說明書是一種介紹和解釋產(chǎn)品用途、組成和使用方法的文檔,它能夠幫助用戶正確使用產(chǎn)品。寫總結時,要注意客觀公正,對不足之處要實事求是地進行反思。請參考下方的一些實用寫作技巧
高等數(shù)學的體會篇一
作為一門數(shù)學專業(yè)的必修課程,高等數(shù)學對學生來說并不易于掌握,需要在學習中不斷地消化吸收。而吳昊,則是一位對高等數(shù)學有深入研究,并且在教學中取得了較好成績的老師。因此,我們會特別關注吳昊的高等數(shù)學心得體會,從中汲取經(jīng)驗,提高學習效率。
第二段:心得體會一:高等數(shù)學需要系統(tǒng)性學習
吳昊表示,高等數(shù)學知識體系龐雜,而且知識之間的聯(lián)系非常緊密。因此,學生需要先從系統(tǒng)性入手,掌握高等數(shù)學的整體框架和學習路線。在學習中要注意先后順序,不能掉以輕心,否則就會遇到迷失方向的情況。
第三段:心得體會二:掌握基礎知識是關鍵
高等數(shù)學中的每一個概念,都是建立在基礎之上的。如果基礎學習不扎實,那么后期的學習也無從談起。因此,吳昊建議學生在學習高等數(shù)學之前,先重視基礎概念的學習,鞏固數(shù)學的基礎知識,才能更好地理解和掌握高等數(shù)學。
第四段:心得體會三:靈活運用解題思路
高等數(shù)學中的問題并不單一,其解題方法也需要靈活變通。吳昊提醒學生,在學習高等數(shù)學時,不能僅僅停留在概念和公式的記憶,而應該注重解決具體問題的能力。在解題過程中,應該運用多種思路,靈活變換解題方法,從而提高解題的效率和準確性。
第五段:結尾及總結
高等數(shù)學在數(shù)學專業(yè)中占據(jù)著重要的地位,不僅有助于理論的研究,還能為工程應用提供數(shù)學依據(jù)。吳昊的高等數(shù)學心得體會不僅是學生能夠?qū)W好高等數(shù)學的經(jīng)驗之談,也能幫助教師對高等數(shù)學教學的優(yōu)化。通過吳昊的經(jīng)驗與體會,我們可以更加準確地把握高等數(shù)學的學習方向,提高學習效率,做好學科的拓展與深化。
高等數(shù)學的體會篇二
高等代數(shù)作為數(shù)學基礎中的一門重要學科,是我在大學學習生涯中必修的一門課程。在這門課上,我深入學習了向量空間、線性代數(shù)、矩陣理論等等,并從中得出了一些心得體會。
第二段:突破自我認知
在學習高等代數(shù)的過程中,我發(fā)現(xiàn)自己原本對數(shù)學的學習方法是缺失的。在以往的學習過程中,我往往會死記硬背定理和公式,而高等代數(shù)的學習則需要我不斷拓展自己的思路和認知。通過學習高等代數(shù),我突破了自我對數(shù)學的認知,從“背誦”到“理解”,從“計算”到“思考”。
第三段:運用于實際生活
高等代數(shù)學習對我的實際生活也有很大的幫助。在學習過程中,我不僅掌握了向量、矩陣等基本的數(shù)學工具,還學會了如何將這些數(shù)學知識應用到生活實踐中。在處理各種實際問題時,我能夠運用這些學習到的高等代數(shù)知識,分析出問題的本質(zhì),得到更準確的結論。
第四段:加深對數(shù)學基礎的理解
高等代數(shù)學習也加深了我對數(shù)學基礎的理解。 我們只有在基礎理解的基礎上才能建立更深層的學習,高等代數(shù)學習在一定程度上鞏固了我在初等數(shù)學學習中所掌握的知識,特別是空間幾何方面的知識,越是基礎的知識點就越是能讓我對數(shù)學產(chǎn)生新的認知和體驗。
第五段:總結
在高等代數(shù)的學習過程中,我收獲了很多。除了掌握一些有用的數(shù)學知識外,我還學會了如何更好地應對數(shù)學學習,這對我的未來學習、工作、生活都有很大的幫助。高等代數(shù)學習讓我不斷突破自我,提高了對基礎數(shù)學知識的理解,讓我對數(shù)學知識擁有更深入的體會和認知。
高等數(shù)學的體會篇三
高等代數(shù)學習是大學數(shù)學重要的一部分,相較于初等代數(shù),高等代數(shù)更為抽象和理論化,對于學生來說大有難度。但是隨著時間的推移,我漸漸開始感到了高等代數(shù)的魅力,也逐漸發(fā)現(xiàn)了學習高等代數(shù)的重要性。在這篇文章中,我將分享自己在高等代數(shù)學習過程中所得到的心得和體會。
第二段:抵抗初衷
學習高等代數(shù)的第一階段,我感到了很大的挑戰(zhàn)和困惑。在不斷滑坡中,我內(nèi)心渴望退出,想要擺脫這門讓我疲憊的學科。四年前,我開始學習線性代數(shù),我認為自己已經(jīng)成功掌握了這種代數(shù)學基礎,在此基礎上學習更高級的代數(shù)只需要一點點努力就可以了。然而,我發(fā)現(xiàn)自己所擁有的數(shù)學知識并沒有真正利于我掌握高等代數(shù)的本質(zhì)和更深層的觀念。開始的時候,我覺得自己面對了一個難題,無法克服這個阻礙心名字邁出的頑爍。
第三段:不斷嘗試
然而,隨著不斷的努力、不斷的嘗試,我開始慢慢了解到了自己所面對問題的真正本質(zhì)。我閱讀了更多更深的數(shù)學論文,掌握了基本概念,進而對所學的東西有了更深刻的理解。我漸漸地意識到,只是單純地閱讀數(shù)學問題和相關理論是遠遠不夠的。我也需要進行自己的實踐,去親身探究一些問題。因為只有通過實踐,才能夠找到真正有效的方法和途徑。
第四段:逐漸領悟
在實踐之中,我越來越理解到高等代數(shù)學的優(yōu)點。高等代數(shù)學的優(yōu)點在于其極具抽象性以及精致的理論系統(tǒng)。我發(fā)現(xiàn)高等代數(shù)對數(shù)學、物理、工程學以及計算機科學等方面非常重要,而且與其他學科密切相關。在我逐漸習慣、理解和掌握高等代數(shù)的過程中,我越來越喜歡它的項目。。我感到,高等代數(shù)不僅有助我掌握各種概覽和概念,還可以幫助我更精準地理解其他學科的內(nèi)容。能夠被如此深刻的理解事物的方法,我認為是很難得的。
第五段:結論
總之,學習高等代數(shù)是一個充滿挑戰(zhàn)性的過程。如果你認真學習,努力訓練,并找到了有效的學習方法,那么這個過程 will將讓你受益良多,并且對我們今后的職業(yè)生涯和個人思考能力都會受益。我感謝高等代數(shù)讓我拓寬了我的視野,并讓我認識到,對于我的專業(yè)及其他方面,學習和鉆研決不是終點。相反,它開啟了一個探索不斷、充滿挑戰(zhàn)但也充滿可能性的新世界。
高等數(shù)學的體會篇四
高等數(shù)學是大學數(shù)學教學中的一門重要課程,它深入探討了微積分、常微分方程、多元函數(shù)等數(shù)學領域的理論與應用。作為一名學習高等數(shù)學的學生,通過學習本學期下冊的高等數(shù)學課程,我有了一些心得體會。在這篇文章中,我將分享我對于高等數(shù)學下冊的認識和體悟,以及它對于我的學習和思維方式的影響。
第一段:高等數(shù)學下冊的知識體系
高等數(shù)學下冊是高等數(shù)學課程的延續(xù),它包含了微分方程、重積分、無窮級數(shù)和場論等內(nèi)容。與上冊相比,下冊的內(nèi)容更加深入和細致。通過學習下冊的課程,我對高等數(shù)學的整體框架有了更加清晰的認識,同時也加深了對微積分的理解。微分方程是高等數(shù)學下冊的重點之一,它在科學研究和工程應用中具有重要意義。通過學習微分方程,我對于它在實際問題中的應用有了更深刻的認識,從而增強了我的問題解決能力。
第二段:高等數(shù)學下冊的邏輯思維
高等數(shù)學下冊的學習過程強調(diào)了邏輯思維的培養(yǎng)。在解題過程中,我學會了運用嚴密的邏輯推理和抽象思維來分析問題,從而解決復雜的數(shù)學問題。在學習重積分和無窮級數(shù)時,尤其需要運用邏輯思維進行推導和證明。通過這些習題的解答,我逐漸培養(yǎng)出了邏輯思維的能力,提高了自己的數(shù)學素養(yǎng)。我相信,邏輯思維的培養(yǎng)不僅對于學習數(shù)學有著重要意義,也對于我們?nèi)粘I詈吐殬I(yè)發(fā)展具有積極影響。
第三段:高等數(shù)學下冊的實踐能力
學習高等數(shù)學下冊的過程中,我發(fā)現(xiàn)課本中的理論和知識需要通過實踐來加深理解。例如,在學習微分方程時,我們需要通過實際問題的建模和求解,來驗證所學知識的正確性和適用性。通過課堂上的實例和作業(yè)的練習,我提高了自己的實踐能力。而這種實踐能力也是在工程和科技領域中所必須具備的。通過實踐能力的培養(yǎng),我相信自己在未來的學習和工作中能夠更好地應對各種挑戰(zhàn)。
第四段:高等數(shù)學下冊的學習方法
面對高等數(shù)學下冊的內(nèi)容,我深刻體會到了合理的學習方法的重要性。在解決數(shù)學問題時,我逐漸掌握了一些學習技巧。例如,在學習微分方程和重積分時,我會先了解和理解基本概念,然后通過刻意練習來掌握解題方法,并在課后復習中加深對知識的理解。這些學習方法的應用使我在高等數(shù)學下冊的學習中事半功倍。我認為,學習方法的培養(yǎng)是學習高等數(shù)學下冊的必要過程,也是提高學習效率的關鍵。
第五段:高等數(shù)學下冊的啟示和反思
通過學習高等數(shù)學下冊,我認識到高等數(shù)學不僅僅是一門課程,更是培養(yǎng)學生綜合素質(zhì)的重要途徑。通過學習高等數(shù)學,我不僅僅掌握了數(shù)學知識,更學會了思考問題、理解問題和解決問題的方法。高等數(shù)學下冊的學習,培養(yǎng)了我對于數(shù)學的興趣和學術追求。同時,我也反思了自己在學習中存在的不足,例如在理解概念和應用推導方面有待提高。在今后的學業(yè)中,我會更加注重培養(yǎng)自己的邏輯思維和實踐能力,提高學習方法的靈活應用,以達到更好的學習效果。
總結起來,通過對高等數(shù)學下冊的學習,我對于高等數(shù)學的知識體系、邏輯思維、實踐能力和學習方法有了更深入的理解和認識。同時,我也發(fā)現(xiàn)高等數(shù)學不僅僅是一門學科,更是培養(yǎng)學生思維能力和解決問題能力的過程。通過學習高等數(shù)學下冊,我不僅提高了自己的數(shù)學水平,也增強了自信和對學習的熱愛。我相信,在今后的學習和人生中,我會繼續(xù)努力,追求更高的數(shù)學境界和學術成就。
高等數(shù)學的體會篇五
1.極限思想:是一種漸進變化的數(shù)學思想。利用有限描述無限,由近似到精確的一種過程。極限思想是高等數(shù)學必不可少的一種重要方法,是高等數(shù)學與初等數(shù)學的本質(zhì)區(qū)別。利用極限思想方法解決了許多初等數(shù)學無法解決的問題,例如,求瞬時速度、曲線弧長、曲邊形面積、曲面體體積等問題。
2.函數(shù)思想:是通過構造函數(shù),利用函數(shù)的概念、圖象和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題的思想方法。中學數(shù)學和大學數(shù)學中都有用到函數(shù)思想,而大學中是將函數(shù)進一步深化,更復雜一些,例如,函數(shù)的極限、連續(xù)性、極值等。
3.化歸思想:化歸思想的中心是轉(zhuǎn)化。原則是陌生問題熟悉化,復雜問題簡單化,抽象問題具體化,命題形式的轉(zhuǎn)化,引入輔助元素等。
4.數(shù)形結合思想:數(shù)學是以數(shù)和形為主干,劃分為代數(shù)和幾何兩個方向,而數(shù)和形又常常結合在一起,內(nèi)容上相互聯(lián)系,方法上相互滲透,并在一定條件下相互轉(zhuǎn)化。例如,平面向量的數(shù)量關系、解析幾何中曲線與方程的關系等。
5.邏輯思想:邏輯思想依賴于嚴謹?shù)臄?shù)學推理。推理是多樣的,其中歸納和類比是兩種應用極廣的推理。
a.歸納推理的過程:“發(fā)現(xiàn)問題”-“觀察問題”-“歸納問題”-“推廣問題”-“猜想”-“證明猜想”,例如,在某些證明中所使用的數(shù)學歸納法等。
b.類比:是根據(jù)兩個或兩類對象有部分屬性相同,推出它們的其它屬性也相同。類比方法有不同的類型:概念間的類比、形式間的類比、有限與無限間的類比等。
高等數(shù)學的體會篇六
高等數(shù)學是大學重要的數(shù)學基礎課程,涉及到微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計等多個學科領域,為學生的數(shù)學素養(yǎng)和綜合能力的提高帶來了巨大的幫助。如今,我已經(jīng)學習高等數(shù)學一年多,并考取了高分。在學習中,我積累了一些心得體會,現(xiàn)在愿意分享給大家。
一、認真理解概念
高等數(shù)學中包含了大量的數(shù)學概念,這些概念是該學科的基礎。我們要經(jīng)常復習、深刻理解這些概念,才能更好地庖闡數(shù)學原理,推導出數(shù)學公式。對于某些難以理解的概念,可以尋找一些相關的實例進行解釋,或者和同學一起討論,共同掌握這些概念,這樣才能更好地理解后面的內(nèi)容。
二、透徹掌握習題
高等數(shù)學的習題類型較多,需要我們不斷地練習,從而鞏固和提高自己的掌握程度。在做習題時,我們要遵循“由易到難”的原則,先做容易的,逐漸增加難度,提升自身的解題水平。做題時,也要注意拓展視野,不要僅局限于老師講授的范圍,多嘗試一些新的方法和角度。
三、整合思維方式
高等數(shù)學的學習需要我們具有一定的數(shù)學思維能力,這也是高等數(shù)學和初等數(shù)學一份四的區(qū)別所在。在學習中,我們要注重培養(yǎng)自己的數(shù)學思考能力,學會用多種方式解決一道問題,整合不同的思維方式,拓展自己的思路。這種能力的培養(yǎng)要靠平時的訓練,結合習題、考試和解題課等多種形式進行。
四、注重細節(jié)處理
在高等數(shù)學課程中,一個小小的細節(jié)往往決定著整道題的成敗。因此,在學習高等數(shù)學時,我們必須將注意力集中在題目的細節(jié)上,嚴謹?shù)貙Υ恳徊接嬎?,避免出現(xiàn)計算錯誤。同時,在做習題和考試時,我們也要注意填寫卷面和計算器的使用規(guī)范,這樣才能避免走彎路,保證高分通過。
五、多方面尋求幫助
