教案應(yīng)該具有靈活性,能夠根據(jù)學(xué)生的實(shí)際學(xué)情進(jìn)行調(diào)整和優(yōu)化。教案的編寫應(yīng)當(dāng)注重課堂秩序的管理和激發(fā)學(xué)生的學(xué)習(xí)熱情。這里有一些優(yōu)秀的教案范本,希望能對(duì)大家的教案編寫有所幫助。
教資勾股定理教案篇一
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):
(1)掌握勾股定理;
(2)學(xué)會(huì)利用勾股定理進(jìn)行計(jì)算、證明與作圖;
(3)了解有關(guān)勾股定理的歷史。
2、能力目標(biāo):
(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;
(2)通過問題的解決,提高學(xué)生的運(yùn)算能力
3、情感目標(biāo):
(1)通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;
(2)通過有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。
教學(xué)重點(diǎn):勾股定理及其應(yīng)用
教學(xué)難點(diǎn):通過有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。
教學(xué)用具:直尺,微機(jī)
教學(xué)方法:以學(xué)生為主體的討論探索法
教學(xué)過程:
1、新課背景知識(shí)復(fù)習(xí)
(1)三角形的三邊關(guān)系
(2)問題:(投影顯示)
直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?
2、定理的獲得
讓學(xué)生用文字語言將上述問題表述出來。
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。
強(qiáng)調(diào)說明:
(1)勾――最短的邊、股――較長的直角邊、弦――斜邊
(2)學(xué)生根據(jù)上述學(xué)習(xí),提出自己的問題(待定)
3、定理的證明方法
方法一:將四個(gè)全等的直角三角形拼成如圖1所示的正方形。
方法二:將四個(gè)全等的直角三角形拼成如圖2所示的正方形。
方法三:“總統(tǒng)”法、如圖所示將兩個(gè)直角三角形拼成直角梯形。
以上證明方法都由學(xué)生先分組討論獲得,教師只做指導(dǎo)、最后總結(jié)說明
4、定理與逆定理的應(yīng)用
5、課堂小結(jié):
(1)勾股定理的內(nèi)容
(2)勾股定理的作用
已知直角三角形的兩邊求第三邊
已知直角三角形的一邊,求另兩邊的關(guān)系
6、布置作業(yè):
a、書面作業(yè)p130#1、2、3
b、上交作業(yè)p132#1、3
教資勾股定理教案篇二
教學(xué)目標(biāo)1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來判定平行四邊形的方法.
2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題
教學(xué)重點(diǎn):平行四邊形的判定方法及應(yīng)用
教學(xué)難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用
引
二.探
閱讀教材p44至p45
利用手中的學(xué)具——硬紙板條,通過觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:
(1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?
(2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?
(3)你能說出你的做法及其道理嗎?
(4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?
(5)你還能找出其他方法嗎?
從探究中得到:
平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
平行四邊形判定方法2對(duì)角線互相平分的四邊形是平行四邊形。
證一證
平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
證明:(畫出圖形)
平行四邊形判定方法2一組對(duì)邊平行且相等的四邊形是平行四邊形。
證明:(畫出圖形)
三.結(jié)
兩組對(duì)邊分別相等的四邊形是平行四邊形。
對(duì)角線互相平分的四邊形是平行四邊形。
四.用
教資勾股定理教案篇三
從知識(shí)結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用。
從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;
勾股定理又是對(duì)學(xué)生進(jìn)行愛國主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。
根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級(jí)學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識(shí)技能、數(shù)學(xué)思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛祖國悠久文化的情感。
(二)重點(diǎn)與難點(diǎn)
為變被動(dòng)接受為主動(dòng)探究,我確定本節(jié)課的重點(diǎn)為:勾股定理的探索過程。限于八年級(jí)學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點(diǎn),我將引導(dǎo)學(xué)生動(dòng)手實(shí)驗(yàn)突出重點(diǎn),合作交流突破難點(diǎn)。
教資勾股定理教案篇四
勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.
即直角三角形兩直角的平方和等于斜邊的平方.
