想學(xué)生緊跟教師講課的思路,教師必須具有良好的人格魅力和深厚的專(zhuān)業(yè)功底。這就要求教師一方面要提高自身的文化底蘊(yùn),多讀一些與另一方面刻苦專(zhuān)研專(zhuān)業(yè)知識(shí)、完善知識(shí)結(jié)構(gòu)、提高教育教學(xué)能力,只有做到這樣,教師的課堂教育才能吸引學(xué)生,課下學(xué)生才愿意并主動(dòng)與教師交流、溝通。教師在上課的時(shí)候要身體力行,做題要在步驟上下功夫,解釋每一步驟的重要性,既要用最少的步驟把題做完,又要講解每一步驟的重要性。這樣雖然浪費(fèi)了一點(diǎn)時(shí)間,但是學(xué)生還是會(huì)做的,同時(shí)學(xué)生也得到了怎樣去做題以及真正的理解數(shù)學(xué)題,并從中發(fā)現(xiàn)數(shù)學(xué)美,時(shí)間長(zhǎng)了能培養(yǎng)學(xué)生良好的數(shù)學(xué)興趣、數(shù)學(xué)能力和創(chuàng)新能力。對(duì)所講授的課程要有深入的了解,知識(shí)的內(nèi)在聯(lián)系及在學(xué)生專(zhuān)業(yè)上的應(yīng)用要有所了解,可以給學(xué)生提一提,以便引起學(xué)生足夠的重視。
    2.4 創(chuàng)新教師教學(xué)方法
    2.5 建立良好的師生關(guān)系
    在教育教學(xué)活動(dòng)中,良好的師生關(guān)系是保證教育效果和質(zhì)量的前提。新時(shí)代的大學(xué)生具有自我意識(shí)強(qiáng),個(gè)性張揚(yáng)等特點(diǎn),要提高課堂教育效果,必須建立良好的師生關(guān)系。只有師生間相互了解、相互尊重、相互賞識(shí),把教學(xué)過(guò)程看做是教師與學(xué)生的交流、交往過(guò)程,才能建立輕松、和諧的課堂氛圍,從而才能提高課堂教育效果和教學(xué)質(zhì)量。教師在教學(xué)的過(guò)程中,要學(xué)會(huì)換位思考,站在學(xué)生的角度估計(jì)講授問(wèn)題的難易程度。對(duì)學(xué)生容易出錯(cuò)或者經(jīng)常犯錯(cuò)誤的地方,上課要強(qiáng)調(diào)知識(shí)的重要性,舉例說(shuō)明讓學(xué)生理解知識(shí)點(diǎn)及了解出錯(cuò)的原因。
    2.6 重視作業(yè)中存在的問(wèn)題
    作業(yè)是學(xué)生學(xué)習(xí)知識(shí)好壞的一面鏡子,雖然現(xiàn)在學(xué)生有抄襲作業(yè)的現(xiàn)象,但是大部分學(xué)生還是自己做作業(yè)。從作業(yè)中可以看出學(xué)生對(duì)知識(shí)掌握的程度,沒(méi)掌握好的話(huà),想辦法用最簡(jiǎn)單的題目來(lái)說(shuō)明問(wèn)題。也許作業(yè)有可能做的非常好,這就要求教師對(duì)知識(shí)有很好的理解,對(duì)學(xué)生容易出錯(cuò)的地方,上課時(shí)可以提問(wèn)學(xué)生做過(guò)的題目或者讓學(xué)生課前上黑板重新做。這樣一學(xué)期下來(lái),學(xué)生對(duì)難點(diǎn)重點(diǎn)會(huì)掌握的很好,考試成績(jī)自然會(huì)很好,同時(shí)對(duì)高等數(shù)學(xué)理解的程度也會(huì)很高。學(xué)生取得了好的成績(jī),對(duì)高等數(shù)學(xué)了解的多了,自然對(duì)高等數(shù)學(xué)學(xué)習(xí)興趣提高了。在以后的學(xué)習(xí)過(guò)程中,自然會(huì)對(duì)各種數(shù)學(xué)課更加努力的去學(xué)習(xí),從而對(duì)其本專(zhuān)業(yè)課也起到了很好的促進(jìn)作用。最終學(xué)生會(huì)發(fā)現(xiàn)大學(xué)生活是非??鞓?lè)的,學(xué)到了很多知識(shí),學(xué)校也培養(yǎng)出了合格的大學(xué)生。
    【參考文獻(xiàn)】
    對(duì)高等數(shù)學(xué)的體會(huì)篇十三
    不是誤導(dǎo)大家武漢大學(xué)的教科書(shū)實(shí)在是很難理解,兩本加起來(lái)足是一本字典,是編者賣(mài)弄的園地,所以強(qiáng)烈建議不要和此書(shū)叫板,我曾試過(guò)一年完全是浪費(fèi)時(shí)間,即使有同學(xué)看懂了,但仍難以對(duì)付實(shí)戰(zhàn)。
    我的建議是以戰(zhàn)致戰(zhàn),就是通過(guò)做歷年的考試題的方法順利通過(guò)考試。此法花費(fèi)時(shí)間極小,但可以獲得很大的收益,從經(jīng)濟(jì)的角度講就是效益最大化。
    具體實(shí)施方法:
    首先,高高興興的將書(shū)撕碎,優(yōu)點(diǎn)有三:1)不給自己浪費(fèi)時(shí)間的機(jī)會(huì)。2)建立此戰(zhàn)必勝的信心。3)心情將更加愉悅。
    其次:把各年試卷及答案]收集齊,網(wǎng)上不難找到,書(shū)店中也可買(mǎi)到。實(shí)在不行我給你個(gè)網(wǎng)址。強(qiáng)烈建議從1997年下半年到20xx年上半年共十套試卷,這套模擬題就是葵花寶典,沒(méi)事就做吧,一遍不行,至少十遍,知道答案不行,必須要知道過(guò)程。當(dāng)你做到第三遍時(shí)你就會(huì)發(fā)現(xiàn)所有試卷的共同之處,每年的試題是等的相似。第五遍第七遍時(shí),你就會(huì)因?yàn)檎也坏讲粫?huì)的題而痛苦萬(wàn)分。
    最后,是考前不用動(dòng)筆用腦看題非常快的看上3遍,一個(gè)框架會(huì)產(chǎn)生在你的大腦中。合格證對(duì)于你來(lái)說(shuō),已經(jīng)成了一張名片,伸手就拿!