高等數(shù)學作為一門比較重要的基礎課程,難度比較大,我們學習中難免會遇到困難。遇到問題時,我們應該多方面尋求幫助,可以找老師、同學或者其他渠道,與他人交流和探討,相互幫助提高解決問題的能力。此外,也要注重查找有關的參考書籍和一些網(wǎng)上的研究綜述,引領自己更快地掌握課程要點。
總之,高等數(shù)學雖然難,但只要認真刻苦,多方尋求幫助,注重方向且扎實整合思維方式,嚴謹處理學習細節(jié),逐漸提升自己的數(shù)學素養(yǎng)和思維能力,就可以取得好成績,為自己的學業(yè)和未來的發(fā)展提供堅實的保障。
高等數(shù)學的體會篇七
原本以為憑借小學到高中這十余年所總結出的數(shù)學學習方法,就能輕松應對大學高等數(shù)學的學習。
然而,經(jīng)過一個多學期的學習,我真正體會到高等數(shù)學的學習特點與以往所學習的數(shù)學大相徑庭。因此,我必須在學習過程中找到高等數(shù)學的獨特之處,總結出一套新的有效的方法,才能在高等數(shù)學的學習中做到游刃有余。
就我個人而言,我認為高等數(shù)學有以下幾個顯著特點:
(1)識記的知識相對減少,理解的知識點相對增加;
(2)不僅要求會運用所學的知識解題,還要明白其來龍去脈;
(3)系實際多,對專業(yè)學習幫助大;
(4)教師授課速度快,課下復習與預習必不可少。
以前上數(shù)學課,老師在黑板上寫滿各種公式和結論,我便一邊在書上勾畫,一邊在筆記本上記錄。
然后像背單詞一樣,把一堆公式與結論死記硬背下來。
哪種類型的題目用哪個公式、哪條結論,老師都已一一總結出來,我只需要將其對號入座,便可將問題解答出來。
而現(xiàn)在,我不再有那么多需要識記的結論。
唯一需要記住的只是數(shù)目不多的一些定義、定理和推論。
老師也不會給出固定的解題套路。因為高等數(shù)學與中學數(shù)學不同,它更要求理解。只要充分理解了各個知識點,遇到題目可以自己分析出正確的解題思路。
所以,學習高等數(shù)學,記憶的負擔輕了,但對思維的要求卻提高了。
每一次高數(shù)課,都是一次大腦的思維訓練,都是一次提升理解力的好機會。
高等數(shù)學的學習目的不是為了應付考試,因此,我們的學習不能停留在以解出答案為目標。
我們必須知道解題過程中每一步的依據(jù)。正如我前面所提到的,中學時期學過的許多定理并不特別要求我們理解其結論的推導過程。
而高等數(shù)學課本中的每一個定理都有詳細的證明。
最初,我以為只要把定理內(nèi)容記住,能做題就行了。
然而,漸漸地,我發(fā)現(xiàn)如果沒有真正明白每個定理的來龍去脈,就不能真正掌握它,更談不上什么運用自如了。
于是,我開始認真地學習每一個定理的推導。有時候,某些地方很難理解,我便反復思考,或請教老師、同學。盡管這個過程并不輕松,但我卻認為非常值得。
因為只有通過自己去探索的知識,才是掌握得最好的。
總而言之,高等數(shù)學的以上幾個特點,使我的數(shù)學學習歷程充滿了挑戰(zhàn),同時也給了我難得的鍛煉機會,讓我收獲多多。
進入大學之前,我們都是學習基礎的數(shù)學知識,聯(lián)系實際的東西并不多。在大學卻不同了。
不同專業(yè)的學生學習的數(shù)學是不同的。
正是因為如此,高等數(shù)學的課本上有了更多與實際內(nèi)容相關的`內(nèi)容,這對專業(yè)學習的幫助是不可低估的。
比如“常用簡單經(jīng)濟函數(shù)介紹”中所列舉的需求函數(shù),供給函數(shù),生產(chǎn)函數(shù)等等在西方經(jīng)濟學的學習中都有用到。
而“極值原理在經(jīng)濟管理和經(jīng)濟分析中的應用”這一節(jié)與經(jīng)濟學中的“邊際問題”密切相關。如果沒有這些知識作為基礎,經(jīng)濟學中的許多問題都無法解決。
當我親身學習了高等數(shù)學,并試圖把它運用到經(jīng)濟問題的分析中時,才真正體會到了數(shù)學方法是經(jīng)濟學中最重要的方法之一,是經(jīng)濟理論取得突破性發(fā)展的重要工具。這也堅定了我努力學好高等數(shù)學的決心。希望未來自己可以憑借扎實的數(shù)理基礎,在經(jīng)濟領域里大展鴻圖。
高等數(shù)學作為大學的一門課程,自然與其它課程有著共同之處,那就是講課速度快。
剛開始,我非常不適應。上一題還沒有消化,老師已經(jīng)講完下一題了。帶著幾分焦慮,我向?qū)W長請教學習經(jīng)驗,才明白大學學習的重點不僅僅是課堂,課下的預習與復習是學好高數(shù)的必要條件。
于是,每節(jié)課前我都認真預習,把不懂的地方作上記號。課堂上有選擇、有計劃地聽講。
課后及時復習,歸納總結。逐漸地,我便感到高數(shù)課變得輕松有趣。只要肯努力,高等數(shù)學并不會太難。
高等數(shù)學有其獨特之處,但它畢竟是數(shù)學,那么一定量的習題自然必不可少。
通過練習,才能更深入地理解,運用。
以上便是本人一個多學期以來,學習高等數(shù)學的一些體會。
希望自己能在以后的學習中更上一層樓!
高等數(shù)學的體會篇八
高等數(shù)學是大學必修課程之一,是數(shù)學學科的重要組成部分。在我小學和初中的數(shù)學課上,我一直都是數(shù)學的優(yōu)等生,但是對于高等數(shù)學,我卻感到了困惑和挑戰(zhàn)。在大學一年級的時候,我開始接觸高等數(shù)學課程,剛開始覺得不太適應,因此在此期間感覺相當壓抑。隨著時間的推移,我開始更深入地研究這門學科,并嘗試各種不同的學習方法,以便提高自己的成績。最終,在經(jīng)過無數(shù)次的努力后,我克服了困難,考出了令人滿意的高等數(shù)學成績。
第二段:回顧高等數(shù)學的考試經(jīng)驗
在學習高等數(shù)學的過程中,我不僅學到了許多知識和技能,也經(jīng)歷了很多考試。這些考試無疑是對我學習成果的檢驗,也讓我有機會去發(fā)現(xiàn)自己的弱點,找到不足之處,并嘗試改進和克服它們。另外,這些考試還讓我體會到了競爭的壓力和緊張氣氛,這些因素都激發(fā)了我更深入地學習高等數(shù)學的熱情。
第三段:總結高等數(shù)學的重要性
高等數(shù)學的學習不僅僅關乎學習數(shù)學知識,更重要的是培養(yǎng)了我學習的能力。在學習過程中,我不斷努力,練習思考和分析的能力,提高了自己的邏輯推理和解決問題的能力。這些都是遠遠超出課程范圍的技能,對我的職業(yè)生涯和個人發(fā)展有著深遠的影響。此外,學習高等數(shù)學還讓我感受到了知識的博大精深和對未知事物探索的熱情,這些元素也能夠?qū)ξ椅磥淼陌l(fā)展起到重要的支持作用。
第四段:點評吳昊的體會和經(jīng)驗
吳昊是我身邊一個優(yōu)秀的同學,在高等數(shù)學的學習中他取得了出色的成績。他的學習經(jīng)驗和體會也對我啟發(fā)和影響很大。從吳昊的學習經(jīng)驗中,我們可以看到他在學習過程中非常注重理論知識的掌握和實踐能力的培養(yǎng)。而且,吳昊非常善于把理論知識和實踐技能有機結合起來,不斷地總結和反思,從而實現(xiàn)了對高等數(shù)學的深入理解。這些學習方法和態(tài)度對我指引良多,讓我對高等數(shù)學的學習也有了更多的信心和動力。
第五段:思考未來發(fā)展方向
在未來的學習過程中,我還需要不斷地探索和尋求新的機遇和挑戰(zhàn),以提高自己的學習能力和職業(yè)素養(yǎng)。高等數(shù)學作為一門必修課程,是培養(yǎng)我學習能力和解決問題能力的重要途徑。在今后的學習和生活中,我將會更加努力和專注于高等數(shù)學的學習,以完成自己的職業(yè)規(guī)劃和個人發(fā)展目標。
高等數(shù)學的體會篇九
高等數(shù)學是理工科專業(yè)必修的一門重要課程,對于提升數(shù)學思維,培養(yǎng)分析和解決實際問題的能力有著重要的作用。在高等數(shù)學下冊學習的過程中,我深感受益匪淺。下面就是我對高等數(shù)學下冊的心得體會。
首先,高等數(shù)學下冊強調(diào)的是更深入的數(shù)學理論和應用。在上冊我們學習了微積分的基礎知識,在下冊我們進一步學習了微分方程、多元函數(shù)、空間解析幾何等內(nèi)容。這些內(nèi)容對于學習者來說都是比較新穎和抽象的,要求我們更深入地理解和掌握數(shù)學的概念和方法。通過學習下冊高等數(shù)學,我逐漸明白了數(shù)學是一門探索自然規(guī)律和解決實際問題的學科,數(shù)學理論與實際應用是密不可分的。
其次,高等數(shù)學下冊的學習注重于培養(yǎng)學生的邏輯思維和問題解決能力。數(shù)學是一門以邏輯為基礎的學科,通過學習高等數(shù)學下冊,我更加深刻地理解了邏輯思維和問題解決能力的重要性。在解題過程中,我們需要根據(jù)所學的數(shù)學理論與知識,運用邏輯推理,靈活運用解題方法,從而解決各種復雜的數(shù)學問題。通過不斷練習和思考,我逐漸提升了我的邏輯思維和問題解決能力,并且在其他學科中也能夠得到運用和提升。
第三,高等數(shù)學下冊的學習培養(yǎng)了我的數(shù)學抽象和建模能力。數(shù)學作為一門抽象的學科,需要我們學會抽象問題、建立數(shù)學模型,并在模型的基礎上進行分析和解決問題。在學習下冊高等數(shù)學的過程中,我有了更多的機會進行數(shù)學建模,并且通過實例分析和計算來驗證和應用模型。這種訓練不僅提高了我的數(shù)學抽象思維能力,還培養(yǎng)了我應對實際問題的能力。數(shù)學建模能力是未來工作和研究中必不可少的能力,通過學習下冊高等數(shù)學,我在這方面的能力得到了提升。
第四,高等數(shù)學下冊的學習強調(diào)了數(shù)學與實際問題的聯(lián)系。數(shù)學作為一門工具學科,它的應用范圍廣泛,與物理、化學、經(jīng)濟和工程等學科存在著密切的聯(lián)系。在學習下冊高等數(shù)學的過程中,我通過一些實際問題的分析和解決,深刻體會到了數(shù)學的實際應用。例如,在學習微分方程時,我們可以通過微分方程來描述一些物理現(xiàn)象、生態(tài)系統(tǒng)的變化規(guī)律等。這樣的學習過程增強了我對數(shù)學與實際問題之間聯(lián)系的認識,也讓我更加明確了數(shù)學的重要性。
最后,高等數(shù)學下冊的學習給我?guī)砹撕芏嗟目鞓贰?shù)學是一門極具美感的學科,通過解題和推導,我們可以發(fā)現(xiàn)數(shù)學之美。在學習下冊高等數(shù)學的過程中,我常常感受到當成功解答一個困難的問題時的喜悅和成就感,這也激發(fā)了我對數(shù)學的興趣和熱愛。在解題過程中,我探索、思考和創(chuàng)新,不斷挑戰(zhàn)自己,這種過程本身就是一種樂趣。
總之,通過學習高等數(shù)學下冊,我不僅在數(shù)學理論和應用上有了更深入的了解和認識,也發(fā)現(xiàn)了邏輯思維和問題解決能力在學習和工作中的重要性,培養(yǎng)了數(shù)學抽象和建模能力,增強了數(shù)學與實際問題之間的聯(lián)系,同時也感受到了數(shù)學學習的樂趣和成就感。這些都使我對高等數(shù)學下冊留下了深刻的印象和珍貴的回憶。我相信,通過對高等數(shù)學下冊的學習和體會,我將在今后的學習和工作中更好地運用數(shù)學,更好地解決各種實際問題。
高等數(shù)學的體會篇十
俗話說,熟能生巧。練習做多了,看到類似的問題就能輕松應付,對癥下藥。在做練習時,要清楚每一步的思路,上一步為什么會得到下一步,都要了如指掌。對不懂的問題一定要問。說到問,陶行知先生說過:“發(fā)明千千萬,起點在一問。”學數(shù)學也是一樣,一定要多動手,動口。在動口之前要先學會思考,因為思考了才會有問題可問。不要以為思考是那些做學問的學者們的專利,只要是有思想的人,任何人都可以步入思考的行列。只有在不斷思考探求中才能充實自己的大腦。當然也要避免盲目做習題,改變中學時期“只知道做題”的習慣。要獨立思考,不要做太多的難題、偏題。另外要注意數(shù)學語言表述的正確性,論證的嚴密性,養(yǎng)成一種科學嚴謹?shù)乃季S習慣。
高等數(shù)學的體會篇十一
本學期我擔任專科層次藥制13-1、藥分13-1、藥營13-1、生制13-1、中藥13-1五個班的《高等數(shù)學》教學工作,周課時20,按15個教學周,計300課時,另外還開設《太極拳》選修課30課時,共計330課時。
二、工作態(tài)度與方法。
工作態(tài)度方面,我每每中午去食堂是最后,甚至教工食堂收工,我得去學生食堂,只因我從不提前下課。我按時下課,但有時同學問問題,會弄遲些。在備課的時候,我會為一個問題的表述反復思考,看怎么能讓同學們更容易接受,總之,為了提高同學們的學習效率,自己是不計成本的。
鑒于高校老師不坐班,上完課就走人,師生交流僅限于課堂,我感覺這不利于學生發(fā)展。為此,我在課堂教學之余,采取多種方式--或當面引導,高屋建瓴,一語中的;或充分利用現(xiàn)代網(wǎng)絡媒體,與同學們在線交流。有時是解答他們在學習上的某一具體問題,有時是就人生成長過程中的困惑進行分析探討,為其答疑解惑,做其良師益友。
當然,更多的交流還是課堂教學,這里我稍微總結一下《高等數(shù)學》課程教學中的三個細節(jié):
三是積分部分,不定積分我強調(diào)練習,求積分(1)(2)(3)(4),練習得比較充分,定積分我強調(diào)理論,微積分基本公式的詳細推導雖不是考點,但我還是耐心引導、仔細講解……我這樣做一方面對想繼續(xù)深造的同學有利,另一方面,我是想讓自己嚴謹求實的工作作風給學生一些正面影響。
在評價考核方面,我十分注重過程性、形成性。我發(fā)現(xiàn),某個階段,如果學生草稿本“銷量”大增,其數(shù)學功力就有所提升,草稿本打得多與少,很大程度反映出一個人的數(shù)學學習狀態(tài)。因此第一堂課我就強調(diào),草稿本不要扔棄,寫完了送給我,我“記工分”(畫正字)。為防止有人為了工分而工分,12月底我就將這項活動截止。從效果上看,一方面督促大家你追我趕,多做多練;另一方面,也較真實地反映出大家平時的數(shù)學學習狀況,為學期末平時成績的評定提供了重要參考依據(jù)。一學期下來,草稿紙作為廢品賣掉,收入頗豐,相當于同學們請我吃了早茶,謝謝謝謝!