因此,在運(yùn)用勾股定理計(jì)算三角形的邊長時(shí),要注意如下三點(diǎn):
(2)注意分清斜邊和直角邊,避免盲目代入公式致錯(cuò);
2.學(xué)會(huì)用拼圖法驗(yàn)證勾股定理
如,利用四個(gè)如圖1所示的直角三角形三角形,拼出如圖2所示的三個(gè)圖形.
請(qǐng)讀者證明.
請(qǐng)同學(xué)們自己證明圖(2)、(3).
3.在數(shù)軸上表示無理數(shù)
二、典例精析
解:由勾股定理,得
132-52=144,所以另一條直角邊的長為12.
所以這個(gè)直角三角形的面積是×12×5=30(cm2).
例2如圖3(1),一只螞蟻沿棱長為a的正方體表面從頂點(diǎn)a爬到
頂點(diǎn)b,則它走過的最短路程為
a.b.c.3ad.分析:本題顯然與例2屬同種類型,思路相同.但正方體的
各棱長相等,因此只有一種展開圖.
解:將正方體側(cè)面展開
教資勾股定理教案篇五
教學(xué)方法葉圣陶說過“教師之為教,不在全盤授予,而在相機(jī)誘導(dǎo)?!币虼私處熇脦缀沃庇^提出問題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計(jì)實(shí)驗(yàn)讓學(xué)生進(jìn)行驗(yàn)證,感悟其中所蘊(yùn)涵的思想方法。
學(xué)法指導(dǎo)為把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,教師鼓勵(lì)學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗(yàn)知識(shí)的形成過程。
教資勾股定理教案篇六
本節(jié)課探究體驗(yàn)貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
采用“七巧板”代替教材中“畢達(dá)哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學(xué)文化為主線這一設(shè)計(jì)理念,展現(xiàn)了我國古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。
教資勾股定理教案篇七
教學(xué)目標(biāo):
1、知識(shí)與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問題。
2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價(jià)值觀目標(biāo):了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
教學(xué)重點(diǎn):
引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問題。
教學(xué)難點(diǎn):
用面積法方法證明勾股定理
課前準(zhǔn)備:
多媒體ppt,相關(guān)圖片
教學(xué)過程:
(一)情境導(dǎo)入
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,國際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。
教資勾股定理教案篇八
隨著社會(huì)的發(fā)展,新課程改革的不斷深入,數(shù)學(xué)課已不僅是一些數(shù)學(xué)知識(shí)的學(xué)習(xí),更重要的是體現(xiàn)知識(shí)的認(rèn)知發(fā)展過程。教育的目的是培養(yǎng)具有獨(dú)立思考能力、具有實(shí)踐精神和創(chuàng)新能力的人。一堂好課應(yīng)該是學(xué)生最大限度參與的課。《數(shù)學(xué)課程標(biāo)準(zhǔn)》中指出學(xué)生的數(shù)學(xué)學(xué)習(xí)應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的,內(nèi)容要有利與學(xué)生主動(dòng)進(jìn)行觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理與交流。內(nèi)容的呈現(xiàn)應(yīng)采取不同的表達(dá)方式,以滿足多樣化的學(xué)習(xí)需求。數(shù)學(xué)活動(dòng)不能單純的依賴模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。
八年級(jí)數(shù)學(xué)勾股定理教案(教材、學(xué)情分析與處理)
本節(jié)知識(shí)是在學(xué)生掌握了直角三角形的三個(gè)性質(zhì):直角三角形兩銳角互余和30°所對(duì)的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的角為30°的基礎(chǔ)上展開的。勾股定理是直角三角形的一個(gè)非常重要的性質(zhì),它揭示了一個(gè)直角三角形三邊的數(shù)量關(guān)系,可解決直角三角形的許多有關(guān)的計(jì)算,是初三解直角三角形的主要依據(jù)之一,中考中的四邊形和圓等綜合題中也經(jīng)常出現(xiàn)。貫穿了整個(gè)幾何學(xué)習(xí),更是數(shù)形結(jié)合的重要典范。更重要的是學(xué)生在探索定理的過程中,無論是課前準(zhǔn)備和課上交流以及課下活動(dòng)都讓學(xué)生充分感受到學(xué)習(xí)、思考的重要性,與人合作的重要性以及數(shù)學(xué)在實(shí)際生活中的重要作用,是進(jìn)行愛國教育的重要題材!