    20xx年,在今年進(jìn)行新的考試。相信要在今年自考的廣大群體以進(jìn)入了金鑼彌補(bǔ)的準(zhǔn)備當(dāng)中,小編也會(huì)更多的發(fā)布一些相關(guān)信息希望可以為您提供到幫助。
    對(duì)高等數(shù)學(xué)的體會(huì)篇十四
    第一段:學(xué)習(xí)動(dòng)機(jī)與目標(biāo)(引言)
    高等數(shù)學(xué)是一門(mén)對(duì)于大部分大學(xué)生來(lái)說(shuō)充滿(mǎn)挑戰(zhàn)的學(xué)科。作為一名大學(xué)生,我對(duì)高等數(shù)學(xué)學(xué)習(xí)非常重視,因?yàn)樗俏覍?zhuān)業(yè)學(xué)習(xí)的基礎(chǔ)課程之一。在學(xué)習(xí)高等數(shù)學(xué)的過(guò)程中,我經(jīng)歷了許多辛苦和困惑,但也從中收獲了很多。在這篇文章中,我將與大家分享我的高等數(shù)學(xué)學(xué)習(xí)心得體會(huì)。
    第二段:規(guī)劃和時(shí)間管理(學(xué)習(xí)方法和技巧)
    在面對(duì)高等數(shù)學(xué)這門(mén)課程時(shí),我意識(shí)到規(guī)劃和時(shí)間管理是非常重要的。高等數(shù)學(xué)包含了大量的知識(shí)點(diǎn)和公式,因此我制定了一個(gè)學(xué)習(xí)計(jì)劃,將每個(gè)知識(shí)點(diǎn)分配到不同的時(shí)間段,并給自己留出足夠的時(shí)間進(jìn)行復(fù)習(xí)和鞏固。我還學(xué)會(huì)了合理安排每天的學(xué)習(xí)時(shí)間,將重點(diǎn)放在疑難問(wèn)題上,以便更好地掌握知識(shí)。
    第三段:找到適合自己的學(xué)習(xí)方式(學(xué)習(xí)方法和技巧)
    在高等數(shù)學(xué)學(xué)習(xí)的過(guò)程中,我發(fā)現(xiàn)找到適合自己的學(xué)習(xí)方式能夠提高學(xué)習(xí)效果。有些人更適合通過(guò)聽(tīng)講座和課堂上的互動(dòng)來(lái)學(xué)習(xí),而我更喜歡通過(guò)自學(xué)和解題來(lái)掌握知識(shí)。我經(jīng)常和同學(xué)們一起組隊(duì)討論問(wèn)題,通過(guò)交流和互幫互助來(lái)解決難題。這種學(xué)習(xí)方式不僅鞏固了我的知識(shí),還提高了我的解題能力和思維靈活性。
    第四段:克服困難與堅(jiān)持學(xué)習(xí)(學(xué)習(xí)態(tài)度與人生觀)
    高等數(shù)學(xué)是一門(mén)需要耐心和恒心的學(xué)科。在學(xué)習(xí)過(guò)程中,我遇到了許多困難和挫折,但我相信只要堅(jiān)持下去,就一定能夠克服這些困難并取得好成績(jī)。我時(shí)常重復(fù)著“努力就會(huì)有回報(bào)”的信念,堅(jiān)持每天都學(xué)習(xí)一段時(shí)間高等數(shù)學(xué),無(wú)論是通過(guò)自學(xué)、參加輔導(dǎo)班或向老師請(qǐng)教,我都不放棄任何機(jī)會(huì)來(lái)提高自己的數(shù)學(xué)水平。
    第五段:從高等數(shù)學(xué)中的應(yīng)用反思(學(xué)科價(jià)值與人生思考)
    通過(guò)學(xué)習(xí)高等數(shù)學(xué),我不僅掌握了數(shù)學(xué)知識(shí),更培養(yǎng)了自己的邏輯思維和問(wèn)題解決能力。高等數(shù)學(xué)課程中的許多概念和方法在實(shí)際生活中都有廣泛的應(yīng)用。數(shù)學(xué)是一門(mén)實(shí)用的學(xué)科,它不僅幫助我們理解世界的運(yùn)作方式,還能培養(yǎng)我們的邏輯思維和抽象思維能力。通過(guò)高等數(shù)學(xué)的學(xué)習(xí),我深深體會(huì)到數(shù)學(xué)不僅僅是個(gè)工具,更是一門(mén)能夠引導(dǎo)我們思考和解決問(wèn)題的科學(xué)。
    總結(jié):
    通過(guò)高等數(shù)學(xué)的學(xué)習(xí),我不僅掌握了基本概念和方法,也培養(yǎng)了自己的學(xué)習(xí)方法和態(tài)度。我發(fā)現(xiàn)規(guī)劃和時(shí)間管理對(duì)于高等數(shù)學(xué)學(xué)習(xí)非常重要,找到適合自己的學(xué)習(xí)方式能夠提高學(xué)習(xí)效果。在困難和挫折面前要堅(jiān)持學(xué)習(xí),相信努力會(huì)有回報(bào)。最重要的是,高等數(shù)學(xué)的學(xué)習(xí)不僅可以提高我們的數(shù)學(xué)水平,還能幫助我們培養(yǎng)邏輯思維和解決問(wèn)題的能力。通過(guò)高等數(shù)學(xué)的學(xué)習(xí),我對(duì)數(shù)學(xué)這門(mén)學(xué)科有了更深入的理解,也對(duì)自己的學(xué)習(xí)和未來(lái)充滿(mǎn)了信心。
    對(duì)高等數(shù)學(xué)的體會(huì)篇十五
    第一段:引言(150字)
    在大學(xué)學(xué)習(xí)期間,高等數(shù)學(xué)是我們無(wú)法回避的一門(mén)課程。對(duì)于許多學(xué)生來(lái)說(shuō),高等數(shù)學(xué)可能是他們第一次接觸到抽象的數(shù)學(xué)概念和復(fù)雜的數(shù)學(xué)運(yùn)算。然而,通過(guò)數(shù)學(xué)家和教育家的不斷努力,高等數(shù)學(xué)正在變得越來(lái)越有趣和易于理解。在我個(gè)人的學(xué)習(xí)過(guò)程中,我逐漸領(lǐng)悟到高等數(shù)學(xué)的重要性和應(yīng)用場(chǎng)景,并從中獲得了許多寶貴的經(jīng)驗(yàn)和體會(huì)。
    第二段:興趣驅(qū)動(dòng)學(xué)習(xí)(250字)
    我發(fā)現(xiàn),對(duì)于高等數(shù)學(xué)的學(xué)習(xí)來(lái)說(shuō),培養(yǎng)興趣是至關(guān)重要的。在開(kāi)始學(xué)習(xí)高等數(shù)學(xué)之前,我對(duì)這門(mén)課程沒(méi)有太多的期待。然而,通過(guò)與教師的互動(dòng)和進(jìn)一步的研究,我開(kāi)始意識(shí)到高等數(shù)學(xué)是一門(mén)實(shí)際應(yīng)用廣泛且充滿(mǎn)挑戰(zhàn)的學(xué)科。我發(fā)現(xiàn)高等數(shù)學(xué)在物理、經(jīng)濟(jì)學(xué)甚至金融學(xué)中都起著重要的作用,并且具有許多實(shí)用性的應(yīng)用。為了更好地理解和應(yīng)用高等數(shù)學(xué)的知識(shí),我主動(dòng)參加數(shù)學(xué)建模和實(shí)驗(yàn)課程,并且積極加入數(shù)學(xué)學(xué)術(shù)團(tuán)隊(duì)。通過(guò)這些課程和團(tuán)隊(duì)活動(dòng),我發(fā)現(xiàn)高等數(shù)學(xué)能夠幫助我們解決實(shí)際問(wèn)題,并且在現(xiàn)實(shí)生活中起到重要的作用。