最后階段,我為了同學們更好地復習鞏固,考前給出《考試說明》,提示哪些知識點務必掌握,并鼓勵同學們根據(jù)考點提示成立“猜題委員會”,當然,您也可以美其名曰“高等數(shù)學互助學習志愿者協(xié)會”,說是猜題押題,實則是在引導更多的同學成為學霸,并請熱心的超級學霸將自己精美的《好題本》與大家分享,驅(qū)散學困生備考陰霾。
三、工作體會與感悟。
對于工作量,我想教師任課班級過多、班級人數(shù)過多、周課時過密,對教師、對學生都是不利的。說實在的,盡管同學們看見我都很有禮貌地叫:“老師好!”,但大部分同學的名字我是叫不出的。教書育人,兩者不可偏頗,很大程度上后者可能更重要些。
對于多媒體教學,我是積極參與并可謂“先行者”之一,但我愈來愈發(fā)現(xiàn)對于數(shù)學等課程,教師的板演是不可替代的,你可以制作多媒體動畫模擬板演,但還是不能替代教師站在黑板前一步步分析展開。當然,如果投影屏幕掛在黑板兩側再靠邊一點,提綱性的要領或大信息量的展示用一下,而黑板的粉塵能杜絕,彈指間就能局部擦除或全部清空,那就更方便了??傊?,時尚科技與經(jīng)典傳統(tǒng)要有機融合、揚長補短。
學包括高等數(shù)學是可以聽懂的,無論原來基礎好壞,只要認真聽,而要讓學生認真聽,得有趣、得活潑、得幽默。
對于教育事業(yè),我認為老師除了教書,更重要的是育人。因此,自己首先得是位真正的道德高尚之君,以自身灼熱的人格正氣讓每位接觸過的學生于無形中獲得一種人格的滋養(yǎng)與人性的清明。崇高的人格是一股強大的教育力量,崇高的人格是一座珍貴的教育寶藏。
我時常反思,自己有無教育教學誤區(qū)?比如師生關系,把握住“尊重”,這是教師工作的出發(fā)點,在學生之間不能主觀地圈定優(yōu)等生,去偏愛這些優(yōu)等生,教師偏愛少數(shù)“好學生”就是不尊重大多數(shù)學生。教師應該一視同仁,善待每一個學生,及時發(fā)現(xiàn)他們身上的優(yōu)點,幫助他們克服缺點,努力挖掘?qū)W生的潛在能力,給所有的學生創(chuàng)造表現(xiàn)才能的機會,尊重每一個學生。這里,對于我這門課平時成績較低的同學,我真誠地說聲:“對不起!”。我相信,您的`成績(自我評價,他人評價)會在后續(xù)的課程、未來的人生中節(jié)節(jié)攀升、漸入佳境。
高等職業(yè)教育的職業(yè)性、技術性、就業(yè)導向性以及巨大的就業(yè)壓力,迫使高職院校公共基礎課教學必須把高職學生普遍關注的就業(yè)能力問題作為基礎課教學改革的立足點與出發(fā)點,在提高學生就業(yè)創(chuàng)業(yè)能力,引導學生更快更好地提升職業(yè)能力、職業(yè)素養(yǎng)方面發(fā)揮重要作用。這對公共基礎課教師的教學觀念與教學能力是一大挑戰(zhàn)。我有一個想法,就是系統(tǒng)地學習臨床、藥學、護理等所任專業(yè)的所有課程,看看學生到底需要哪些數(shù)學知識?需要什么數(shù)學技能?思維品質(zhì)培養(yǎng)的關鍵在何處?做到心中有數(shù),以便打破公共基礎課和專業(yè)課之間的壁壘,將原先的公共基礎課融合穿插到各個學習領域的學習情境中去教學。
當然,公共基礎課不僅僅具有為專業(yè)課程服務的工具性功能,更具有“潤物細無聲”的人文教化功能。在今后的教學上,我爭取突破教學常規(guī),更高效更機智地處理問題,彰顯出更多的的課堂教學機智,妥帖恰當?shù)靥幚斫虒W突發(fā)事件,順勢而為地引導學生積極探索與思考,巧妙有效地幫助學生對重點、難點進行深入理解,自然流暢地啟發(fā)學生展開思維的翅膀,生動愉悅地引導學生步入人生智慧的魅力境界,同時,形成自己較高水平的教學智慧。
夏宜凡。
高等數(shù)學的體會篇十二
數(shù)學最需要強調(diào)的是基礎而不是技巧。很多同學不重視基礎的學習,反而只是忙著做題,做難題,就想通過題海戰(zhàn)術取勝,這是不行的,選擇輔導班一定不要選擇一味追求技巧的,可以上有命題組老師的輔導班,從而能夠準確把握命題思路,不至于走偏了方向。
善于歸納,學會總結,使知識條理化系統(tǒng)化。
善于總結也是我要十分強調(diào)的一點。因為很多同學做題的過程就到對過答案或是糾正過錯誤就簡單的結束了,一套題的價值也就到此為止了。大家在糾正完錯誤之后,再把這套試題從頭看一遍,總結一下自己都在哪些方面出錯了,原因是什么,這套題中有沒有出現(xiàn)我不知道的新的方法、思路,新推導出的定理、公式等,并把這些有用的知識全都寫到你的筆記本上,以便隨時查看和重點記憶。對于大題的解題方法,要仔細想一想,都涉及到哪些科目和章節(jié)了,這些知識點之間有哪些聯(lián)系等,從而使自己所掌握的知識系統(tǒng)化,以達到融會貫通。只有這樣,才能使你做過的題目實現(xiàn)其的價值,也才算是你真正做懂了一套題。如果你能夠這樣做了,那么做過的題在以后的復習中如果沒有時間了,就不用再拿出來重新看了,因為你已經(jīng)把要掌握的精華總結好了,只需看你的筆記本就行了。解數(shù)學題一定要從思路,原理的角度入手。
要勤于思考,多動腦子。
很多同學學數(shù)學就喜歡看例題,看別人做好的題目,分析別人總結好的解題方法、步驟。只這樣是遠遠不夠的。只是一味的被動的接受別人的東西,就永遠也變不成自己的東西。第一遍復習可以只看題,但以后就必須自己試著做了,先不看答案,完全通過自己的能力做著試試,不管能做到什么程度,起碼你自己先思考了,只有啟動自己的大腦,才會使知識更深入的得到理解和掌握,才能真正成為自己的知識,也才會具有獨立的解題能力。在做題時不要太輕易的選擇放棄,想一會兒沒有思路就去看答案,一定要仔細開動腦筋想過之后,實在不行再求助于外力。
高等數(shù)學的體會篇十三
第一段:引言(120字)
高等數(shù)學作為大學數(shù)學課程中的一門重要學科,不僅是理工科學生的必修課,更是培養(yǎng)學生分析解決問題能力的重要途徑。在學習高等數(shù)學的過程中,我感受到了數(shù)學的美妙與魅力,同時也深刻體會到了數(shù)學學習的重要性。通過這門課程的學習,我不僅提高了自己的數(shù)學水平,更具備了解決實際問題的能力,下面將分為邏輯推理能力的提升、問題解決能力的培養(yǎng)、批判性思維的養(yǎng)成、嚴密的思維訓練以及團隊合作精神的培養(yǎng)五個方面,詳細論述我在高等數(shù)學學習中的心得體會。
第二段:邏輯推理能力的提升(250字)
高等數(shù)學學習需要運用各種公式定理,進行推導證明。在這個過程中,我不斷鍛煉了自己的邏輯推理能力。老師引導我們學會分析問題,從多個角度去思考,利用數(shù)學方法解決問題。通過數(shù)學定理的證明,我更加深入地理解了邏輯推理的重要性以及問題求解的思路。此外,在高等數(shù)學的學習過程中,我還學會了如何將復雜問題分解為簡單子問題,逐步推導出一個完整的解決方案。這一過程的鍛煉不僅提高了我的數(shù)學素養(yǎng),還培養(yǎng)了我的邏輯思維能力,使我能夠更好地應對其他學科的學習和實際問題的解決。
第三段:問題解決能力的培養(yǎng)(250字)
高等數(shù)學學習強調(diào)實際問題的建模與求解,培養(yǎng)學生解決實際問題的能力。在課堂上,我親身體驗了數(shù)學在解決實際問題中的作用。通過案例分析和問題解決討論,我學會了將抽象概念和公式與實際問題相結合,找到問題的關鍵點,提出有效的解決方案。此外,高等數(shù)學課程還讓我了解了數(shù)學與其他學科的交叉點,從而拓寬了視野,幫助我更好地理解和解決其他學科的實際問題。
第四段:批判性思維的養(yǎng)成(250字)
高等數(shù)學學習強調(diào)學生的批判性思維能力的培養(yǎng)。在學習過程中,我發(fā)現(xiàn)數(shù)學不僅有固定答案,還有多種解決路徑和解釋方法。通過解析問題的不同方面,從不同的角度思考,我逐漸養(yǎng)成了批判性思維的習慣。我開始質(zhì)疑問題是否被正確解決,是否有更好的方法,這種思維方式不僅在高等數(shù)學學習中幫助我更好地理解概念和定理,還在其他學科和實際生活中使我更加理性和客觀。
第五段:嚴密的思維訓練與團隊合作精神的培養(yǎng)(320字)
高等數(shù)學中的復雜定理和抽象概念要求學生掌握嚴密的思維能力。在解題過程中,我不得不重復思考,審查每一個環(huán)節(jié),確保每個推導步驟的準確性和嚴密性。這過程雖然艱辛,但成功地提升了我的思維嚴密性和細心程度。另外,高等數(shù)學學習中的小組討論和團隊合作也給了我很大的啟示。通過與同學合作,每個人可以帶來不同的思路和見解,我們可以互相學習、互相鼓勵,并共同解決問題。這種團隊合作精神不僅在高等數(shù)學中得到培養(yǎng),還可以應用到其他學科和實際工作中。
結尾:總結(90字)
總的來說,高等數(shù)學的學習不僅提高了我的數(shù)學水平,更重要的是培養(yǎng)了我解決問題的能力、批判性思維以及團隊合作精神。這些能力將在我的未來學習和工作中發(fā)揮重要作用。通過高等數(shù)學的學習,我明白了數(shù)學不僅僅是一種學科,更是一種思維方式和處理問題的工具。
高等數(shù)學的體會篇十四
一個高中生升入大學學習后,不僅要在環(huán)境上、心理上適應新的學習生活,同時學習方法的改變也是一個不容忽視的方面。
從中學升入大學學習后,在學習方法上將會遇到一個比較大的轉(zhuǎn)折。首先是對大學的教學方式和方法會感到很不適應。這在高等數(shù)學課程的教學中反應特別明顯,因為它是一門對大一新生首當其沖的理論性較強的基礎理論課程。而學生正是習慣于模仿性和單一性的學習方法。這是從小學到中學的教育中長期養(yǎng)成的,一時還難以改變。
中學的教學方式和方法與大學有質(zhì)的差別,中學的學習學生是在教師的直接指導下進行模仿和單一性的學習,大學則是在教師的指導下進行創(chuàng)造性的學習。而大學高等數(shù)學課程的學習,教材僅是作為一種主要的參考書,要求學生以課堂上老師所講的重點和難點為線索,課后去鉆研教材和閱讀大量的同類參考書,然后去完成課后習題。就這樣反復地進行創(chuàng)造性學習。這是一種艱苦的腦力勞動,需要學生能反復地、自覺地進行學習。還要在松散的環(huán)境中能約束自己。
大學生活是人生的一大轉(zhuǎn)折點。大學時期注重于培養(yǎng)同學們的獨立生活、獨立思考、獨立分析問題和解決問題的能力,而不像中學那樣有一個依賴的環(huán)境。高等數(shù)學與高中數(shù)學相比有很大的不同,內(nèi)容上主要是引進了一些全新的數(shù)學思想,特別是無限分割逐步逼近,極限等;從形式上講,學習方式也很不一樣,特別是一般都是大班授課,進度快,老師很難個別輔導,故對自學能力的要求很高。中學時期主要是老師領著學,學生只需要跟著老師的指揮棒走就可以了,而在大學時主要靠自學,教師只起一個引導的作用。新同學應盡快適應大學生活,形成一個良好的開端,這對四年的大學生涯是有益的。
中學數(shù)學課程的中心是從具體數(shù)學到概念化數(shù)學的轉(zhuǎn)變。中學數(shù)學課程的宗旨是為大學微積分作準備。學習數(shù)學總要經(jīng)歷由具體到抽象、由特殊到一般的漸進過程。由數(shù)引導到符號,即變量的名稱;由符號間的關系引導到函數(shù),即符號所代表的對象之間的關系。高等數(shù)學首先要做的是幫助學生發(fā)展函數(shù)概念——變量間關系的表述方式。這就把同學們的理解力從常量推進到變量、從描述推進到證明、從具體情形推進到一般方程,開始領會到數(shù)學符號的威力。但《高等數(shù)學》的主要內(nèi)容是微積分,它繼承了中學的訓練,它們之間有千絲萬縷的聯(lián)系。
為了適應21世紀高等數(shù)學課程的教學改革,高等數(shù)學課程的教學也發(fā)生了很大的變化,在傳統(tǒng)的教學手段的基礎上,采用了更加具體化、形象化的現(xiàn)代教育技術,這也是一般中學所沒有的,因此,同學們在進入大學以后,不僅要注意高等數(shù)學課程的內(nèi)容與中學數(shù)學的區(qū)別與聯(lián)系,還要盡快適應高等數(shù)學課程的新的教學特點。認真上好第一節(jié)高等數(shù)學課,嚴格按照任課老師的要求去做。若能堅持做到,課前預習,課上聽講,課后復習,認真完成作業(yè),課后對所學的知識進行歸納總結,加深對所學內(nèi)容的理解,從而也就掌握了所學的知識,就不難學好高等數(shù)學這門課。有些同學就是沒有把握好自己,一看高等數(shù)學一開始的內(nèi)容和中學所學內(nèi)容極其相似,就掉以輕心,認為自己看看就會了,要么不聽課,要么不完成作業(yè),結果導致后面的章節(jié)聽不懂,跟不上,甚至有的同學就一直跟不上,學期末成績不理想,甚至不及格。
第一,要勤學、善思、多練。所謂學,包括學和問兩方面,即向教師,向同學,向自己學和問。惟有在“學中問”和“問中學”,才能消化數(shù)學的概念、理論、方法;所謂思,就是將所學內(nèi)容,經(jīng)過思考加工去粗取精,抓本質(zhì)和精華。華羅庚“抓住要點”使“書本變薄”的這種勤于思考、善于思考、從厚到薄的學習數(shù)學的方法,值得我們借鑒;所謂習,就《高等數(shù)學》而言,就是做練習,這是數(shù)學自身的特點。練習一般分為兩類,一是基礎訓練練習,經(jīng)常附在每章每節(jié)之后,這類問題相對來說比較簡單,無大難度,但很重要,是打基礎部分。二是提高訓練練習,知識面廣些,不局限于本章本節(jié),在解決的方法上要用到多種數(shù)學工具。數(shù)學的練習是消化鞏固知識極重要的一個環(huán)節(jié),舍此達不到目的。