本節(jié)課的教育對(duì)象是初二下的學(xué)生,共性是思維活躍,參與意識(shí)較強(qiáng)。而且一般家庭都有電腦,對(duì)教師布置的網(wǎng)上作業(yè)也頗感興趣,并能制作簡(jiǎn)單課件。形成了一定的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
教資勾股定理教案篇九
本節(jié)課教學(xué)模式主要采用“互動(dòng)式”教學(xué)模式及“類比”的教學(xué)方法.通過前面所學(xué)的垂直平分線定理及其逆定理,做類比對(duì)象,讓學(xué)生自己提出問題并解決問題.在課堂教學(xué)中營造輕松、活潑的課堂氣氛.通過師生互動(dòng)、生生互動(dòng)、學(xué)生與教材之間的互動(dòng),造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達(dá)到培養(yǎng)學(xué)生思維能力的目的.具體說明如下:
(1)讓學(xué)生主動(dòng)提出問題
(2)讓學(xué)生自己解決問題
(3)通過實(shí)際問題的解決,培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí).
教資勾股定理教案篇十
教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個(gè)直角的"形"的特點(diǎn),轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計(jì)算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說明勾股定理的正確性。
學(xué)生分析:
1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過三角尺的同學(xué)并不多,通過這樣的情景設(shè)計(jì),能非常簡(jiǎn)單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。
2、以與勾股定理有關(guān)的人文歷史知識(shí)為背景展開對(duì)直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。
設(shè)計(jì)理念:本教案以學(xué)生手中舞動(dòng)的三角尺為知識(shí)背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對(duì)勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗(yàn)勾股定理的探索和運(yùn)用過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
教學(xué)目標(biāo):
1、經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過程,培養(yǎng)學(xué)生主動(dòng)探究意識(shí),發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
2、經(jīng)歷用多種割、補(bǔ)圖形的方法驗(yàn)證勾股定理的過程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界和有條理地思考能力以及語言表達(dá)能力等,感受勾股定理的文化價(jià)值。
3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛國熱情。
4、欣賞設(shè)計(jì)圖形美。
教學(xué)準(zhǔn)備階段:
學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
(一)引入
同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時(shí),你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)
(二)實(shí)驗(yàn)探究
設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b ,斜邊為c ,觀察并計(jì)算每個(gè)正方形的面積,以四人小組為單位填寫下表:
(討論難點(diǎn):以斜邊為邊的正方形的面積找法)
交流后得出一般結(jié)論: (用關(guān)于a、b、c的式子表示)
(三)探索所得結(jié)論的正確性
當(dāng)直角三角形的直角邊分別為a 、b,斜邊為c時(shí), 是否一定成立?
1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計(jì)合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)
在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來交流講解,并引導(dǎo)學(xué)生進(jìn)行說理:
如圖2(用補(bǔ)的方法說明)
師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對(duì)角線為邊向形外作正方形的面積。于是他回到家里立刻對(duì)他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為"畢達(dá)哥拉斯定理"。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計(jì)的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見課本52頁彩圖2—1,欣賞圖片)
如圖3(用割的方法去探索)
師介紹: (出示圖片) 中國古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個(gè)結(jié)論。早在公元前2000年左右,大禹治水時(shí)期,就曾經(jīng)用過此方法測(cè)量土地的`等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測(cè)量土地,他們對(duì)這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國時(shí)期吳國數(shù)學(xué)家趙爽曾構(gòu)造此圖驗(yàn)證了這一結(jié)論的正確性。他的這個(gè)證明,可謂別具匠心,極富創(chuàng)新意識(shí),他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹立了一個(gè)典范。他是我國有記載以來第一個(gè)證明這一結(jié)論的數(shù)學(xué)家。我國數(shù)學(xué)家們?yōu)榱思o(jì)念我國在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。(點(diǎn)題)
20xx年,世界數(shù)學(xué)家大會(huì)在中國北京召開,當(dāng)時(shí)選用這個(gè)圖案作為會(huì)場(chǎng)主圖,它標(biāo)志著我國古代數(shù)學(xué)的輝煌成就。(見課本50頁彩圖,欣賞圖片)
如圖4(構(gòu)造新圖形的方法去探索)
本節(jié)課學(xué)習(xí)的勾股定理用語言敘說為:
1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。
2、探索勾股定理的運(yùn)用。
教資勾股定理教案篇十一
教學(xué)目標(biāo):
1、知識(shí)與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問題。
2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價(jià)值觀目標(biāo):了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
教學(xué)重點(diǎn):
引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問題。
教學(xué)難點(diǎn):
用面積法方法證明勾股定理
課前準(zhǔn)備:
多媒體ppt,相關(guān)圖片
教學(xué)過程:
(一)情境導(dǎo)入
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,國際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。
已知一直角三角形的兩邊,如何求第三邊?