    第三段:實(shí)踐驅(qū)動(dòng)理論(250字)
    在高等數(shù)學(xué)的學(xué)習(xí)過(guò)程中,我體會(huì)到實(shí)踐是鞏固理論知識(shí)的重要手段。通過(guò)解決一系列的習(xí)題和實(shí)際問(wèn)題,我逐漸運(yùn)用所學(xué)的數(shù)學(xué)方法來(lái)解決復(fù)雜的問(wèn)題。并在此過(guò)程中體會(huì)到從紙上計(jì)算到實(shí)際應(yīng)用的轉(zhuǎn)換。在學(xué)習(xí)微積分時(shí),我除了翻閱課本上的例題和習(xí)題外,還多次利用數(shù)學(xué)軟件進(jìn)行計(jì)算和模擬,并嘗試將所學(xué)的理論用于解決實(shí)際問(wèn)題。通過(guò)這樣的實(shí)踐過(guò)程,我不僅加深了對(duì)高等數(shù)學(xué)理論的理解,還培養(yǎng)了解決實(shí)際問(wèn)題的能力。
    第四段:提升邏輯思維(250字)
    高等數(shù)學(xué)的學(xué)習(xí)讓我逐漸鍛煉了邏輯思維能力。通過(guò)學(xué)習(xí)證明方法、推理規(guī)則以及數(shù)學(xué)定理等知識(shí),我逐漸培養(yǎng)了嚴(yán)密的邏輯思維和分析問(wèn)題的能力。高等數(shù)學(xué)課程中的證明過(guò)程迫使我們思考每一個(gè)步驟的合理性和正確性,并提出自己的證明思路。這種思考方式使我從中受益匪淺,不僅在數(shù)學(xué)領(lǐng)域受益,還在其他學(xué)科中應(yīng)用中受益。
    第五段:結(jié)語(yǔ)(300字)
    通過(guò)高等數(shù)學(xué)的學(xué)習(xí),我逐漸發(fā)現(xiàn)抽象的數(shù)學(xué)世界與現(xiàn)實(shí)生活是息息相關(guān)的。高等數(shù)學(xué)的學(xué)習(xí)讓我在思維、邏輯、實(shí)踐等多個(gè)方面得到了全面的提升。通過(guò)在數(shù)學(xué)領(lǐng)域中的探索與研究,我重新定義了對(duì)于高等數(shù)學(xué)這門(mén)課程的認(rèn)知,并且樹(shù)立起全新的目標(biāo)和動(dòng)力。高等數(shù)學(xué)不僅僅是為了通過(guò)考試,更是培養(yǎng)我們終身學(xué)習(xí)的能力和思維方式的橋梁。在未來(lái)的學(xué)習(xí)和工作中,我相信高等數(shù)學(xué)所賦予的知識(shí)和能力會(huì)繼續(xù)對(duì)我產(chǎn)生重大影響。因此,我會(huì)繼續(xù)努力學(xué)習(xí)高等數(shù)學(xué),并將所學(xué)應(yīng)用于實(shí)際生活中,為現(xiàn)實(shí)問(wèn)題的解決提供更多有益的思考和方法。
    對(duì)高等數(shù)學(xué)的體會(huì)篇十六
    俗話(huà)說(shuō),熟能生巧。練習(xí)做多了,看到類(lèi)似的問(wèn)題就能輕松應(yīng)付,對(duì)癥下藥。在做練習(xí)時(shí),要清楚每一步的思路,上一步為什么會(huì)得到下一步,都要了如指掌。對(duì)不懂的問(wèn)題一定要問(wèn)。說(shuō)到問(wèn),陶行知先生說(shuō)過(guò):“發(fā)明千千萬(wàn),起點(diǎn)在一問(wèn)?!睂W(xué)數(shù)學(xué)也是一樣,一定要多動(dòng)手,動(dòng)口。在動(dòng)口之前要先學(xué)會(huì)思考,因?yàn)樗伎剂瞬艜?huì)有問(wèn)題可問(wèn)。不要以為思考是那些做學(xué)問(wèn)的學(xué)者們的專(zhuān)利,只要是有思想的人,任何人都可以步入思考的行列。只有在不斷思考探求中才能充實(shí)自己的大腦。當(dāng)然也要避免盲目做習(xí)題,改變中學(xué)時(shí)期“只知道做題”的習(xí)慣。要獨(dú)立思考,不要做太多的難題、偏題。另外要注意數(shù)學(xué)語(yǔ)言表述的正確性,論證的嚴(yán)密性,養(yǎng)成一種科學(xué)嚴(yán)謹(jǐn)?shù)乃季S習(xí)慣。
    對(duì)高等數(shù)學(xué)的體會(huì)篇十七
    數(shù)學(xué)中有很多概念。概念反映的是事物的本質(zhì),弄清楚了它是如何定義的、有什么性質(zhì),才能真正地理解一個(gè)概念。所有的問(wèn)題都在理解的基礎(chǔ)上才能做好。
    第二,要掌握定理。
    定理是一個(gè)正確的命題,分為條件和結(jié)論兩部分。對(duì)于定理除了要掌握它的條件和結(jié)論以外,還要搞清它的適用范圍,做到有的放矢。
    第三,在弄懂例題的基礎(chǔ)上作適量的習(xí)題。
    要特別提醒學(xué)習(xí)者的是,課本上的例題都是很典型的,有助于理解概念和掌握定理,要注意不同例題的特點(diǎn)和解法在理解例題的基礎(chǔ)上作適量的習(xí)題。作題時(shí)要善于總結(jié)——不僅總結(jié)方法,也要總結(jié)錯(cuò)誤。這樣,作完之后才會(huì)有所收獲,才能舉一反三。
    第四,理清脈絡(luò)。
    要對(duì)所學(xué)的知識(shí)有個(gè)整體的把握,及時(shí)總結(jié)知識(shí)體系,這樣不僅可以加深對(duì)知識(shí)的理解,還會(huì)對(duì)進(jìn)一步的學(xué)習(xí)有所幫助。
    高等數(shù)學(xué)中包括微積分和立體解析幾何,級(jí)數(shù)和常微分方程。其中尤以微積分的內(nèi)容最為系統(tǒng)且在其他課程中有廣泛的應(yīng)用。微積分的理論,是由牛頓和萊布尼茨完成的。(當(dāng)然在他們之前就已有微積分的應(yīng)用,但不夠系統(tǒng))。