第二,狠抓基礎,循序漸進。任何學科,基礎內(nèi)容常常是最重要的部分,它關系到學習的成敗與否?!陡叩葦?shù)學》本身就是數(shù)學和其他學科的基礎,而《高等數(shù)學》又有一些重要的基礎內(nèi)容,它關系到整個知識結構的全局。以微積分部分為例,極限貫穿著整個微積分,函數(shù)的連續(xù)性及性質(zhì)貫穿著后面一系列定理結論,初等函數(shù)求導法及積分法關系到今后各個學科。因此,一開始就要下狠功夫,牢牢掌握這些基礎內(nèi)容。在學習《高等數(shù)學》時要一步一個腳印,扎扎實實地學和練。第三,歸類小結,從厚到薄。記憶總的原則是抓綱,在用中記。歸類小結是一個重要方法?!陡叩葦?shù)學》歸類方法可按內(nèi)容和方法兩部分小結,以代表性問題為例輔以說明。在歸類小節(jié)時,要特別注意有基礎內(nèi)容派生出來的一些結論,即所謂一些中間結果,這些結果常常在一些典型例題和習題上出現(xiàn),如果你能多掌握一些中間結果,則解決一般問題和綜合訓練題就會感到輕松。
第四,精讀一本參考書。實踐證明,在教師指導下,抓準一本參考書,精讀到底,如果你能熟讀了一本有代表性的參考書,再看其它參考書就會迎刃而解了。
第五,注意學習效率。數(shù)學的方法和理論的掌握,常常需要做到熟能生巧、觸類旁通。人不可能通過一次學習就掌握所學的知識,需要有幾個反復。所謂“學而時習之”、“溫故而知新”都是指學習要經(jīng)過反復多次?!陡叩葦?shù)學》的記憶,必須建立在理解和熟練做題的基礎上,死記硬背無濟于事。
1.書:課本+習題集(必備),因為學好數(shù)學絕對離不開多做題,建議習題集最好有本跟考研有關的,這樣也有利于你做好將來的考研準備。
2.筆記:盡量有,我說的筆記不是指原封不動的抄板書,那樣沒意思,而且不必非單獨用個小本,可記在書上。關鍵是在筆記上一定要有自己對每一章知識的總結,類似于一個提綱,(有時老師或參考書上有,可以參考),最好還有各種題型+方法+易錯點。
3.上課:建議最好預習后聽,聽不懂不要緊,很多大學的課程都是靠課下結合老師的筆記自己重新看。但是記住:高數(shù)千萬別搞考前突擊,絕對行不通,所以平時你就要跟上,步步盡量別斷層。
4.學好高數(shù)=基本概念透+基本定理牢+基本網(wǎng)絡有+基本常識記+基本題型熟。數(shù)學就是一個概念+定理體系(還有推理),對概念的理解至關重要,比如說極限、導數(shù)等,你既要有形象的對它們的理解,也要熟記它們的數(shù)學描述,不用硬背,可以自己對著書舉例子,畫個圖看看(形象理解其實很重要),然后多做題,做題中體會。建議你用一只彩筆專門把所有的概念標出來,這樣看書時一目了然(定理用方框框起來)。基本網(wǎng)絡就是上面說的筆記上的總結的知識提綱,也要重視?;境WR就是高中時老師常說的“準定理”,就是書上沒有,在習題中我們總結的可以當定理或推論用的東西,還有一些自己小小的經(jīng)驗。這些東西不正式但很有用的,比如各種極限的求法。
這些都做到了,高等數(shù)學應該學得不會差了,至少應付考試沒問題。如果你想提高些,可以做些考研的數(shù)學題,體會一下,其實也不過如此,并不象你想象的那么難。還可以看些關于高數(shù)應用的書,其實數(shù)學本來就是從應用中來的,你會知道高等數(shù)學真的很有用。
高等數(shù)學的體會篇十五
第一段:學習動機與目標(引言)
高等數(shù)學是一門對于大部分大學生來說充滿挑戰(zhàn)的學科。作為一名大學生,我對高等數(shù)學學習非常重視,因為它是我專業(yè)學習的基礎課程之一。在學習高等數(shù)學的過程中,我經(jīng)歷了許多辛苦和困惑,但也從中收獲了很多。在這篇文章中,我將與大家分享我的高等數(shù)學學習心得體會。
第二段:規(guī)劃和時間管理(學習方法和技巧)
在面對高等數(shù)學這門課程時,我意識到規(guī)劃和時間管理是非常重要的。高等數(shù)學包含了大量的知識點和公式,因此我制定了一個學習計劃,將每個知識點分配到不同的時間段,并給自己留出足夠的時間進行復習和鞏固。我還學會了合理安排每天的學習時間,將重點放在疑難問題上,以便更好地掌握知識。
第三段:找到適合自己的學習方式(學習方法和技巧)
在高等數(shù)學學習的過程中,我發(fā)現(xiàn)找到適合自己的學習方式能夠提高學習效果。有些人更適合通過聽講座和課堂上的互動來學習,而我更喜歡通過自學和解題來掌握知識。我經(jīng)常和同學們一起組隊討論問題,通過交流和互幫互助來解決難題。這種學習方式不僅鞏固了我的知識,還提高了我的解題能力和思維靈活性。
第四段:克服困難與堅持學習(學習態(tài)度與人生觀)
高等數(shù)學是一門需要耐心和恒心的學科。在學習過程中,我遇到了許多困難和挫折,但我相信只要堅持下去,就一定能夠克服這些困難并取得好成績。我時常重復著“努力就會有回報”的信念,堅持每天都學習一段時間高等數(shù)學,無論是通過自學、參加輔導班或向老師請教,我都不放棄任何機會來提高自己的數(shù)學水平。
第五段:從高等數(shù)學中的應用反思(學科價值與人生思考)
通過學習高等數(shù)學,我不僅掌握了數(shù)學知識,更培養(yǎng)了自己的邏輯思維和問題解決能力。高等數(shù)學課程中的許多概念和方法在實際生活中都有廣泛的應用。數(shù)學是一門實用的學科,它不僅幫助我們理解世界的運作方式,還能培養(yǎng)我們的邏輯思維和抽象思維能力。通過高等數(shù)學的學習,我深深體會到數(shù)學不僅僅是個工具,更是一門能夠引導我們思考和解決問題的科學。
總結:
通過高等數(shù)學的學習,我不僅掌握了基本概念和方法,也培養(yǎng)了自己的學習方法和態(tài)度。我發(fā)現(xiàn)規(guī)劃和時間管理對于高等數(shù)學學習非常重要,找到適合自己的學習方式能夠提高學習效果。在困難和挫折面前要堅持學習,相信努力會有回報。最重要的是,高等數(shù)學的學習不僅可以提高我們的數(shù)學水平,還能幫助我們培養(yǎng)邏輯思維和解決問題的能力。通過高等數(shù)學的學習,我對數(shù)學這門學科有了更深入的理解,也對自己的學習和未來充滿了信心。
高等數(shù)學的體會篇十六
隨著科技日新月異的發(fā)展和電腦無孔不入的應用。高等數(shù)學課程作為一種數(shù)學工具的功能正在逐步縮減。但作為一種思維方法的載體的功能(例如訓練學生辯證思維、邏輯推理、發(fā)現(xiàn)同題及分析同題的能力)卻愈顯風采。一個多元線性方程組如何去解?我們可以交給電腦去完成,只要會正確使用數(shù)學軟件。但一個實際問題如何通過數(shù)學建模轉(zhuǎn)化為一個數(shù)學同題,除了必須具備許多綜合的知識,還需要具備一定的分析推理能力,這種素質(zhì)自然可以通過生活來積累,但如果能夠通過象高等數(shù)學這樣的課程作為載體來進行系統(tǒng)訓練,將是事半功倍的。
以往對工科學生來講,高等數(shù)學的教學比較偏重于計算方法的訓練,例如,如何計算極限,計算導數(shù),計算積分,通過熟練掌握計算方法來加深對概念的理解,這是學習高等數(shù)學的一條捷便之徑。但是從二十一世紀更加需要創(chuàng)新人才的觀點看,從高等數(shù)學的概念中直接去提煉一種分析推理能力及實際應用能力,將是更加重要的。(當然,在改革的力度還未到位時,由于教學要求及教材等原因。學習高等數(shù)學并不能僅偏重于概念,對基本的計算方法必須熟練地掌握。如今就如何學好高等數(shù)學的基本概念。提出一些拙見供同學參考。
我們觀察一個物體,如果僅僅通過平視去進行,那么對這個物體的認識往往是局部的,甚至是扭曲的,只有從正視、俯視、側視的多角度去觀察與綜合,方能得到物體正確的空間定位。觀察事物尚且如此,要理解一個抽象的概念,如果只有單向的思維方法,肯定只能淺嘗輒止。只有從正反兩個方向去透視概念,才能較深地抓住概念中一些本質(zhì)的東西。這里所說的正方向思維應該包含幾層意思:一是概念的定義是如何敘述的,二是概念所尉帶的條件是必要的。還是充分的'?三是概念產(chǎn)生的實際背景是什么?這里所說的反方向思維又應該包含兩層意思:一是對一個概念的否定是怎樣表達的?二是如果錯誤的理解了概念中的一些條件會導致什么樣的錯誤結果。
發(fā)現(xiàn)問題呢?首先要提倡自學,在自己預習教材(也鍛煉了一種自學能力)的過程中很容易發(fā)現(xiàn)不懂的同題,帶著同題再去聽課就會有的放矢。其次是聽課之后做習題之前要認真復習消化課上的內(nèi)容,只要積極地開動腦筋,從中是會發(fā)現(xiàn)很多問題的,在這個較深層次上發(fā)現(xiàn)問題又去解決問題(可以通過同學與老師的幫助),那么分析問題的能力就會有一個質(zhì)的提高。
學習數(shù)學,不做習題是絕對不行的。因為耐概念究竟理解與否檢驗的最后關口是習題。一道習題不會做或者做錯了,肯定是某些概念投有消化好,帶著習題再來復習理解概念,拄往會摩擦出新的思想火花。學習高等數(shù)學的過程中,我們不主張采用中學的題海戰(zhàn),但對每道習題不但要弄懂正確的解法,而且盡量要考慮能否有多種解法。這還不夠,進一步的思考是一些似是而非的錯誤解法究竟錯在哪里?必定是對概念理解的偏差才導致的錯誤結果。經(jīng)過又一次正反兩個層面的開掘。思考深入了,學習的興趣也會逐步培育起來。
高等數(shù)學的體會篇十七
隨著科技日新月異的發(fā)展和電腦無孔不入的應用.高等數(shù)學課程作為一種數(shù)學工具的功能正在逐步縮減.但作為一種思維方法的載體的功能(例如訓練學生辯證思維、邏輯推理、發(fā)現(xiàn)同題及分析同題的能力)卻愈顯風采。一個多元線性方程組如何去解?我們可以交給電腦去完成,只要會正確使用數(shù)學軟件。但一個實際問題如何通過數(shù)學建模轉(zhuǎn)化為一個數(shù)學同題,除了必須具備許多綜合的知識,還需要具備一定的分析推理能力,這種素質(zhì)自然可以通過生活來積累,但如果能夠通過象高等數(shù)學這樣的課程作為載體來進行系統(tǒng)訓練,將是事半功倍的。
以往對工科學生來講,高等數(shù)學的教學比較偏重于計算方法的訓練,例如,如何計算極限,計算導數(shù),計算積分,通過熟練掌握計算方法來加深對概念的理解,這是學習高等數(shù)學的一條捷便之徑。但是從二十一世紀更加需要創(chuàng)新人才的觀點看,從高等數(shù)學的概念中直接去提煉一種分析推理能力及實際應用能力,將是更加重要的。(當然,在改革的力度還未到位時,由于教學要求及教材等原因.學習高等數(shù)學并不能僅偏重于概念,對基本的計算方法必須熟練地掌握。如今就如何學好高等數(shù)學的基本概念。提出一些拙見供同學參考。
1)從正反兩個層面理解概念
我們觀察一個物體,如果僅僅通過平視去進行,那么對這個物體的認識往往是局部的,甚至是扭曲的,只有從正視、俯視、側視的多角度去觀察與綜合,方能得到物體正確的空間定位。觀察事物尚且如此,要理解一個抽象的概念,如果只有單向的思維方法,肯定只能淺嘗輒止.只有從正反兩個方向去透視概念,才能較深地抓住概念中一些本質(zhì)的東西。這里所說的正方向思維應該包含幾層意思:一是概念的定義是如何敘述的,二是概念所尉帶的條件是必要的.還是充分的?三是概念產(chǎn)生的實際背景是什么?這里所說的反方向思維又應該包含兩層意思:一是對一個概念的否定是怎樣表達的?二是如果錯誤的理解了概念中的一些條件會導致什么樣的錯誤結果。
2)學與問
發(fā)現(xiàn)問題呢?首先要提倡自學,在自己預習教材(也鍛煉了一種自學能力)的過程中很容易發(fā)現(xiàn)不懂的同題,帶著同題再去聽課就會有的放矢。其次是聽課之后做習題之前要認真復習消化課上的內(nèi)容,只要積極地開動腦筋,從中是會發(fā)現(xiàn)很多問題的,在這個較深層次上發(fā)現(xiàn)問題又去解決問題(可以通過同學與老師的幫助),那么分析問題的能力就會有一個質(zhì)的提高。
3)做習題與想習題
學習數(shù)學,不做習題是絕對不行的.因為耐概念究竟理解與否檢驗的最后關口是習題。一道習題不會做或者做錯了,肯定是某些概念投有消化好,帶著習題再來復習理解概念,拄往會摩擦出新的思想火花。學習高等數(shù)學的過程中,我們不主張采用中學的題海戰(zhàn),但對每道習題不但要弄懂正確的解法,而且盡量要考慮能否有多種解法。這還不夠,進一步的思考是一些似是而非的錯誤解法究竟錯在哪里?必定是對概念理解的偏差才導致的錯誤結果.經(jīng)過又一次正反兩個層面的開掘.思考深入了,學習的興趣也會逐步培育起來。
高等數(shù)學的體會篇一
作為一門數(shù)學專業(yè)的必修課程,高等數(shù)學對學生來說并不易于掌握,需要在學習中不斷地消化吸收。而吳昊,則是一位對高等數(shù)學有深入研究,并且在教學中取得了較好成績的老師。因此,我們會特別關注吳昊的高等數(shù)學心得體會,從中汲取經(jīng)驗,提高學習效率。
第二段:心得體會一:高等數(shù)學需要系統(tǒng)性學習
吳昊表示,高等數(shù)學知識體系龐雜,而且知識之間的聯(lián)系非常緊密。因此,學生需要先從系統(tǒng)性入手,掌握高等數(shù)學的整體框架和學習路線。在學習中要注意先后順序,不能掉以輕心,否則就會遇到迷失方向的情況。
第三段:心得體會二:掌握基礎知識是關鍵
高等數(shù)學中的每一個概念,都是建立在基礎之上的。如果基礎學習不扎實,那么后期的學習也無從談起。因此,吳昊建議學生在學習高等數(shù)學之前,先重視基礎概念的學習,鞏固數(shù)學的基礎知識,才能更好地理解和掌握高等數(shù)學。