學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了
(二)學(xué)習(xí)新課
教資勾股定理教案篇十二
一、學(xué)情分析:
知識(shí)技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)過分?jǐn)?shù)的乘除法,掌握了分?jǐn)?shù)的乘除法法則,在學(xué)習(xí)分式的乘除法法則時(shí)可通過與分?jǐn)?shù)的乘除法法則進(jìn)行類比學(xué)習(xí)。在前面學(xué)習(xí)了整式乘法和因式分解,為分式的運(yùn)算和結(jié)果的化簡(jiǎn)奠定基礎(chǔ)。
能力基礎(chǔ):在過去的數(shù)學(xué)學(xué)習(xí)過程中,學(xué)生已初步具備觀察、分析、歸納的能力和類比的學(xué)習(xí)方法。
二、教學(xué)目標(biāo):
知識(shí)目標(biāo):1、分式的乘除運(yùn)算法則
2、會(huì)進(jìn)行簡(jiǎn)單的分式的乘除法運(yùn)算
能力目標(biāo):1、類比分?jǐn)?shù)的乘除運(yùn)算法則,探索分式的乘除運(yùn)算法則。
2、能解決一些與分式有關(guān)的簡(jiǎn)單的實(shí)際問題。
情感目標(biāo):1、通過師生討論、交流,培養(yǎng)學(xué)生合作探究的意識(shí)和能力。
2、培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和應(yīng)用意識(shí)。
三、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):分式乘除法的法則及應(yīng)用
難點(diǎn):分子、分母是多項(xiàng)式的分式的乘除法的運(yùn)算
三、教學(xué)過程:
第一環(huán)節(jié)復(fù)習(xí)舊知識(shí)
復(fù)習(xí)小學(xué)學(xué)的分?jǐn)?shù)乘除法法則,
活動(dòng)目的:
復(fù)習(xí)小學(xué)學(xué)過的分?jǐn)?shù)的乘除法運(yùn)算,為學(xué)習(xí)分式乘除法的法則做準(zhǔn)備。
第二環(huán)節(jié)引入新課
活動(dòng)內(nèi)容
你能總結(jié)分式乘除法的法則嗎?與同伴交流。
分式的乘除法的法則:
兩個(gè)分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;
兩個(gè)分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.
活動(dòng)目的:
讓學(xué)生觀察運(yùn)算,通過小組討論交流,并與分?jǐn)?shù)的乘除法的法則類比,讓學(xué)生自己總結(jié)出分式的乘除法的法則。
第三環(huán)節(jié)知識(shí)運(yùn)用
活動(dòng)內(nèi)容
例題1:
(1)(2)例題2
(1)(2)活動(dòng)目的:
通過例題講解,使學(xué)生會(huì)根據(jù)法則,理解每一步的算理,從而進(jìn)行簡(jiǎn)單的分式的乘除法運(yùn)算,并能解決一些與分式有關(guān)的簡(jiǎn)單的實(shí)際問題,增強(qiáng)學(xué)生代數(shù)推理的能力與應(yīng)用意識(shí)。需要給學(xué)生強(qiáng)調(diào)的是分式運(yùn)算的結(jié)果通常要化成最簡(jiǎn)分式或整式,對(duì)于這一點(diǎn),很多學(xué)生在開始學(xué)習(xí)分式計(jì)算時(shí)往往沒有注意到結(jié)果要化簡(jiǎn)。
第四環(huán)節(jié)走進(jìn)中考
(2012.漳州)第五環(huán)節(jié)課時(shí)小結(jié)
活動(dòng)內(nèi)容:
1.分式的乘除法的法則
2.分式運(yùn)算的結(jié)果通常要化成最簡(jiǎn)分式或整式.