    數(shù)學(xué)備考一定要有一個(gè)復(fù)習(xí)時(shí)間表,也就是要有一個(gè)周密可行的計(jì)劃。按照計(jì)劃,循序漸進(jìn),切忌搞突擊,臨時(shí)抱佛腳。其實(shí)數(shù)學(xué)是基礎(chǔ)性學(xué)科,解題能力的提高,是一個(gè)長(zhǎng)期積累的過(guò)程,因而復(fù)習(xí)時(shí)間就應(yīng)適當(dāng)提前,循序漸進(jìn)。大致在三、四月分開(kāi)始著手進(jìn)行復(fù)習(xí),如果數(shù)學(xué)基礎(chǔ)差可以將復(fù)習(xí)的時(shí)間適當(dāng)提前。復(fù)習(xí)一定要有一個(gè)可行的計(jì)劃,通過(guò)計(jì)劃保證復(fù)習(xí)的進(jìn)度和效果。一般可以將復(fù)習(xí)分成四個(gè)階段,每個(gè)階段的起止時(shí)間和所要完成的任務(wù)考生應(yīng)給予明確規(guī)定,以保證計(jì)劃的可行性。第一個(gè)階段是按照考試大綱劃分復(fù)習(xí)范圍,在熟悉大綱的基礎(chǔ)上對(duì)考試必備的基礎(chǔ)知識(shí)進(jìn)行系統(tǒng)的復(fù)習(xí),了解考研數(shù)學(xué)的基本內(nèi)容、重點(diǎn)、難點(diǎn)和特點(diǎn)。這個(gè)時(shí)間段一般劃定為六月前。第二個(gè)階段是在第一階段的基礎(chǔ)上,做一定數(shù)量的題,重點(diǎn)解決解題思路的問(wèn)題。一般從七月到十月。這個(gè)階段要注意歸納總結(jié),即拿到題后要知道從什么角度,可以分幾步去求解,每道題并不要求都要寫(xiě)出完整步驟,只要思路有了,運(yùn)算過(guò)程會(huì)做了,可以視情況而靈活掌握,這樣省出時(shí)間來(lái)看更多的題。所選試題可以是歷年真題,也可以是書(shū)上的練習(xí)題,但真題一定要做,而且要嚴(yán)格按照實(shí)考的要求去做,把握真題的特點(diǎn)和解題思路及運(yùn)算步驟。第三個(gè)階段是實(shí)戰(zhàn)訓(xùn)練階段,從十一月到十二月的中旬,這也是臨考前非常重要的階段??忌獙?duì)大綱所要求的知識(shí)點(diǎn)做最后的梳理,熟記公式,系統(tǒng)地做幾套模擬試卷,進(jìn)行實(shí)戰(zhàn)訓(xùn)練,自測(cè)復(fù)習(xí)成果。在做模擬題前先要系統(tǒng)記憶掌握基本公式,做題要講究質(zhì)量,既要有速度,又要有嚴(yán)格的步驟、格式和計(jì)算的準(zhǔn)確性。最后階段是考前沖刺,從十二月下旬到考試。針對(duì)在做模擬試題過(guò)程中出現(xiàn)的問(wèn)題作最后的補(bǔ)習(xí),查缺補(bǔ)漏,以便以的狀態(tài)參加考試。學(xué)好數(shù)學(xué)是一個(gè)長(zhǎng)期的過(guò)程,來(lái)不得半點(diǎn)的投機(jī)取巧,所以考前突擊,臨時(shí)抱佛腳的做法是不足取的,只有按照自己的計(jì)劃,踏踏實(shí)實(shí)的進(jìn)行準(zhǔn)備,才能以不變應(yīng)萬(wàn)變,只要自己的綜合能力提高了,不管考試如何變化,都能取得好的成績(jī)。
    數(shù)學(xué)的學(xué)習(xí)一定要每天都有個(gè)進(jìn)度,每天都要有題量,我們不應(yīng)該搞題海戰(zhàn)術(shù),但是通過(guò)做題提高實(shí)戰(zhàn)經(jīng)驗(yàn)也是必須的,首先有個(gè)大的學(xué)習(xí)框架,然后計(jì)劃到每天,怎么去學(xué)習(xí),每天做那方面的題,定期的查漏補(bǔ)缺,這樣的學(xué)習(xí)才真正的有效果。
    在高等教育自學(xué)考試的很多專(zhuān)業(yè)中,很多都有高等數(shù)學(xué)課程。很多考生反映,高等數(shù)學(xué)(一)通過(guò)非常難,林士中老師所教授的高等數(shù)學(xué)課程一直受到廣大網(wǎng)校學(xué)員的好評(píng)。在授課之余,林教授傳授了通過(guò)高數(shù)的訣竅。他說(shuō),在學(xué)習(xí)高數(shù)(一)之前,首先你要打好基礎(chǔ),把初中的數(shù)學(xué)補(bǔ)回來(lái),再參加這兩門(mén)課程的考試就好的多。
    林士中:我對(duì)同學(xué)了解的情況,一種是原來(lái)中學(xué)學(xué)的初等知識(shí)掌握太少,高等數(shù)學(xué)沒(méi)有用大量的初等數(shù)學(xué)知識(shí),但是要用一部分的知識(shí)。有些同學(xué)不是高等數(shù)學(xué)知識(shí)沒(méi)掌握好,主要是初等數(shù)學(xué)知識(shí)不夠數(shù)量,或者掌握太少,變形變不過(guò)來(lái),這樣就算你知道高等數(shù)學(xué),但是初等掌握不好,考試肯定會(huì)遇到一定困難。如果你是初等數(shù)學(xué)掌握過(guò)少影響考試不及格,你應(yīng)該把最基本的初等數(shù)學(xué)知識(shí)復(fù)習(xí)。自考365網(wǎng)校已經(jīng)推出了高等數(shù)學(xué)的基礎(chǔ)輔導(dǎo)課程,介紹微積分當(dāng)中用到的初等數(shù)學(xué)有哪些,大概有6課時(shí)。介紹微積分當(dāng)中用到的初等數(shù)學(xué)有哪些,如果有一部分同學(xué)感到初等數(shù)學(xué)知識(shí)不夠用,我希望同學(xué)不要害怕,你即便初等數(shù)學(xué)知識(shí)不夠好,不見(jiàn)得過(guò)不了。希望大家多花點(diǎn)時(shí)間學(xué)習(xí),可以起到事半功倍的效果。
    第二個(gè),有些同學(xué)覺(jué)得,學(xué)高等數(shù)學(xué),或者微積分,主要靠理解,但是實(shí)際上這里邊有一些誤會(huì),數(shù)學(xué)主要是靠理解,但是和其他課程有區(qū)別,其他課程靠記憶比較多,當(dāng)然也要理解,但是數(shù)學(xué),靠理解的比較多,不等于不要記憶,特別有些基本的東西必須記的大家還要記憶,比如說(shuō)一些基本概念,導(dǎo)數(shù)的定義,連續(xù)性的定義這些基本的東西要適當(dāng)?shù)挠浺幌隆?BR>    第三個(gè),基本公式表,微分公式表也要記,這些基本的東西大家還要記。積分公式表記不住,積分就過(guò)不了關(guān),在記憶的基礎(chǔ)上適當(dāng)做一些題達(dá)到融會(huì)貫通,我希望大家做好這兩方面的復(fù)習(xí)。
    有同學(xué)初等數(shù)學(xué)不會(huì)的,經(jīng)過(guò)努力,這樣的都能考過(guò),其他人一定能考過(guò)。當(dāng)然得補(bǔ)一些數(shù)學(xué),不補(bǔ)是不行的,你們提出來(lái)補(bǔ)什么好,我跟大家說(shuō),初等數(shù)學(xué)不像你們中學(xué)那樣什么都要考,中學(xué)老師教你們主要是競(jìng)爭(zhēng),考大學(xué)是一種競(jìng)爭(zhēng)性質(zhì),要求的內(nèi)容相當(dāng)多,偏題怪題都有,但是作為學(xué)高等數(shù)學(xué)不是競(jìng)爭(zhēng)性質(zhì),只要求掌握基本知識(shí),所以這部分就要把初等數(shù)學(xué)的基本內(nèi)容掌握好就行,實(shí)際上我個(gè)人覺(jué)得,你只要有決心補(bǔ)初等數(shù)學(xué),有兩三天就夠了。
    認(rèn)真聽(tīng)課。既然是高數(shù)課,自然是老師講課,一周的高數(shù)課的節(jié)數(shù)肯定不會(huì)少。所以,老師上課就是最好的一個(gè)學(xué)習(xí)媒介。少年們,上課努力早起去做前排吧。如果老師夠認(rèn)真負(fù)責(zé),相信做好了這一步,那就基本上成功了一半.