第四段:心得體會三:靈活運用解題思路
高等數(shù)學中的問題并不單一,其解題方法也需要靈活變通。吳昊提醒學生,在學習高等數(shù)學時,不能僅僅停留在概念和公式的記憶,而應該注重解決具體問題的能力。在解題過程中,應該運用多種思路,靈活變換解題方法,從而提高解題的效率和準確性。
第五段:結尾及總結
高等數(shù)學在數(shù)學專業(yè)中占據(jù)著重要的地位,不僅有助于理論的研究,還能為工程應用提供數(shù)學依據(jù)。吳昊的高等數(shù)學心得體會不僅是學生能夠?qū)W好高等數(shù)學的經(jīng)驗之談,也能幫助教師對高等數(shù)學教學的優(yōu)化。通過吳昊的經(jīng)驗與體會,我們可以更加準確地把握高等數(shù)學的學習方向,提高學習效率,做好學科的拓展與深化。
高等數(shù)學的體會篇二
高等代數(shù)作為數(shù)學基礎中的一門重要學科,是我在大學學習生涯中必修的一門課程。在這門課上,我深入學習了向量空間、線性代數(shù)、矩陣理論等等,并從中得出了一些心得體會。
第二段:突破自我認知
在學習高等代數(shù)的過程中,我發(fā)現(xiàn)自己原本對數(shù)學的學習方法是缺失的。在以往的學習過程中,我往往會死記硬背定理和公式,而高等代數(shù)的學習則需要我不斷拓展自己的思路和認知。通過學習高等代數(shù),我突破了自我對數(shù)學的認知,從“背誦”到“理解”,從“計算”到“思考”。
第三段:運用于實際生活
高等代數(shù)學習對我的實際生活也有很大的幫助。在學習過程中,我不僅掌握了向量、矩陣等基本的數(shù)學工具,還學會了如何將這些數(shù)學知識應用到生活實踐中。在處理各種實際問題時,我能夠運用這些學習到的高等代數(shù)知識,分析出問題的本質(zhì),得到更準確的結論。
第四段:加深對數(shù)學基礎的理解
高等代數(shù)學習也加深了我對數(shù)學基礎的理解。 我們只有在基礎理解的基礎上才能建立更深層的學習,高等代數(shù)學習在一定程度上鞏固了我在初等數(shù)學學習中所掌握的知識,特別是空間幾何方面的知識,越是基礎的知識點就越是能讓我對數(shù)學產(chǎn)生新的認知和體驗。
第五段:總結
在高等代數(shù)的學習過程中,我收獲了很多。除了掌握一些有用的數(shù)學知識外,我還學會了如何更好地應對數(shù)學學習,這對我的未來學習、工作、生活都有很大的幫助。高等代數(shù)學習讓我不斷突破自我,提高了對基礎數(shù)學知識的理解,讓我對數(shù)學知識擁有更深入的體會和認知。
高等數(shù)學的體會篇三
高等代數(shù)學習是大學數(shù)學重要的一部分,相較于初等代數(shù),高等代數(shù)更為抽象和理論化,對于學生來說大有難度。但是隨著時間的推移,我漸漸開始感到了高等代數(shù)的魅力,也逐漸發(fā)現(xiàn)了學習高等代數(shù)的重要性。在這篇文章中,我將分享自己在高等代數(shù)學習過程中所得到的心得和體會。
第二段:抵抗初衷
學習高等代數(shù)的第一階段,我感到了很大的挑戰(zhàn)和困惑。在不斷滑坡中,我內(nèi)心渴望退出,想要擺脫這門讓我疲憊的學科。四年前,我開始學習線性代數(shù),我認為自己已經(jīng)成功掌握了這種代數(shù)學基礎,在此基礎上學習更高級的代數(shù)只需要一點點努力就可以了。然而,我發(fā)現(xiàn)自己所擁有的數(shù)學知識并沒有真正利于我掌握高等代數(shù)的本質(zhì)和更深層的觀念。開始的時候,我覺得自己面對了一個難題,無法克服這個阻礙心名字邁出的頑爍。
第三段:不斷嘗試
然而,隨著不斷的努力、不斷的嘗試,我開始慢慢了解到了自己所面對問題的真正本質(zhì)。我閱讀了更多更深的數(shù)學論文,掌握了基本概念,進而對所學的東西有了更深刻的理解。我漸漸地意識到,只是單純地閱讀數(shù)學問題和相關理論是遠遠不夠的。我也需要進行自己的實踐,去親身探究一些問題。因為只有通過實踐,才能夠找到真正有效的方法和途徑。
第四段:逐漸領悟
在實踐之中,我越來越理解到高等代數(shù)學的優(yōu)點。高等代數(shù)學的優(yōu)點在于其極具抽象性以及精致的理論系統(tǒng)。我發(fā)現(xiàn)高等代數(shù)對數(shù)學、物理、工程學以及計算機科學等方面非常重要,而且與其他學科密切相關。在我逐漸習慣、理解和掌握高等代數(shù)的過程中,我越來越喜歡它的項目。。我感到,高等代數(shù)不僅有助我掌握各種概覽和概念,還可以幫助我更精準地理解其他學科的內(nèi)容。能夠被如此深刻的理解事物的方法,我認為是很難得的。
第五段:結論
總之,學習高等代數(shù)是一個充滿挑戰(zhàn)性的過程。如果你認真學習,努力訓練,并找到了有效的學習方法,那么這個過程 will將讓你受益良多,并且對我們今后的職業(yè)生涯和個人思考能力都會受益。我感謝高等代數(shù)讓我拓寬了我的視野,并讓我認識到,對于我的專業(yè)及其他方面,學習和鉆研決不是終點。相反,它開啟了一個探索不斷、充滿挑戰(zhàn)但也充滿可能性的新世界。
高等數(shù)學的體會篇四
高等數(shù)學是大學數(shù)學教學中的一門重要課程,它深入探討了微積分、常微分方程、多元函數(shù)等數(shù)學領域的理論與應用。作為一名學習高等數(shù)學的學生,通過學習本學期下冊的高等數(shù)學課程,我有了一些心得體會。在這篇文章中,我將分享我對于高等數(shù)學下冊的認識和體悟,以及它對于我的學習和思維方式的影響。
第一段:高等數(shù)學下冊的知識體系
高等數(shù)學下冊是高等數(shù)學課程的延續(xù),它包含了微分方程、重積分、無窮級數(shù)和場論等內(nèi)容。與上冊相比,下冊的內(nèi)容更加深入和細致。通過學習下冊的課程,我對高等數(shù)學的整體框架有了更加清晰的認識,同時也加深了對微積分的理解。微分方程是高等數(shù)學下冊的重點之一,它在科學研究和工程應用中具有重要意義。通過學習微分方程,我對于它在實際問題中的應用有了更深刻的認識,從而增強了我的問題解決能力。
第二段:高等數(shù)學下冊的邏輯思維
高等數(shù)學下冊的學習過程強調(diào)了邏輯思維的培養(yǎng)。在解題過程中,我學會了運用嚴密的邏輯推理和抽象思維來分析問題,從而解決復雜的數(shù)學問題。在學習重積分和無窮級數(shù)時,尤其需要運用邏輯思維進行推導和證明。通過這些習題的解答,我逐漸培養(yǎng)出了邏輯思維的能力,提高了自己的數(shù)學素養(yǎng)。我相信,邏輯思維的培養(yǎng)不僅對于學習數(shù)學有著重要意義,也對于我們?nèi)粘I詈吐殬I(yè)發(fā)展具有積極影響。
第三段:高等數(shù)學下冊的實踐能力
學習高等數(shù)學下冊的過程中,我發(fā)現(xiàn)課本中的理論和知識需要通過實踐來加深理解。例如,在學習微分方程時,我們需要通過實際問題的建模和求解,來驗證所學知識的正確性和適用性。通過課堂上的實例和作業(yè)的練習,我提高了自己的實踐能力。而這種實踐能力也是在工程和科技領域中所必須具備的。通過實踐能力的培養(yǎng),我相信自己在未來的學習和工作中能夠更好地應對各種挑戰(zhàn)。
第四段:高等數(shù)學下冊的學習方法
面對高等數(shù)學下冊的內(nèi)容,我深刻體會到了合理的學習方法的重要性。在解決數(shù)學問題時,我逐漸掌握了一些學習技巧。例如,在學習微分方程和重積分時,我會先了解和理解基本概念,然后通過刻意練習來掌握解題方法,并在課后復習中加深對知識的理解。這些學習方法的應用使我在高等數(shù)學下冊的學習中事半功倍。我認為,學習方法的培養(yǎng)是學習高等數(shù)學下冊的必要過程,也是提高學習效率的關鍵。
第五段:高等數(shù)學下冊的啟示和反思
通過學習高等數(shù)學下冊,我認識到高等數(shù)學不僅僅是一門課程,更是培養(yǎng)學生綜合素質(zhì)的重要途徑。通過學習高等數(shù)學,我不僅僅掌握了數(shù)學知識,更學會了思考問題、理解問題和解決問題的方法。高等數(shù)學下冊的學習,培養(yǎng)了我對于數(shù)學的興趣和學術追求。同時,我也反思了自己在學習中存在的不足,例如在理解概念和應用推導方面有待提高。在今后的學業(yè)中,我會更加注重培養(yǎng)自己的邏輯思維和實踐能力,提高學習方法的靈活應用,以達到更好的學習效果。
總結起來,通過對高等數(shù)學下冊的學習,我對于高等數(shù)學的知識體系、邏輯思維、實踐能力和學習方法有了更深入的理解和認識。同時,我也發(fā)現(xiàn)高等數(shù)學不僅僅是一門學科,更是培養(yǎng)學生思維能力和解決問題能力的過程。通過學習高等數(shù)學下冊,我不僅提高了自己的數(shù)學水平,也增強了自信和對學習的熱愛。我相信,在今后的學習和人生中,我會繼續(xù)努力,追求更高的數(shù)學境界和學術成就。
高等數(shù)學的體會篇五
1.極限思想:是一種漸進變化的數(shù)學思想。利用有限描述無限,由近似到精確的一種過程。極限思想是高等數(shù)學必不可少的一種重要方法,是高等數(shù)學與初等數(shù)學的本質(zhì)區(qū)別。利用極限思想方法解決了許多初等數(shù)學無法解決的問題,例如,求瞬時速度、曲線弧長、曲邊形面積、曲面體體積等問題。
2.函數(shù)思想:是通過構造函數(shù),利用函數(shù)的概念、圖象和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題的思想方法。中學數(shù)學和大學數(shù)學中都有用到函數(shù)思想,而大學中是將函數(shù)進一步深化,更復雜一些,例如,函數(shù)的極限、連續(xù)性、極值等。
3.化歸思想:化歸思想的中心是轉(zhuǎn)化。原則是陌生問題熟悉化,復雜問題簡單化,抽象問題具體化,命題形式的轉(zhuǎn)化,引入輔助元素等。
4.數(shù)形結合思想:數(shù)學是以數(shù)和形為主干,劃分為代數(shù)和幾何兩個方向,而數(shù)和形又常常結合在一起,內(nèi)容上相互聯(lián)系,方法上相互滲透,并在一定條件下相互轉(zhuǎn)化。例如,平面向量的數(shù)量關系、解析幾何中曲線與方程的關系等。
5.邏輯思想:邏輯思想依賴于嚴謹?shù)臄?shù)學推理。推理是多樣的,其中歸納和類比是兩種應用極廣的推理。
a.歸納推理的過程:“發(fā)現(xiàn)問題”-“觀察問題”-“歸納問題”-“推廣問題”-“猜想”-“證明猜想”,例如,在某些證明中所使用的數(shù)學歸納法等。
b.類比:是根據(jù)兩個或兩類對象有部分屬性相同,推出它們的其它屬性也相同。類比方法有不同的類型:概念間的類比、形式間的類比、有限與無限間的類比等。
高等數(shù)學的體會篇六
高等數(shù)學是大學重要的數(shù)學基礎課程,涉及到微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計等多個學科領域,為學生的數(shù)學素養(yǎng)和綜合能力的提高帶來了巨大的幫助。如今,我已經(jīng)學習高等數(shù)學一年多,并考取了高分。在學習中,我積累了一些心得體會,現(xiàn)在愿意分享給大家。
一、認真理解概念
高等數(shù)學中包含了大量的數(shù)學概念,這些概念是該學科的基礎。我們要經(jīng)常復習、深刻理解這些概念,才能更好地庖闡數(shù)學原理,推導出數(shù)學公式。對于某些難以理解的概念,可以尋找一些相關的實例進行解釋,或者和同學一起討論,共同掌握這些概念,這樣才能更好地理解后面的內(nèi)容。
二、透徹掌握習題
高等數(shù)學的習題類型較多,需要我們不斷地練習,從而鞏固和提高自己的掌握程度。在做習題時,我們要遵循“由易到難”的原則,先做容易的,逐漸增加難度,提升自身的解題水平。做題時,也要注意拓展視野,不要僅局限于老師講授的范圍,多嘗試一些新的方法和角度。
三、整合思維方式
高等數(shù)學的學習需要我們具有一定的數(shù)學思維能力,這也是高等數(shù)學和初等數(shù)學一份四的區(qū)別所在。在學習中,我們要注重培養(yǎng)自己的數(shù)學思考能力,學會用多種方式解決一道問題,整合不同的思維方式,拓展自己的思路。這種能力的培養(yǎng)要靠平時的訓練,結合習題、考試和解題課等多種形式進行。
四、注重細節(jié)處理
在高等數(shù)學課程中,一個小小的細節(jié)往往決定著整道題的成敗。因此,在學習高等數(shù)學時,我們必須將注意力集中在題目的細節(jié)上,嚴謹?shù)貙Υ恳徊接嬎?,避免出現(xiàn)計算錯誤。同時,在做習題和考試時,我們也要注意填寫卷面和計算器的使用規(guī)范,這樣才能避免走彎路,保證高分通過。
五、多方面尋求幫助
高等數(shù)學作為一門比較重要的基礎課程,難度比較大,我們學習中難免會遇到困難。遇到問題時,我們應該多方面尋求幫助,可以找老師、同學或者其他渠道,與他人交流和探討,相互幫助提高解決問題的能力。此外,也要注重查找有關的參考書籍和一些網(wǎng)上的研究綜述,引領自己更快地掌握課程要點。
總之,高等數(shù)學雖然難,但只要認真刻苦,多方尋求幫助,注重方向且扎實整合思維方式,嚴謹處理學習細節(jié),逐漸提升自己的數(shù)學素養(yǎng)和思維能力,就可以取得好成績,為自己的學業(yè)和未來的發(fā)展提供堅實的保障。
高等數(shù)學的體會篇七