3.學(xué)會(huì)類比的數(shù)學(xué)方法
第六環(huán)節(jié)當(dāng)堂檢測(cè)
教資勾股定理教案篇十三
教學(xué)目標(biāo):
1、知識(shí)與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問題。
2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價(jià)值觀目標(biāo):了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
教學(xué)重點(diǎn):
引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問題。
教學(xué)難點(diǎn):
用面積法方法證明勾股定理
課前準(zhǔn)備:
多媒體ppt,相關(guān)圖片
教學(xué)過程:
(一)情境導(dǎo)入
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,20國際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。
教資勾股定理教案篇十四
勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。
本節(jié)教科書從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計(jì)算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對(duì)勾股定理的作用有一定的認(rèn)識(shí)。
一、知識(shí)與技能
1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
2、應(yīng)用勾股定理解決簡(jiǎn)單的實(shí)際問題
3學(xué)會(huì)簡(jiǎn)單的合情推理與數(shù)學(xué)說理
二、過程與方法
引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動(dòng)手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識(shí)。
三、情感與態(tài)度目標(biāo)
通過對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對(duì)勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,以及自主學(xué)習(xí)的能力。
四、重點(diǎn)與難點(diǎn)
1、探索和證明勾股定理
2、熟練運(yùn)用勾股定理
一、創(chuàng)設(shè)情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請(qǐng)教數(shù)學(xué)知識(shí)時(shí)的對(duì)話,為勾股定理的出現(xiàn)埋下伏筆。
周公問:“竊聞乎大夫善數(shù)也,請(qǐng)問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請(qǐng)問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?BR> 2、教師展示圖片并介紹第二情景
畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問題
1、現(xiàn)在請(qǐng)你也動(dòng)手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?
3、你能得到什么結(jié)論嗎?
三、得出命題
勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
第一種方法:邊長為 的正方形可以看作是由4個(gè)直角邊分別為 、,斜邊為 的直角三角形圍在外面形成的。因?yàn)檫呴L為 的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡(jiǎn)得 。
第二種方法:邊長為 的正方形可以看作是由4個(gè)直角邊分別為 、,斜邊為 的
角三角形拼接形成的(虛線表示),不過中間缺出一個(gè)邊長為 的正方形“小洞”。
因?yàn)檫呴L為 的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡(jiǎn)得 。
這種證明方法很簡(jiǎn)明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對(duì)數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。
五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運(yùn)用勾股定理解決一些問題,你可以嗎?試一試。
六、歸納總結(jié)
2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。
七、討論交流
讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個(gè)梳理知識(shí)的機(jī)會(huì),通過提示性的引導(dǎo),讓學(xué)生對(duì)勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請(qǐng)同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。
教資勾股定理教案篇一
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):
(1)掌握勾股定理;
(2)學(xué)會(huì)利用勾股定理進(jìn)行計(jì)算、證明與作圖;
(3)了解有關(guān)勾股定理的歷史。
2、能力目標(biāo):
(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;
(2)通過問題的解決,提高學(xué)生的運(yùn)算能力
3、情感目標(biāo):
(1)通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;
(2)通過有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。
教學(xué)重點(diǎn):勾股定理及其應(yīng)用
教學(xué)難點(diǎn):通過有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。
教學(xué)用具:直尺,微機(jī)
教學(xué)方法:以學(xué)生為主體的討論探索法
教學(xué)過程:
1、新課背景知識(shí)復(fù)習(xí)
(1)三角形的三邊關(guān)系
(2)問題:(投影顯示)
直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?