    買(mǎi)一本靠譜的考研書(shū)。如果老師不認(rèn)真負(fù)責(zé),只會(huì)用蚊子般大小的聲音念念ppt怎么辦;根本聽(tīng)不下去怎么辦。這個(gè)時(shí)候,不用慌張,其實(shí)還是有很多很好的選擇,推薦去買(mǎi)一本厚厚的考研書(shū),不用擔(dān)心,考研書(shū)就是幫你們復(fù)習(xí)大一的高數(shù)知識(shí),而且上面通常整理的非常好。各類(lèi)例題也都是平時(shí)??嫉念?lèi)型。
    做好筆記。書(shū)上一些沒(méi)有的證明和老師上課隨性發(fā)揮的精華可是一瞬即逝的噠。做好筆記還有益于自己上課認(rèn)真專(zhuān)注。如果是自己看書(shū)也需要記筆記。
    按時(shí)做作業(yè)。還記得高中時(shí)怎么沒(méi)日沒(méi)夜的做作業(yè)嗎,practicemakesperfect,這句話(huà)是沒(méi)有錯(cuò)的,高數(shù)的作業(yè)會(huì)有很多,而它對(duì)你學(xué)好高數(shù)的重要性也不言而喻的。而且,作業(yè)好還有平時(shí)分還高,最后總評(píng)也高不是。
    學(xué)習(xí)公開(kāi)課。如果對(duì)一些證明,推理,或者概念不清楚,想要找個(gè)名師的話(huà),網(wǎng)絡(luò)上的公開(kāi)課其實(shí)是一個(gè)非常好的選擇。這也是現(xiàn)在的教育的一種趨勢(shì),這里推薦一些常用的,比如mooc,愛(ài)課程網(wǎng),網(wǎng)易公開(kāi)課等等。國(guó)外名校的都是大師,聽(tīng)完他們的講解相信一定會(huì)對(duì)高數(shù)和整個(gè)數(shù)學(xué)體系有一個(gè)新的理解,并對(duì)它產(chǎn)生興趣。
    對(duì)高等數(shù)學(xué)的體會(huì)篇十八
    第一段:引言(120字)
    高等數(shù)學(xué)作為大學(xué)數(shù)學(xué)課程中的一門(mén)重要學(xué)科,不僅是理工科學(xué)生的必修課,更是培養(yǎng)學(xué)生分析解決問(wèn)題能力的重要途徑。在學(xué)習(xí)高等數(shù)學(xué)的過(guò)程中,我感受到了數(shù)學(xué)的美妙與魅力,同時(shí)也深刻體會(huì)到了數(shù)學(xué)學(xué)習(xí)的重要性。通過(guò)這門(mén)課程的學(xué)習(xí),我不僅提高了自己的數(shù)學(xué)水平,更具備了解決實(shí)際問(wèn)題的能力,下面將分為邏輯推理能力的提升、問(wèn)題解決能力的培養(yǎng)、批判性思維的養(yǎng)成、嚴(yán)密的思維訓(xùn)練以及團(tuán)隊(duì)合作精神的培養(yǎng)五個(gè)方面,詳細(xì)論述我在高等數(shù)學(xué)學(xué)習(xí)中的心得體會(huì)。
    第二段:邏輯推理能力的提升(250字)
    高等數(shù)學(xué)學(xué)習(xí)需要運(yùn)用各種公式定理,進(jìn)行推導(dǎo)證明。在這個(gè)過(guò)程中,我不斷鍛煉了自己的邏輯推理能力。老師引導(dǎo)我們學(xué)會(huì)分析問(wèn)題,從多個(gè)角度去思考,利用數(shù)學(xué)方法解決問(wèn)題。通過(guò)數(shù)學(xué)定理的證明,我更加深入地理解了邏輯推理的重要性以及問(wèn)題求解的思路。此外,在高等數(shù)學(xué)的學(xué)習(xí)過(guò)程中,我還學(xué)會(huì)了如何將復(fù)雜問(wèn)題分解為簡(jiǎn)單子問(wèn)題,逐步推導(dǎo)出一個(gè)完整的解決方案。這一過(guò)程的鍛煉不僅提高了我的數(shù)學(xué)素養(yǎng),還培養(yǎng)了我的邏輯思維能力,使我能夠更好地應(yīng)對(duì)其他學(xué)科的學(xué)習(xí)和實(shí)際問(wèn)題的解決。
    第三段:?jiǎn)栴}解決能力的培養(yǎng)(250字)
    高等數(shù)學(xué)學(xué)習(xí)強(qiáng)調(diào)實(shí)際問(wèn)題的建模與求解,培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力。在課堂上,我親身體驗(yàn)了數(shù)學(xué)在解決實(shí)際問(wèn)題中的作用。通過(guò)案例分析和問(wèn)題解決討論,我學(xué)會(huì)了將抽象概念和公式與實(shí)際問(wèn)題相結(jié)合,找到問(wèn)題的關(guān)鍵點(diǎn),提出有效的解決方案。此外,高等數(shù)學(xué)課程還讓我了解了數(shù)學(xué)與其他學(xué)科的交叉點(diǎn),從而拓寬了視野,幫助我更好地理解和解決其他學(xué)科的實(shí)際問(wèn)題。
    第四段:批判性思維的養(yǎng)成(250字)
    高等數(shù)學(xué)學(xué)習(xí)強(qiáng)調(diào)學(xué)生的批判性思維能力的培養(yǎng)。在學(xué)習(xí)過(guò)程中,我發(fā)現(xiàn)數(shù)學(xué)不僅有固定答案,還有多種解決路徑和解釋方法。通過(guò)解析問(wèn)題的不同方面,從不同的角度思考,我逐漸養(yǎng)成了批判性思維的習(xí)慣。我開(kāi)始質(zhì)疑問(wèn)題是否被正確解決,是否有更好的方法,這種思維方式不僅在高等數(shù)學(xué)學(xué)習(xí)中幫助我更好地理解概念和定理,還在其他學(xué)科和實(shí)際生活中使我更加理性和客觀。
    第五段:嚴(yán)密的思維訓(xùn)練與團(tuán)隊(duì)合作精神的培養(yǎng)(320字)