原本以為憑借小學到高中這十余年所總結出的數(shù)學學習方法,就能輕松應對大學高等數(shù)學的學習。
然而,經(jīng)過一個多學期的學習,我真正體會到高等數(shù)學的學習特點與以往所學習的數(shù)學大相徑庭。因此,我必須在學習過程中找到高等數(shù)學的獨特之處,總結出一套新的有效的方法,才能在高等數(shù)學的學習中做到游刃有余。
就我個人而言,我認為高等數(shù)學有以下幾個顯著特點:
(1)識記的知識相對減少,理解的知識點相對增加;
(2)不僅要求會運用所學的知識解題,還要明白其來龍去脈;
(3)系實際多,對專業(yè)學習幫助大;
(4)教師授課速度快,課下復習與預習必不可少。
以前上數(shù)學課,老師在黑板上寫滿各種公式和結論,我便一邊在書上勾畫,一邊在筆記本上記錄。
然后像背單詞一樣,把一堆公式與結論死記硬背下來。
哪種類型的題目用哪個公式、哪條結論,老師都已一一總結出來,我只需要將其對號入座,便可將問題解答出來。
而現(xiàn)在,我不再有那么多需要識記的結論。
唯一需要記住的只是數(shù)目不多的一些定義、定理和推論。
老師也不會給出固定的解題套路。因為高等數(shù)學與中學數(shù)學不同,它更要求理解。只要充分理解了各個知識點,遇到題目可以自己分析出正確的解題思路。
所以,學習高等數(shù)學,記憶的負擔輕了,但對思維的要求卻提高了。
每一次高數(shù)課,都是一次大腦的思維訓練,都是一次提升理解力的好機會。
高等數(shù)學的學習目的不是為了應付考試,因此,我們的學習不能停留在以解出答案為目標。
我們必須知道解題過程中每一步的依據(jù)。正如我前面所提到的,中學時期學過的許多定理并不特別要求我們理解其結論的推導過程。
而高等數(shù)學課本中的每一個定理都有詳細的證明。
最初,我以為只要把定理內(nèi)容記住,能做題就行了。
然而,漸漸地,我發(fā)現(xiàn)如果沒有真正明白每個定理的來龍去脈,就不能真正掌握它,更談不上什么運用自如了。
于是,我開始認真地學習每一個定理的推導。有時候,某些地方很難理解,我便反復思考,或請教老師、同學。盡管這個過程并不輕松,但我卻認為非常值得。
因為只有通過自己去探索的知識,才是掌握得最好的。
總而言之,高等數(shù)學的以上幾個特點,使我的數(shù)學學習歷程充滿了挑戰(zhàn),同時也給了我難得的鍛煉機會,讓我收獲多多。
進入大學之前,我們都是學習基礎的數(shù)學知識,聯(lián)系實際的東西并不多。在大學卻不同了。
不同專業(yè)的學生學習的數(shù)學是不同的。
正是因為如此,高等數(shù)學的課本上有了更多與實際內(nèi)容相關的`內(nèi)容,這對專業(yè)學習的幫助是不可低估的。
比如“常用簡單經(jīng)濟函數(shù)介紹”中所列舉的需求函數(shù),供給函數(shù),生產(chǎn)函數(shù)等等在西方經(jīng)濟學的學習中都有用到。
而“極值原理在經(jīng)濟管理和經(jīng)濟分析中的應用”這一節(jié)與經(jīng)濟學中的“邊際問題”密切相關。如果沒有這些知識作為基礎,經(jīng)濟學中的許多問題都無法解決。
當我親身學習了高等數(shù)學,并試圖把它運用到經(jīng)濟問題的分析中時,才真正體會到了數(shù)學方法是經(jīng)濟學中最重要的方法之一,是經(jīng)濟理論取得突破性發(fā)展的重要工具。這也堅定了我努力學好高等數(shù)學的決心。希望未來自己可以憑借扎實的數(shù)理基礎,在經(jīng)濟領域里大展鴻圖。
高等數(shù)學作為大學的一門課程,自然與其它課程有著共同之處,那就是講課速度快。
剛開始,我非常不適應。上一題還沒有消化,老師已經(jīng)講完下一題了。帶著幾分焦慮,我向?qū)W長請教學習經(jīng)驗,才明白大學學習的重點不僅僅是課堂,課下的預習與復習是學好高數(shù)的必要條件。
于是,每節(jié)課前我都認真預習,把不懂的地方作上記號。課堂上有選擇、有計劃地聽講。
課后及時復習,歸納總結。逐漸地,我便感到高數(shù)課變得輕松有趣。只要肯努力,高等數(shù)學并不會太難。
高等數(shù)學有其獨特之處,但它畢竟是數(shù)學,那么一定量的習題自然必不可少。
通過練習,才能更深入地理解,運用。
以上便是本人一個多學期以來,學習高等數(shù)學的一些體會。
希望自己能在以后的學習中更上一層樓!
高等數(shù)學的體會篇八
高等數(shù)學是大學必修課程之一,是數(shù)學學科的重要組成部分。在我小學和初中的數(shù)學課上,我一直都是數(shù)學的優(yōu)等生,但是對于高等數(shù)學,我卻感到了困惑和挑戰(zhàn)。在大學一年級的時候,我開始接觸高等數(shù)學課程,剛開始覺得不太適應,因此在此期間感覺相當壓抑。隨著時間的推移,我開始更深入地研究這門學科,并嘗試各種不同的學習方法,以便提高自己的成績。最終,在經(jīng)過無數(shù)次的努力后,我克服了困難,考出了令人滿意的高等數(shù)學成績。
第二段:回顧高等數(shù)學的考試經(jīng)驗
在學習高等數(shù)學的過程中,我不僅學到了許多知識和技能,也經(jīng)歷了很多考試。這些考試無疑是對我學習成果的檢驗,也讓我有機會去發(fā)現(xiàn)自己的弱點,找到不足之處,并嘗試改進和克服它們。另外,這些考試還讓我體會到了競爭的壓力和緊張氣氛,這些因素都激發(fā)了我更深入地學習高等數(shù)學的熱情。
第三段:總結高等數(shù)學的重要性
高等數(shù)學的學習不僅僅關乎學習數(shù)學知識,更重要的是培養(yǎng)了我學習的能力。在學習過程中,我不斷努力,練習思考和分析的能力,提高了自己的邏輯推理和解決問題的能力。這些都是遠遠超出課程范圍的技能,對我的職業(yè)生涯和個人發(fā)展有著深遠的影響。此外,學習高等數(shù)學還讓我感受到了知識的博大精深和對未知事物探索的熱情,這些元素也能夠?qū)ξ椅磥淼陌l(fā)展起到重要的支持作用。
第四段:點評吳昊的體會和經(jīng)驗
吳昊是我身邊一個優(yōu)秀的同學,在高等數(shù)學的學習中他取得了出色的成績。他的學習經(jīng)驗和體會也對我啟發(fā)和影響很大。從吳昊的學習經(jīng)驗中,我們可以看到他在學習過程中非常注重理論知識的掌握和實踐能力的培養(yǎng)。而且,吳昊非常善于把理論知識和實踐技能有機結合起來,不斷地總結和反思,從而實現(xiàn)了對高等數(shù)學的深入理解。這些學習方法和態(tài)度對我指引良多,讓我對高等數(shù)學的學習也有了更多的信心和動力。
第五段:思考未來發(fā)展方向
在未來的學習過程中,我還需要不斷地探索和尋求新的機遇和挑戰(zhàn),以提高自己的學習能力和職業(yè)素養(yǎng)。高等數(shù)學作為一門必修課程,是培養(yǎng)我學習能力和解決問題能力的重要途徑。在今后的學習和生活中,我將會更加努力和專注于高等數(shù)學的學習,以完成自己的職業(yè)規(guī)劃和個人發(fā)展目標。
高等數(shù)學的體會篇九
高等數(shù)學是理工科專業(yè)必修的一門重要課程,對于提升數(shù)學思維,培養(yǎng)分析和解決實際問題的能力有著重要的作用。在高等數(shù)學下冊學習的過程中,我深感受益匪淺。下面就是我對高等數(shù)學下冊的心得體會。
首先,高等數(shù)學下冊強調(diào)的是更深入的數(shù)學理論和應用。在上冊我們學習了微積分的基礎知識,在下冊我們進一步學習了微分方程、多元函數(shù)、空間解析幾何等內(nèi)容。這些內(nèi)容對于學習者來說都是比較新穎和抽象的,要求我們更深入地理解和掌握數(shù)學的概念和方法。通過學習下冊高等數(shù)學,我逐漸明白了數(shù)學是一門探索自然規(guī)律和解決實際問題的學科,數(shù)學理論與實際應用是密不可分的。
其次,高等數(shù)學下冊的學習注重于培養(yǎng)學生的邏輯思維和問題解決能力。數(shù)學是一門以邏輯為基礎的學科,通過學習高等數(shù)學下冊,我更加深刻地理解了邏輯思維和問題解決能力的重要性。在解題過程中,我們需要根據(jù)所學的數(shù)學理論與知識,運用邏輯推理,靈活運用解題方法,從而解決各種復雜的數(shù)學問題。通過不斷練習和思考,我逐漸提升了我的邏輯思維和問題解決能力,并且在其他學科中也能夠得到運用和提升。
第三,高等數(shù)學下冊的學習培養(yǎng)了我的數(shù)學抽象和建模能力。數(shù)學作為一門抽象的學科,需要我們學會抽象問題、建立數(shù)學模型,并在模型的基礎上進行分析和解決問題。在學習下冊高等數(shù)學的過程中,我有了更多的機會進行數(shù)學建模,并且通過實例分析和計算來驗證和應用模型。這種訓練不僅提高了我的數(shù)學抽象思維能力,還培養(yǎng)了我應對實際問題的能力。數(shù)學建模能力是未來工作和研究中必不可少的能力,通過學習下冊高等數(shù)學,我在這方面的能力得到了提升。
第四,高等數(shù)學下冊的學習強調(diào)了數(shù)學與實際問題的聯(lián)系。數(shù)學作為一門工具學科,它的應用范圍廣泛,與物理、化學、經(jīng)濟和工程等學科存在著密切的聯(lián)系。在學習下冊高等數(shù)學的過程中,我通過一些實際問題的分析和解決,深刻體會到了數(shù)學的實際應用。例如,在學習微分方程時,我們可以通過微分方程來描述一些物理現(xiàn)象、生態(tài)系統(tǒng)的變化規(guī)律等。這樣的學習過程增強了我對數(shù)學與實際問題之間聯(lián)系的認識,也讓我更加明確了數(shù)學的重要性。
最后,高等數(shù)學下冊的學習給我?guī)砹撕芏嗟目鞓贰?shù)學是一門極具美感的學科,通過解題和推導,我們可以發(fā)現(xiàn)數(shù)學之美。在學習下冊高等數(shù)學的過程中,我常常感受到當成功解答一個困難的問題時的喜悅和成就感,這也激發(fā)了我對數(shù)學的興趣和熱愛。在解題過程中,我探索、思考和創(chuàng)新,不斷挑戰(zhàn)自己,這種過程本身就是一種樂趣。
總之,通過學習高等數(shù)學下冊,我不僅在數(shù)學理論和應用上有了更深入的了解和認識,也發(fā)現(xiàn)了邏輯思維和問題解決能力在學習和工作中的重要性,培養(yǎng)了數(shù)學抽象和建模能力,增強了數(shù)學與實際問題之間的聯(lián)系,同時也感受到了數(shù)學學習的樂趣和成就感。這些都使我對高等數(shù)學下冊留下了深刻的印象和珍貴的回憶。我相信,通過對高等數(shù)學下冊的學習和體會,我將在今后的學習和工作中更好地運用數(shù)學,更好地解決各種實際問題。
高等數(shù)學的體會篇十
俗話說,熟能生巧。練習做多了,看到類似的問題就能輕松應付,對癥下藥。在做練習時,要清楚每一步的思路,上一步為什么會得到下一步,都要了如指掌。對不懂的問題一定要問。說到問,陶行知先生說過:“發(fā)明千千萬,起點在一問。”學數(shù)學也是一樣,一定要多動手,動口。在動口之前要先學會思考,因為思考了才會有問題可問。不要以為思考是那些做學問的學者們的專利,只要是有思想的人,任何人都可以步入思考的行列。只有在不斷思考探求中才能充實自己的大腦。當然也要避免盲目做習題,改變中學時期“只知道做題”的習慣。要獨立思考,不要做太多的難題、偏題。另外要注意數(shù)學語言表述的正確性,論證的嚴密性,養(yǎng)成一種科學嚴謹?shù)乃季S習慣。
高等數(shù)學的體會篇十一
本學期我擔任專科層次藥制13-1、藥分13-1、藥營13-1、生制13-1、中藥13-1五個班的《高等數(shù)學》教學工作,周課時20,按15個教學周,計300課時,另外還開設《太極拳》選修課30課時,共計330課時。
二、工作態(tài)度與方法。
工作態(tài)度方面,我每每中午去食堂是最后,甚至教工食堂收工,我得去學生食堂,只因我從不提前下課。我按時下課,但有時同學問問題,會弄遲些。在備課的時候,我會為一個問題的表述反復思考,看怎么能讓同學們更容易接受,總之,為了提高同學們的學習效率,自己是不計成本的。
鑒于高校老師不坐班,上完課就走人,師生交流僅限于課堂,我感覺這不利于學生發(fā)展。為此,我在課堂教學之余,采取多種方式--或當面引導,高屋建瓴,一語中的;或充分利用現(xiàn)代網(wǎng)絡媒體,與同學們在線交流。有時是解答他們在學習上的某一具體問題,有時是就人生成長過程中的困惑進行分析探討,為其答疑解惑,做其良師益友。
當然,更多的交流還是課堂教學,這里我稍微總結一下《高等數(shù)學》課程教學中的三個細節(jié):
三是積分部分,不定積分我強調(diào)練習,求積分(1)(2)(3)(4),練習得比較充分,定積分我強調(diào)理論,微積分基本公式的詳細推導雖不是考點,但我還是耐心引導、仔細講解……我這樣做一方面對想繼續(xù)深造的同學有利,另一方面,我是想讓自己嚴謹求實的工作作風給學生一些正面影響。
在評價考核方面,我十分注重過程性、形成性。我發(fā)現(xiàn),某個階段,如果學生草稿本“銷量”大增,其數(shù)學功力就有所提升,草稿本打得多與少,很大程度反映出一個人的數(shù)學學習狀態(tài)。因此第一堂課我就強調(diào),草稿本不要扔棄,寫完了送給我,我“記工分”(畫正字)。為防止有人為了工分而工分,12月底我就將這項活動截止。從效果上看,一方面督促大家你追我趕,多做多練;另一方面,也較真實地反映出大家平時的數(shù)學學習狀況,為學期末平時成績的評定提供了重要參考依據(jù)。一學期下來,草稿紙作為廢品賣掉,收入頗豐,相當于同學們請我吃了早茶,謝謝謝謝!