    高等數(shù)學(xué)中的復(fù)雜定理和抽象概念要求學(xué)生掌握嚴(yán)密的思維能力。在解題過(guò)程中,我不得不重復(fù)思考,審查每一個(gè)環(huán)節(jié),確保每個(gè)推導(dǎo)步驟的準(zhǔn)確性和嚴(yán)密性。這過(guò)程雖然艱辛,但成功地提升了我的思維嚴(yán)密性和細(xì)心程度。另外,高等數(shù)學(xué)學(xué)習(xí)中的小組討論和團(tuán)隊(duì)合作也給了我很大的啟示。通過(guò)與同學(xué)合作,每個(gè)人可以帶來(lái)不同的思路和見(jiàn)解,我們可以互相學(xué)習(xí)、互相鼓勵(lì),并共同解決問(wèn)題。這種團(tuán)隊(duì)合作精神不僅在高等數(shù)學(xué)中得到培養(yǎng),還可以應(yīng)用到其他學(xué)科和實(shí)際工作中。
    結(jié)尾:總結(jié)(90字)
    總的來(lái)說(shuō),高等數(shù)學(xué)的學(xué)習(xí)不僅提高了我的數(shù)學(xué)水平,更重要的是培養(yǎng)了我解決問(wèn)題的能力、批判性思維以及團(tuán)隊(duì)合作精神。這些能力將在我的未來(lái)學(xué)習(xí)和工作中發(fā)揮重要作用。通過(guò)高等數(shù)學(xué)的學(xué)習(xí),我明白了數(shù)學(xué)不僅僅是一種學(xué)科,更是一種思維方式和處理問(wèn)題的工具。
    對(duì)高等數(shù)學(xué)的體會(huì)篇十九
    學(xué)好高等數(shù)學(xué)是一個(gè)長(zhǎng)期的過(guò)程,要做到邊學(xué)邊鞏固,今天的事今天完成,分階段有目的的復(fù)習(xí),學(xué)習(xí)來(lái)不得半點(diǎn)的投機(jī)取巧,所以考前突擊,臨時(shí)抱佛腳的做法都是不足取的,只有按照自己的計(jì)劃,踏踏實(shí)實(shí)的進(jìn)行準(zhǔn)備,才能以不變應(yīng)萬(wàn)變,只要自己的綜合能力提高了,就能取得好的成績(jī)。
    數(shù)學(xué)是嚴(yán)密的科學(xué)。數(shù)學(xué)是由概念、公理、定理、公式等,按照一定的邏輯規(guī)則組成的嚴(yán)密的知識(shí)體系,有很強(qiáng)的系統(tǒng)性。因此,在數(shù)學(xué)的學(xué)習(xí)中,一定要循序漸進(jìn),打好基礎(chǔ),完整地、系統(tǒng)地掌握基本概念和基本原理,這樣才能為解題打好堅(jiān)實(shí)的基礎(chǔ)??傊?,學(xué)好高等數(shù)學(xué)并不是一件難事,只要你付出必要的努力,數(shù)學(xué)不應(yīng)是枯燥乏味的符號(hào),只要你鉆進(jìn)去就會(huì)感到趣味盎然,數(shù)學(xué)不是一堆繁瑣無(wú)用的公式,掌握了它的真諦,就會(huì)給你增添知識(shí)和力量。
    對(duì)高等數(shù)學(xué)的體會(huì)篇二十
    現(xiàn)在我不妨引領(lǐng)大家把我們所學(xué)的容易遺漏的數(shù)學(xué)知識(shí)再仔細(xì)地閱讀一下:
    集合部分:
    (1)集合的概念:把具有某種特性的事物組成的整體叫集合,同學(xué)們往往忽略整體二字。如:
    (1)方程x22x30的解集,x22x10的解集,x22x10的解集,x22x10的解集。
    (2)空集:不含任何元素,表示為。
    (3)集合與元素的關(guān)系:兩種符號(hào),不能正確的填寫(xiě),主要原因是不能理解元素和集合的書(shū)寫(xiě),不明白那些是元素那些事集合。
    (4)集合與集合的關(guān)系。
    (5),這兩種關(guān)系的具體含義。
    不等式部分:
    (1)不等式的基本性質(zhì),容易出錯(cuò)的就是如ab,則ac2bc2()。
    對(duì)一個(gè)數(shù)的平方理解不透徹,
    (3)邏輯用語(yǔ),(充分,必要,充要,非充分非必要)。
    函數(shù)部分:
    (1)函數(shù)的概念。
    (2)函數(shù)的三要素。
    (3)如何研究函數(shù),主要是從以下內(nèi)容,一定義域,二值域,三。
    函數(shù)的三性(單調(diào)性、奇偶性、周期性)。
    (4)冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)。
    (5)三角函數(shù):特別是對(duì)三角函數(shù)的定義,利用好三角函數(shù)的定。
    義,可自然地得出(三角函數(shù)正負(fù)符號(hào)的判定、同角三角函數(shù)的關(guān)系)。
    數(shù)列部分:
    (1)兩特殊數(shù)列等差和等比。
    (2)規(guī)律。
    向量部分:
    (1)向量相等,共線(xiàn),向量垂直。
    (2)向量的運(yùn)算。
    (3)向量的坐標(biāo)。
    (4)向量的內(nèi)內(nèi)積。
    直線(xiàn)和圓的方程部分:
    (1)直線(xiàn)的相關(guān)部件(斜率和傾斜角),圓的相關(guān)部件(圓心和半徑)。
    (2)直線(xiàn)方程的求法,圓的方程求法。
    立體幾何部分:
    (1)點(diǎn)、線(xiàn)、面。
    (2)線(xiàn)線(xiàn)的關(guān)系。
    (3)線(xiàn)面的關(guān)系。
    (4)面面的關(guān)系。
    以上我把職高的所有易錯(cuò)易忘難理解的知識(shí)點(diǎn)羅列出來(lái),在平時(shí)我們閱讀的時(shí)候要注意掌握解決問(wèn)題的依據(jù)和解決問(wèn)題的方法。
    閱讀的同時(shí),我們要理解書(shū)中的`句子,那么對(duì)數(shù)學(xué)而言,我們?cè)摾斫馐裁茨?
    (1)理解定義概念。
    (2)理解公式定理。
    (1)練習(xí)要有目的練習(xí)要有針對(duì)性。
    (2)練習(xí)不要盲目,有同學(xué)喜歡做題,覺(jué)得題做得越多越好,其實(shí)不然,題要做,要少而精,會(huì)的熟練地題我們只動(dòng)腦不動(dòng)手,理一理解題思路就可以了,不會(huì)的、或經(jīng)常出錯(cuò)的那就得好好練練。
    (1)總結(jié)各章節(jié)的知識(shí)點(diǎn),各章節(jié)的典型例題。
    (2)總結(jié)解題思路。
    (3)總結(jié)解題的方法。
    學(xué)無(wú)定法,適合自己的能夠幫助自己學(xué)習(xí)成績(jī)提高的方法都是好的方法,寫(xiě)這篇文章只是拋磚引玉,希望我的建議能夠幫助同學(xué)找到適合自己的學(xué)習(xí)方法。能夠通過(guò)好的學(xué)習(xí)方法快速的提高數(shù)學(xué)學(xué)習(xí)成績(jī)。
    對(duì)高等數(shù)學(xué)的體會(huì)篇二十一
    所謂把基本概念搞懂,我想是不是應(yīng)該從以下幾個(gè)方面來(lái)理解和把握。第一個(gè)是這個(gè)概念產(chǎn)生的實(shí)際背景是什么。然后,定義這個(gè)概念所運(yùn)用到的數(shù)學(xué)思想和方法是什么。接下來(lái)這個(gè)概念的定義式,它的數(shù)學(xué)含義,幾何意義和物理意義以及在這個(gè)概念上的拓展和延伸等等。對(duì)于每個(gè)概念我們都要盡可能的從這幾個(gè)方面來(lái)理解把握。把概念學(xué)懂了,這是學(xué)懂?dāng)?shù)學(xué)的至關(guān)重要的一步。
    二、基本理論搞透。
    這包含三個(gè)方面的內(nèi)容。第一所謂理論性的內(nèi)容,定理、性質(zhì)、推論,你首先要清楚它的條件是什么,結(jié)論是什么,這是最起碼的要求。然后這些定理、性質(zhì)、條件它的性質(zhì)和條件要搞清楚,比如說(shuō)是充分必要的還是充分必要的。我結(jié)合07年的考題給大家說(shuō)。07年數(shù)學(xué)二第7個(gè)選擇題,同學(xué)可以回去對(duì)照題目看。它是考察二元函數(shù)在某一點(diǎn)處可微的一個(gè)充分條件。你在學(xué)習(xí)的時(shí)候,你剛開(kāi)始學(xué)高等數(shù)學(xué)的時(shí)候,老師都講,二元函數(shù)在某一點(diǎn)處可微的充分條件是一階偏導(dǎo)連續(xù)。
    再比如數(shù)學(xué)一三四考的第十道選擇題,是寫(xiě)邊緣概率密度是哪個(gè)。告訴你一個(gè)二維正態(tài)分布。我們?cè)谳o導(dǎo)的時(shí)候告訴同學(xué),我還總結(jié)了一條文登語(yǔ)錄,你見(jiàn)到了這個(gè),你第一要想到二維正態(tài)分布的邊緣分布是正態(tài)分布,第二個(gè)是邊緣現(xiàn)象的任意組合仍然是正態(tài)分布,第三個(gè)是兩個(gè)隨機(jī)變量的不相關(guān)和獨(dú)立是充分必要的,也就是等價(jià)的。在這樣的情況下,你知道了這些就可以做出正確的選擇,所以說(shuō)基本的理論要搞透,首先搞清楚它的條件和結(jié)論,這個(gè)條件是充分必要的還是充分的,必須要搞清楚。
    基本理論的第二個(gè)方面就是要盡可能的從幾何和數(shù)值的角度來(lái)理解這些抽象的理論。反映到今年的考題上,比如說(shuō)一二三四都用到的一個(gè)選擇題,基本象限函數(shù)這道題,f3、f負(fù)2、f2哪個(gè)選項(xiàng)正確的問(wèn)題,如果你的基本的理論搞清楚了,只需要算一個(gè)f2就可以了。
    基本理論搞透的第三個(gè)方面是要注意搞清楚相關(guān)理論間的有機(jī)聯(lián)系。這一點(diǎn),在線(xiàn)性代數(shù)這門(mén)課中更加的突出。在今年的考題中問(wèn)你兩個(gè)矩陣的關(guān)系是合同還是相似,我們對(duì)這些理論和概念,你如果比較熟練和清楚的話(huà),你就知道找什么東西。我們?cè)谥v課的時(shí)候說(shuō),相似有四等,你一看這兩個(gè)不相等,肯定不相似,必要條件有一個(gè)不滿(mǎn)足,肯定是不相似的。合同,你需要找兩個(gè)矩陣的特征值的,正的特征值和負(fù)的特征值的個(gè)數(shù),這是要搞清楚基本理論第三個(gè)方面,相關(guān)理論的有機(jī)聯(lián)系。
    對(duì)高等數(shù)學(xué)的體會(huì)篇二十二
    相對(duì)于現(xiàn)階段高等職業(yè)教育發(fā)展的綜合性和終身性趨勢(shì)來(lái)說(shuō),高等數(shù)學(xué)不僅僅是學(xué)生掌握數(shù)學(xué)工具學(xué)習(xí)其他相關(guān)專(zhuān)業(yè)課程的基礎(chǔ),更是培養(yǎng)學(xué)生邏輯思維嚴(yán)謹(jǐn)性的重要載體,高等數(shù)學(xué)的重要性是不言而喻的。因此高等數(shù)學(xué)的有效學(xué)習(xí)成了高數(shù)教師和同學(xué)們共同關(guān)注的一個(gè)重要問(wèn)題。
    通過(guò)平時(shí)與學(xué)生的交流和上課,學(xué)生的學(xué)習(xí)困難一般集中在認(rèn)為教學(xué)內(nèi)容太抽象聽(tīng)不懂、不會(huì)做題,數(shù)學(xué)概念太抽象,不易理解(如極限、無(wú)窮小等)。學(xué)生對(duì)于接受高等數(shù)學(xué)的思想、原理、方法非常不適應(yīng),對(duì)于如何學(xué)好高等數(shù)學(xué),如何理解它的思想、方法茫然無(wú)知。下面我們大家一起討論一下高數(shù)學(xué)不好的原因。