最后階段,我為了同學們更好地復習鞏固,考前給出《考試說明》,提示哪些知識點務必掌握,并鼓勵同學們根據(jù)考點提示成立“猜題委員會”,當然,您也可以美其名曰“高等數(shù)學互助學習志愿者協(xié)會”,說是猜題押題,實則是在引導更多的同學成為學霸,并請熱心的超級學霸將自己精美的《好題本》與大家分享,驅(qū)散學困生備考陰霾。
三、工作體會與感悟。
對于工作量,我想教師任課班級過多、班級人數(shù)過多、周課時過密,對教師、對學生都是不利的。說實在的,盡管同學們看見我都很有禮貌地叫:“老師好!”,但大部分同學的名字我是叫不出的。教書育人,兩者不可偏頗,很大程度上后者可能更重要些。
對于多媒體教學,我是積極參與并可謂“先行者”之一,但我愈來愈發(fā)現(xiàn)對于數(shù)學等課程,教師的板演是不可替代的,你可以制作多媒體動畫模擬板演,但還是不能替代教師站在黑板前一步步分析展開。當然,如果投影屏幕掛在黑板兩側再靠邊一點,提綱性的要領或大信息量的展示用一下,而黑板的粉塵能杜絕,彈指間就能局部擦除或全部清空,那就更方便了??傊?,時尚科技與經(jīng)典傳統(tǒng)要有機融合、揚長補短。
學包括高等數(shù)學是可以聽懂的,無論原來基礎好壞,只要認真聽,而要讓學生認真聽,得有趣、得活潑、得幽默。
對于教育事業(yè),我認為老師除了教書,更重要的是育人。因此,自己首先得是位真正的道德高尚之君,以自身灼熱的人格正氣讓每位接觸過的學生于無形中獲得一種人格的滋養(yǎng)與人性的清明。崇高的人格是一股強大的教育力量,崇高的人格是一座珍貴的教育寶藏。
我時常反思,自己有無教育教學誤區(qū)?比如師生關系,把握住“尊重”,這是教師工作的出發(fā)點,在學生之間不能主觀地圈定優(yōu)等生,去偏愛這些優(yōu)等生,教師偏愛少數(shù)“好學生”就是不尊重大多數(shù)學生。教師應該一視同仁,善待每一個學生,及時發(fā)現(xiàn)他們身上的優(yōu)點,幫助他們克服缺點,努力挖掘?qū)W生的潛在能力,給所有的學生創(chuàng)造表現(xiàn)才能的機會,尊重每一個學生。這里,對于我這門課平時成績較低的同學,我真誠地說聲:“對不起!”。我相信,您的`成績(自我評價,他人評價)會在后續(xù)的課程、未來的人生中節(jié)節(jié)攀升、漸入佳境。
高等職業(yè)教育的職業(yè)性、技術性、就業(yè)導向性以及巨大的就業(yè)壓力,迫使高職院校公共基礎課教學必須把高職學生普遍關注的就業(yè)能力問題作為基礎課教學改革的立足點與出發(fā)點,在提高學生就業(yè)創(chuàng)業(yè)能力,引導學生更快更好地提升職業(yè)能力、職業(yè)素養(yǎng)方面發(fā)揮重要作用。這對公共基礎課教師的教學觀念與教學能力是一大挑戰(zhàn)。我有一個想法,就是系統(tǒng)地學習臨床、藥學、護理等所任專業(yè)的所有課程,看看學生到底需要哪些數(shù)學知識?需要什么數(shù)學技能?思維品質(zhì)培養(yǎng)的關鍵在何處?做到心中有數(shù),以便打破公共基礎課和專業(yè)課之間的壁壘,將原先的公共基礎課融合穿插到各個學習領域的學習情境中去教學。
當然,公共基礎課不僅僅具有為專業(yè)課程服務的工具性功能,更具有“潤物細無聲”的人文教化功能。在今后的教學上,我爭取突破教學常規(guī),更高效更機智地處理問題,彰顯出更多的的課堂教學機智,妥帖恰當?shù)靥幚斫虒W突發(fā)事件,順勢而為地引導學生積極探索與思考,巧妙有效地幫助學生對重點、難點進行深入理解,自然流暢地啟發(fā)學生展開思維的翅膀,生動愉悅地引導學生步入人生智慧的魅力境界,同時,形成自己較高水平的教學智慧。
夏宜凡。
高等數(shù)學的體會篇十二
數(shù)學最需要強調(diào)的是基礎而不是技巧。很多同學不重視基礎的學習,反而只是忙著做題,做難題,就想通過題海戰(zhàn)術取勝,這是不行的,選擇輔導班一定不要選擇一味追求技巧的,可以上有命題組老師的輔導班,從而能夠準確把握命題思路,不至于走偏了方向。
善于歸納,學會總結,使知識條理化系統(tǒng)化。
善于總結也是我要十分強調(diào)的一點。因為很多同學做題的過程就到對過答案或是糾正過錯誤就簡單的結束了,一套題的價值也就到此為止了。大家在糾正完錯誤之后,再把這套試題從頭看一遍,總結一下自己都在哪些方面出錯了,原因是什么,這套題中有沒有出現(xiàn)我不知道的新的方法、思路,新推導出的定理、公式等,并把這些有用的知識全都寫到你的筆記本上,以便隨時查看和重點記憶。對于大題的解題方法,要仔細想一想,都涉及到哪些科目和章節(jié)了,這些知識點之間有哪些聯(lián)系等,從而使自己所掌握的知識系統(tǒng)化,以達到融會貫通。只有這樣,才能使你做過的題目實現(xiàn)其的價值,也才算是你真正做懂了一套題。如果你能夠這樣做了,那么做過的題在以后的復習中如果沒有時間了,就不用再拿出來重新看了,因為你已經(jīng)把要掌握的精華總結好了,只需看你的筆記本就行了。解數(shù)學題一定要從思路,原理的角度入手。
要勤于思考,多動腦子。
很多同學學數(shù)學就喜歡看例題,看別人做好的題目,分析別人總結好的解題方法、步驟。只這樣是遠遠不夠的。只是一味的被動的接受別人的東西,就永遠也變不成自己的東西。第一遍復習可以只看題,但以后就必須自己試著做了,先不看答案,完全通過自己的能力做著試試,不管能做到什么程度,起碼你自己先思考了,只有啟動自己的大腦,才會使知識更深入的得到理解和掌握,才能真正成為自己的知識,也才會具有獨立的解題能力。在做題時不要太輕易的選擇放棄,想一會兒沒有思路就去看答案,一定要仔細開動腦筋想過之后,實在不行再求助于外力。
高等數(shù)學的體會篇十三
第一段:引言(120字)
高等數(shù)學作為大學數(shù)學課程中的一門重要學科,不僅是理工科學生的必修課,更是培養(yǎng)學生分析解決問題能力的重要途徑。在學習高等數(shù)學的過程中,我感受到了數(shù)學的美妙與魅力,同時也深刻體會到了數(shù)學學習的重要性。通過這門課程的學習,我不僅提高了自己的數(shù)學水平,更具備了解決實際問題的能力,下面將分為邏輯推理能力的提升、問題解決能力的培養(yǎng)、批判性思維的養(yǎng)成、嚴密的思維訓練以及團隊合作精神的培養(yǎng)五個方面,詳細論述我在高等數(shù)學學習中的心得體會。
第二段:邏輯推理能力的提升(250字)
高等數(shù)學學習需要運用各種公式定理,進行推導證明。在這個過程中,我不斷鍛煉了自己的邏輯推理能力。老師引導我們學會分析問題,從多個角度去思考,利用數(shù)學方法解決問題。通過數(shù)學定理的證明,我更加深入地理解了邏輯推理的重要性以及問題求解的思路。此外,在高等數(shù)學的學習過程中,我還學會了如何將復雜問題分解為簡單子問題,逐步推導出一個完整的解決方案。這一過程的鍛煉不僅提高了我的數(shù)學素養(yǎng),還培養(yǎng)了我的邏輯思維能力,使我能夠更好地應對其他學科的學習和實際問題的解決。
第三段:問題解決能力的培養(yǎng)(250字)
高等數(shù)學學習強調(diào)實際問題的建模與求解,培養(yǎng)學生解決實際問題的能力。在課堂上,我親身體驗了數(shù)學在解決實際問題中的作用。通過案例分析和問題解決討論,我學會了將抽象概念和公式與實際問題相結合,找到問題的關鍵點,提出有效的解決方案。此外,高等數(shù)學課程還讓我了解了數(shù)學與其他學科的交叉點,從而拓寬了視野,幫助我更好地理解和解決其他學科的實際問題。
第四段:批判性思維的養(yǎng)成(250字)
高等數(shù)學學習強調(diào)學生的批判性思維能力的培養(yǎng)。在學習過程中,我發(fā)現(xiàn)數(shù)學不僅有固定答案,還有多種解決路徑和解釋方法。通過解析問題的不同方面,從不同的角度思考,我逐漸養(yǎng)成了批判性思維的習慣。我開始質(zhì)疑問題是否被正確解決,是否有更好的方法,這種思維方式不僅在高等數(shù)學學習中幫助我更好地理解概念和定理,還在其他學科和實際生活中使我更加理性和客觀。
第五段:嚴密的思維訓練與團隊合作精神的培養(yǎng)(320字)
高等數(shù)學中的復雜定理和抽象概念要求學生掌握嚴密的思維能力。在解題過程中,我不得不重復思考,審查每一個環(huán)節(jié),確保每個推導步驟的準確性和嚴密性。這過程雖然艱辛,但成功地提升了我的思維嚴密性和細心程度。另外,高等數(shù)學學習中的小組討論和團隊合作也給了我很大的啟示。通過與同學合作,每個人可以帶來不同的思路和見解,我們可以互相學習、互相鼓勵,并共同解決問題。這種團隊合作精神不僅在高等數(shù)學中得到培養(yǎng),還可以應用到其他學科和實際工作中。
結尾:總結(90字)
總的來說,高等數(shù)學的學習不僅提高了我的數(shù)學水平,更重要的是培養(yǎng)了我解決問題的能力、批判性思維以及團隊合作精神。這些能力將在我的未來學習和工作中發(fā)揮重要作用。通過高等數(shù)學的學習,我明白了數(shù)學不僅僅是一種學科,更是一種思維方式和處理問題的工具。
高等數(shù)學的體會篇十四
一個高中生升入大學學習后,不僅要在環(huán)境上、心理上適應新的學習生活,同時學習方法的改變也是一個不容忽視的方面。
從中學升入大學學習后,在學習方法上將會遇到一個比較大的轉(zhuǎn)折。首先是對大學的教學方式和方法會感到很不適應。這在高等數(shù)學課程的教學中反應特別明顯,因為它是一門對大一新生首當其沖的理論性較強的基礎理論課程。而學生正是習慣于模仿性和單一性的學習方法。這是從小學到中學的教育中長期養(yǎng)成的,一時還難以改變。
中學的教學方式和方法與大學有質(zhì)的差別,中學的學習學生是在教師的直接指導下進行模仿和單一性的學習,大學則是在教師的指導下進行創(chuàng)造性的學習。而大學高等數(shù)學課程的學習,教材僅是作為一種主要的參考書,要求學生以課堂上老師所講的重點和難點為線索,課后去鉆研教材和閱讀大量的同類參考書,然后去完成課后習題。就這樣反復地進行創(chuàng)造性學習。這是一種艱苦的腦力勞動,需要學生能反復地、自覺地進行學習。還要在松散的環(huán)境中能約束自己。
大學生活是人生的一大轉(zhuǎn)折點。大學時期注重于培養(yǎng)同學們的獨立生活、獨立思考、獨立分析問題和解決問題的能力,而不像中學那樣有一個依賴的環(huán)境。高等數(shù)學與高中數(shù)學相比有很大的不同,內(nèi)容上主要是引進了一些全新的數(shù)學思想,特別是無限分割逐步逼近,極限等;從形式上講,學習方式也很不一樣,特別是一般都是大班授課,進度快,老師很難個別輔導,故對自學能力的要求很高。中學時期主要是老師領著學,學生只需要跟著老師的指揮棒走就可以了,而在大學時主要靠自學,教師只起一個引導的作用。新同學應盡快適應大學生活,形成一個良好的開端,這對四年的大學生涯是有益的。
中學數(shù)學課程的中心是從具體數(shù)學到概念化數(shù)學的轉(zhuǎn)變。中學數(shù)學課程的宗旨是為大學微積分作準備。學習數(shù)學總要經(jīng)歷由具體到抽象、由特殊到一般的漸進過程。由數(shù)引導到符號,即變量的名稱;由符號間的關系引導到函數(shù),即符號所代表的對象之間的關系。高等數(shù)學首先要做的是幫助學生發(fā)展函數(shù)概念——變量間關系的表述方式。這就把同學們的理解力從常量推進到變量、從描述推進到證明、從具體情形推進到一般方程,開始領會到數(shù)學符號的威力。但《高等數(shù)學》的主要內(nèi)容是微積分,它繼承了中學的訓練,它們之間有千絲萬縷的聯(lián)系。
為了適應21世紀高等數(shù)學課程的教學改革,高等數(shù)學課程的教學也發(fā)生了很大的變化,在傳統(tǒng)的教學手段的基礎上,采用了更加具體化、形象化的現(xiàn)代教育技術,這也是一般中學所沒有的,因此,同學們在進入大學以后,不僅要注意高等數(shù)學課程的內(nèi)容與中學數(shù)學的區(qū)別與聯(lián)系,還要盡快適應高等數(shù)學課程的新的教學特點。認真上好第一節(jié)高等數(shù)學課,嚴格按照任課老師的要求去做。若能堅持做到,課前預習,課上聽講,課后復習,認真完成作業(yè),課后對所學的知識進行歸納總結,加深對所學內(nèi)容的理解,從而也就掌握了所學的知識,就不難學好高等數(shù)學這門課。有些同學就是沒有把握好自己,一看高等數(shù)學一開始的內(nèi)容和中學所學內(nèi)容極其相似,就掉以輕心,認為自己看看就會了,要么不聽課,要么不完成作業(yè),結果導致后面的章節(jié)聽不懂,跟不上,甚至有的同學就一直跟不上,學期末成績不理想,甚至不及格。