    首先,對(duì)大多數(shù)高中生而言,考取大學(xué)是最具誘惑力的行為歸因,但進(jìn)人大學(xué)后,這一因素就不復(fù)存在了,大一新生基本上處于如釋重負(fù)的解脫狀態(tài),缺乏主動(dòng)進(jìn)取的精神,學(xué)習(xí)目標(biāo)不明確,學(xué)習(xí)動(dòng)機(jī)不強(qiáng)烈。有些同學(xué)則認(rèn)為學(xué)高等數(shù)學(xué)對(duì)將來(lái)的工作也沒(méi)有多大用處,有些同學(xué)本來(lái)數(shù)學(xué)的基礎(chǔ)就不好,進(jìn)人大學(xué)后一接觸高等數(shù)學(xué),發(fā)現(xiàn)難以與中學(xué)數(shù)學(xué)知識(shí)直接銜接,學(xué)習(xí)高等數(shù)學(xué)的興趣蕩然無(wú)存,對(duì)高等數(shù)學(xué)的學(xué)習(xí)消極應(yīng)付。
    再次,學(xué)生在高中階段已形成一定的思維方式及學(xué)習(xí)習(xí)慣,解數(shù)學(xué)題基本上采取模式辨認(rèn)、方法回憶的思維方式,對(duì)解題方法和技巧模仿、記憶、套用,對(duì)知識(shí)不求甚解,并未真正理解和內(nèi)化,沒(méi)有進(jìn)行數(shù)學(xué)思考的意識(shí),也沒(méi)有掌握數(shù)學(xué)思考的方法。大學(xué)課堂上,對(duì)高等數(shù)學(xué)各部分內(nèi)容的理解支離破碎,自學(xué)能力差,缺乏獨(dú)立思考的意識(shí),沒(méi)有反思學(xué)習(xí)過(guò)程的習(xí)慣,更沒(méi)有總結(jié)、歸納知識(shí)和思想方法的習(xí)慣,對(duì)教師有較強(qiáng)的依賴(lài)心理,學(xué)生已形成的思維方式及學(xué)習(xí)習(xí)慣直接影響學(xué)生接受高等數(shù)學(xué)。
    最后,大學(xué)與高中的教學(xué)都以講授法為主,但受高考的影響和制約,高中教師對(duì)知識(shí)的講授詳細(xì),題型、方法歸納完整,較多的精力用于通過(guò)大題量的訓(xùn)練來(lái)培養(yǎng)學(xué)生的技能技巧,并及時(shí)進(jìn)行輔導(dǎo)和鞏固;而大學(xué)的教學(xué)由于知識(shí)點(diǎn)較多,課時(shí)有限,課容量大,教師更注重思想方法的深刻理解,和數(shù)學(xué)思想的培養(yǎng)。
    對(duì)于上述幾個(gè)原因建議大家從以下幾方面入手:
    第一、調(diào)整好自己的心態(tài),盡快適應(yīng)大學(xué)生活,對(duì)自己有一個(gè)準(zhǔn)確的定位。
    學(xué)的學(xué)習(xí),根據(jù)高數(shù)課的特點(diǎn)和自己的學(xué)習(xí)習(xí)慣,盡快總結(jié)出適合自己的學(xué)習(xí)方法。
    第三、高數(shù)的學(xué)習(xí)是一個(gè)日積月累的過(guò)程,不是幾天或一段時(shí)間的突擊成績(jī)就可以上來(lái)的。只要你把平時(shí)的多努力,那么你的付出一定會(huì)有所得。
    對(duì)高等數(shù)學(xué)的體會(huì)篇二十三
    數(shù)學(xué)最需要強(qiáng)調(diào)的是基礎(chǔ)而不是技巧。很多同學(xué)不重視基礎(chǔ)的學(xué)習(xí),反而只是忙著做題,做難題,就想通過(guò)題海戰(zhàn)術(shù)取勝,這是不行的,選擇輔導(dǎo)班一定不要選擇一味追求技巧的,可以上有命題組老師的輔導(dǎo)班,從而能夠準(zhǔn)確把握命題思路,不至于走偏了方向。
    善于歸納,學(xué)會(huì)總結(jié),使知識(shí)條理化系統(tǒng)化。
    善于總結(jié)也是我要十分強(qiáng)調(diào)的一點(diǎn)。因?yàn)楹芏嗤瑢W(xué)做題的過(guò)程就到對(duì)過(guò)答案或是糾正過(guò)錯(cuò)誤就簡(jiǎn)單的結(jié)束了,一套題的價(jià)值也就到此為止了。大家在糾正完錯(cuò)誤之后,再把這套試題從頭看一遍,總結(jié)一下自己都在哪些方面出錯(cuò)了,原因是什么,這套題中有沒(méi)有出現(xiàn)我不知道的新的方法、思路,新推導(dǎo)出的定理、公式等,并把這些有用的知識(shí)全都寫(xiě)到你的筆記本上,以便隨時(shí)查看和重點(diǎn)記憶。對(duì)于大題的解題方法,要仔細(xì)想一想,都涉及到哪些科目和章節(jié)了,這些知識(shí)點(diǎn)之間有哪些聯(lián)系等,從而使自己所掌握的知識(shí)系統(tǒng)化,以達(dá)到融會(huì)貫通。只有這樣,才能使你做過(guò)的題目實(shí)現(xiàn)其的價(jià)值,也才算是你真正做懂了一套題。如果你能夠這樣做了,那么做過(guò)的題在以后的復(fù)習(xí)中如果沒(méi)有時(shí)間了,就不用再拿出來(lái)重新看了,因?yàn)槟阋呀?jīng)把要掌握的精華總結(jié)好了,只需看你的筆記本就行了。解數(shù)學(xué)題一定要從思路,原理的角度入手。
    要勤于思考,多動(dòng)腦子。
    很多同學(xué)學(xué)數(shù)學(xué)就喜歡看例題,看別人做好的題目,分析別人總結(jié)好的解題方法、步驟。只這樣是遠(yuǎn)遠(yuǎn)不夠的。只是一味的被動(dòng)的接受別人的東西,就永遠(yuǎn)也變不成自己的東西。第一遍復(fù)習(xí)可以只看題,但以后就必須自己試著做了,先不看答案,完全通過(guò)自己的能力做著試試,不管能做到什么程度,起碼你自己先思考了,只有啟動(dòng)自己的大腦,才會(huì)使知識(shí)更深入的得到理解和掌握,才能真正成為自己的知識(shí),也才會(huì)具有獨(dú)立的解題能力。在做題時(shí)不要太輕易的選擇放棄,想一會(huì)兒沒(méi)有思路就去看答案,一定要仔細(xì)開(kāi)動(dòng)腦筋想過(guò)之后,實(shí)在不行再求助于外力。