第一,要勤學、善思、多練。所謂學,包括學和問兩方面,即向教師,向同學,向自己學和問。惟有在“學中問”和“問中學”,才能消化數(shù)學的概念、理論、方法;所謂思,就是將所學內(nèi)容,經(jīng)過思考加工去粗取精,抓本質(zhì)和精華。華羅庚“抓住要點”使“書本變薄”的這種勤于思考、善于思考、從厚到薄的學習數(shù)學的方法,值得我們借鑒;所謂習,就《高等數(shù)學》而言,就是做練習,這是數(shù)學自身的特點。練習一般分為兩類,一是基礎訓練練習,經(jīng)常附在每章每節(jié)之后,這類問題相對來說比較簡單,無大難度,但很重要,是打基礎部分。二是提高訓練練習,知識面廣些,不局限于本章本節(jié),在解決的方法上要用到多種數(shù)學工具。數(shù)學的練習是消化鞏固知識極重要的一個環(huán)節(jié),舍此達不到目的。
第二,狠抓基礎,循序漸進。任何學科,基礎內(nèi)容常常是最重要的部分,它關系到學習的成敗與否?!陡叩葦?shù)學》本身就是數(shù)學和其他學科的基礎,而《高等數(shù)學》又有一些重要的基礎內(nèi)容,它關系到整個知識結構的全局。以微積分部分為例,極限貫穿著整個微積分,函數(shù)的連續(xù)性及性質(zhì)貫穿著后面一系列定理結論,初等函數(shù)求導法及積分法關系到今后各個學科。因此,一開始就要下狠功夫,牢牢掌握這些基礎內(nèi)容。在學習《高等數(shù)學》時要一步一個腳印,扎扎實實地學和練。第三,歸類小結,從厚到薄。記憶總的原則是抓綱,在用中記。歸類小結是一個重要方法?!陡叩葦?shù)學》歸類方法可按內(nèi)容和方法兩部分小結,以代表性問題為例輔以說明。在歸類小節(jié)時,要特別注意有基礎內(nèi)容派生出來的一些結論,即所謂一些中間結果,這些結果常常在一些典型例題和習題上出現(xiàn),如果你能多掌握一些中間結果,則解決一般問題和綜合訓練題就會感到輕松。
第四,精讀一本參考書。實踐證明,在教師指導下,抓準一本參考書,精讀到底,如果你能熟讀了一本有代表性的參考書,再看其它參考書就會迎刃而解了。
第五,注意學習效率。數(shù)學的方法和理論的掌握,常常需要做到熟能生巧、觸類旁通。人不可能通過一次學習就掌握所學的知識,需要有幾個反復。所謂“學而時習之”、“溫故而知新”都是指學習要經(jīng)過反復多次?!陡叩葦?shù)學》的記憶,必須建立在理解和熟練做題的基礎上,死記硬背無濟于事。
1.書:課本+習題集(必備),因為學好數(shù)學絕對離不開多做題,建議習題集最好有本跟考研有關的,這樣也有利于你做好將來的考研準備。
2.筆記:盡量有,我說的筆記不是指原封不動的抄板書,那樣沒意思,而且不必非單獨用個小本,可記在書上。關鍵是在筆記上一定要有自己對每一章知識的總結,類似于一個提綱,(有時老師或參考書上有,可以參考),最好還有各種題型+方法+易錯點。
3.上課:建議最好預習后聽,聽不懂不要緊,很多大學的課程都是靠課下結合老師的筆記自己重新看。但是記住:高數(shù)千萬別搞考前突擊,絕對行不通,所以平時你就要跟上,步步盡量別斷層。
4.學好高數(shù)=基本概念透+基本定理牢+基本網(wǎng)絡有+基本常識記+基本題型熟。數(shù)學就是一個概念+定理體系(還有推理),對概念的理解至關重要,比如說極限、導數(shù)等,你既要有形象的對它們的理解,也要熟記它們的數(shù)學描述,不用硬背,可以自己對著書舉例子,畫個圖看看(形象理解其實很重要),然后多做題,做題中體會。建議你用一只彩筆專門把所有的概念標出來,這樣看書時一目了然(定理用方框框起來)。基本網(wǎng)絡就是上面說的筆記上的總結的知識提綱,也要重視?;境WR就是高中時老師常說的“準定理”,就是書上沒有,在習題中我們總結的可以當定理或推論用的東西,還有一些自己小小的經(jīng)驗。這些東西不正式但很有用的,比如各種極限的求法。
這些都做到了,高等數(shù)學應該學得不會差了,至少應付考試沒問題。如果你想提高些,可以做些考研的數(shù)學題,體會一下,其實也不過如此,并不象你想象的那么難。還可以看些關于高數(shù)應用的書,其實數(shù)學本來就是從應用中來的,你會知道高等數(shù)學真的很有用。
高等數(shù)學的體會篇十五
第一段:學習動機與目標(引言)
高等數(shù)學是一門對于大部分大學生來說充滿挑戰(zhàn)的學科。作為一名大學生,我對高等數(shù)學學習非常重視,因為它是我專業(yè)學習的基礎課程之一。在學習高等數(shù)學的過程中,我經(jīng)歷了許多辛苦和困惑,但也從中收獲了很多。在這篇文章中,我將與大家分享我的高等數(shù)學學習心得體會。
第二段:規(guī)劃和時間管理(學習方法和技巧)
在面對高等數(shù)學這門課程時,我意識到規(guī)劃和時間管理是非常重要的。高等數(shù)學包含了大量的知識點和公式,因此我制定了一個學習計劃,將每個知識點分配到不同的時間段,并給自己留出足夠的時間進行復習和鞏固。我還學會了合理安排每天的學習時間,將重點放在疑難問題上,以便更好地掌握知識。
第三段:找到適合自己的學習方式(學習方法和技巧)
在高等數(shù)學學習的過程中,我發(fā)現(xiàn)找到適合自己的學習方式能夠提高學習效果。有些人更適合通過聽講座和課堂上的互動來學習,而我更喜歡通過自學和解題來掌握知識。我經(jīng)常和同學們一起組隊討論問題,通過交流和互幫互助來解決難題。這種學習方式不僅鞏固了我的知識,還提高了我的解題能力和思維靈活性。
第四段:克服困難與堅持學習(學習態(tài)度與人生觀)
高等數(shù)學是一門需要耐心和恒心的學科。在學習過程中,我遇到了許多困難和挫折,但我相信只要堅持下去,就一定能夠克服這些困難并取得好成績。我時常重復著“努力就會有回報”的信念,堅持每天都學習一段時間高等數(shù)學,無論是通過自學、參加輔導班或向老師請教,我都不放棄任何機會來提高自己的數(shù)學水平。
第五段:從高等數(shù)學中的應用反思(學科價值與人生思考)
通過學習高等數(shù)學,我不僅掌握了數(shù)學知識,更培養(yǎng)了自己的邏輯思維和問題解決能力。高等數(shù)學課程中的許多概念和方法在實際生活中都有廣泛的應用。數(shù)學是一門實用的學科,它不僅幫助我們理解世界的運作方式,還能培養(yǎng)我們的邏輯思維和抽象思維能力。通過高等數(shù)學的學習,我深深體會到數(shù)學不僅僅是個工具,更是一門能夠引導我們思考和解決問題的科學。
總結:
通過高等數(shù)學的學習,我不僅掌握了基本概念和方法,也培養(yǎng)了自己的學習方法和態(tài)度。我發(fā)現(xiàn)規(guī)劃和時間管理對于高等數(shù)學學習非常重要,找到適合自己的學習方式能夠提高學習效果。在困難和挫折面前要堅持學習,相信努力會有回報。最重要的是,高等數(shù)學的學習不僅可以提高我們的數(shù)學水平,還能幫助我們培養(yǎng)邏輯思維和解決問題的能力。通過高等數(shù)學的學習,我對數(shù)學這門學科有了更深入的理解,也對自己的學習和未來充滿了信心。
高等數(shù)學的體會篇十六
隨著科技日新月異的發(fā)展和電腦無孔不入的應用。高等數(shù)學課程作為一種數(shù)學工具的功能正在逐步縮減。但作為一種思維方法的載體的功能(例如訓練學生辯證思維、邏輯推理、發(fā)現(xiàn)同題及分析同題的能力)卻愈顯風采。一個多元線性方程組如何去解?我們可以交給電腦去完成,只要會正確使用數(shù)學軟件。但一個實際問題如何通過數(shù)學建模轉(zhuǎn)化為一個數(shù)學同題,除了必須具備許多綜合的知識,還需要具備一定的分析推理能力,這種素質(zhì)自然可以通過生活來積累,但如果能夠通過象高等數(shù)學這樣的課程作為載體來進行系統(tǒng)訓練,將是事半功倍的。
以往對工科學生來講,高等數(shù)學的教學比較偏重于計算方法的訓練,例如,如何計算極限,計算導數(shù),計算積分,通過熟練掌握計算方法來加深對概念的理解,這是學習高等數(shù)學的一條捷便之徑。但是從二十一世紀更加需要創(chuàng)新人才的觀點看,從高等數(shù)學的概念中直接去提煉一種分析推理能力及實際應用能力,將是更加重要的。(當然,在改革的力度還未到位時,由于教學要求及教材等原因。學習高等數(shù)學并不能僅偏重于概念,對基本的計算方法必須熟練地掌握。如今就如何學好高等數(shù)學的基本概念。提出一些拙見供同學參考。
我們觀察一個物體,如果僅僅通過平視去進行,那么對這個物體的認識往往是局部的,甚至是扭曲的,只有從正視、俯視、側視的多角度去觀察與綜合,方能得到物體正確的空間定位。觀察事物尚且如此,要理解一個抽象的概念,如果只有單向的思維方法,肯定只能淺嘗輒止。只有從正反兩個方向去透視概念,才能較深地抓住概念中一些本質(zhì)的東西。這里所說的正方向思維應該包含幾層意思:一是概念的定義是如何敘述的,二是概念所尉帶的條件是必要的。還是充分的'?三是概念產(chǎn)生的實際背景是什么?這里所說的反方向思維又應該包含兩層意思:一是對一個概念的否定是怎樣表達的?二是如果錯誤的理解了概念中的一些條件會導致什么樣的錯誤結果。
發(fā)現(xiàn)問題呢?首先要提倡自學,在自己預習教材(也鍛煉了一種自學能力)的過程中很容易發(fā)現(xiàn)不懂的同題,帶著同題再去聽課就會有的放矢。其次是聽課之后做習題之前要認真復習消化課上的內(nèi)容,只要積極地開動腦筋,從中是會發(fā)現(xiàn)很多問題的,在這個較深層次上發(fā)現(xiàn)問題又去解決問題(可以通過同學與老師的幫助),那么分析問題的能力就會有一個質(zhì)的提高。
學習數(shù)學,不做習題是絕對不行的。因為耐概念究竟理解與否檢驗的最后關口是習題。一道習題不會做或者做錯了,肯定是某些概念投有消化好,帶著習題再來復習理解概念,拄往會摩擦出新的思想火花。學習高等數(shù)學的過程中,我們不主張采用中學的題海戰(zhàn),但對每道習題不但要弄懂正確的解法,而且盡量要考慮能否有多種解法。這還不夠,進一步的思考是一些似是而非的錯誤解法究竟錯在哪里?必定是對概念理解的偏差才導致的錯誤結果。經(jīng)過又一次正反兩個層面的開掘。思考深入了,學習的興趣也會逐步培育起來。
高等數(shù)學的體會篇十七
隨著科技日新月異的發(fā)展和電腦無孔不入的應用.高等數(shù)學課程作為一種數(shù)學工具的功能正在逐步縮減.但作為一種思維方法的載體的功能(例如訓練學生辯證思維、邏輯推理、發(fā)現(xiàn)同題及分析同題的能力)卻愈顯風采。一個多元線性方程組如何去解?我們可以交給電腦去完成,只要會正確使用數(shù)學軟件。但一個實際問題如何通過數(shù)學建模轉(zhuǎn)化為一個數(shù)學同題,除了必須具備許多綜合的知識,還需要具備一定的分析推理能力,這種素質(zhì)自然可以通過生活來積累,但如果能夠通過象高等數(shù)學這樣的課程作為載體來進行系統(tǒng)訓練,將是事半功倍的。
以往對工科學生來講,高等數(shù)學的教學比較偏重于計算方法的訓練,例如,如何計算極限,計算導數(shù),計算積分,通過熟練掌握計算方法來加深對概念的理解,這是學習高等數(shù)學的一條捷便之徑。但是從二十一世紀更加需要創(chuàng)新人才的觀點看,從高等數(shù)學的概念中直接去提煉一種分析推理能力及實際應用能力,將是更加重要的。(當然,在改革的力度還未到位時,由于教學要求及教材等原因.學習高等數(shù)學并不能僅偏重于概念,對基本的計算方法必須熟練地掌握。如今就如何學好高等數(shù)學的基本概念。提出一些拙見供同學參考。
1)從正反兩個層面理解概念
我們觀察一個物體,如果僅僅通過平視去進行,那么對這個物體的認識往往是局部的,甚至是扭曲的,只有從正視、俯視、側視的多角度去觀察與綜合,方能得到物體正確的空間定位。觀察事物尚且如此,要理解一個抽象的概念,如果只有單向的思維方法,肯定只能淺嘗輒止.只有從正反兩個方向去透視概念,才能較深地抓住概念中一些本質(zhì)的東西。這里所說的正方向思維應該包含幾層意思:一是概念的定義是如何敘述的,二是概念所尉帶的條件是必要的.還是充分的?三是概念產(chǎn)生的實際背景是什么?這里所說的反方向思維又應該包含兩層意思:一是對一個概念的否定是怎樣表達的?二是如果錯誤的理解了概念中的一些條件會導致什么樣的錯誤結果。
2)學與問
發(fā)現(xiàn)問題呢?首先要提倡自學,在自己預習教材(也鍛煉了一種自學能力)的過程中很容易發(fā)現(xiàn)不懂的同題,帶著同題再去聽課就會有的放矢。其次是聽課之后做習題之前要認真復習消化課上的內(nèi)容,只要積極地開動腦筋,從中是會發(fā)現(xiàn)很多問題的,在這個較深層次上發(fā)現(xiàn)問題又去解決問題(可以通過同學與老師的幫助),那么分析問題的能力就會有一個質(zhì)的提高。
3)做習題與想習題
學習數(shù)學,不做習題是絕對不行的.因為耐概念究竟理解與否檢驗的最后關口是習題。一道習題不會做或者做錯了,肯定是某些概念投有消化好,帶著習題再來復習理解概念,拄往會摩擦出新的思想火花。學習高等數(shù)學的過程中,我們不主張采用中學的題海戰(zhàn),但對每道習題不但要弄懂正確的解法,而且盡量要考慮能否有多種解法。這還不夠,進一步的思考是一些似是而非的錯誤解法究竟錯在哪里?必定是對概念理解的偏差才導致的錯誤結果.經(jīng)過又一次正反兩個層面的開掘.思考深入了,學習的興趣也會逐步培育起來。