2、定理的獲得
讓學(xué)生用文字語言將上述問題表述出來。
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。
強(qiáng)調(diào)說明:
(1)勾――最短的邊、股――較長的直角邊、弦――斜邊
(2)學(xué)生根據(jù)上述學(xué)習(xí),提出自己的問題(待定)
3、定理的證明方法
方法一:將四個(gè)全等的直角三角形拼成如圖1所示的正方形。
方法二:將四個(gè)全等的直角三角形拼成如圖2所示的正方形。
方法三:“總統(tǒng)”法、如圖所示將兩個(gè)直角三角形拼成直角梯形。
以上證明方法都由學(xué)生先分組討論獲得,教師只做指導(dǎo)、最后總結(jié)說明
4、定理與逆定理的應(yīng)用
5、課堂小結(jié):
(1)勾股定理的內(nèi)容
(2)勾股定理的作用
已知直角三角形的兩邊求第三邊
已知直角三角形的一邊,求另兩邊的關(guān)系
6、布置作業(yè):
a、書面作業(yè)p130#1、2、3
b、上交作業(yè)p132#1、3
教資勾股定理教案篇二
教學(xué)目標(biāo)1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來判定平行四邊形的方法.
2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來解決問題
教學(xué)重點(diǎn):平行四邊形的判定方法及應(yīng)用
教學(xué)難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用
引
二.探
閱讀教材p44至p45
利用手中的學(xué)具——硬紙板條,通過觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:
(1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?
(2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?
(3)你能說出你的做法及其道理嗎?
(4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?
(5)你還能找出其他方法嗎?
從探究中得到:
平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
平行四邊形判定方法2對(duì)角線互相平分的四邊形是平行四邊形。
證一證
平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
證明:(畫出圖形)
平行四邊形判定方法2一組對(duì)邊平行且相等的四邊形是平行四邊形。
證明:(畫出圖形)
三.結(jié)
兩組對(duì)邊分別相等的四邊形是平行四邊形。
對(duì)角線互相平分的四邊形是平行四邊形。
四.用
教資勾股定理教案篇三
從知識(shí)結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用。
從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;
勾股定理又是對(duì)學(xué)生進(jìn)行愛國主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。
根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級(jí)學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識(shí)技能、數(shù)學(xué)思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛祖國悠久文化的情感。
(二)重點(diǎn)與難點(diǎn)
為變被動(dòng)接受為主動(dòng)探究,我確定本節(jié)課的重點(diǎn)為:勾股定理的探索過程。限于八年級(jí)學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點(diǎn),我將引導(dǎo)學(xué)生動(dòng)手實(shí)驗(yàn)突出重點(diǎn),合作交流突破難點(diǎn)。
教資勾股定理教案篇四
勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.
即直角三角形兩直角的平方和等于斜邊的平方.
因此,在運(yùn)用勾股定理計(jì)算三角形的邊長時(shí),要注意如下三點(diǎn):
(2)注意分清斜邊和直角邊,避免盲目代入公式致錯(cuò);
2.學(xué)會(huì)用拼圖法驗(yàn)證勾股定理
如,利用四個(gè)如圖1所示的直角三角形三角形,拼出如圖2所示的三個(gè)圖形.
請(qǐng)讀者證明.
請(qǐng)同學(xué)們自己證明圖(2)、(3).
3.在數(shù)軸上表示無理數(shù)
二、典例精析
解:由勾股定理,得
132-52=144,所以另一條直角邊的長為12.
所以這個(gè)直角三角形的面積是×12×5=30(cm2).
例2如圖3(1),一只螞蟻沿棱長為a的正方體表面從頂點(diǎn)a爬到
頂點(diǎn)b,則它走過的最短路程為
a.b.c.3ad.分析:本題顯然與例2屬同種類型,思路相同.但正方體的
各棱長相等,因此只有一種展開圖.
解:將正方體側(cè)面展開
教資勾股定理教案篇五
教學(xué)方法葉圣陶說過“教師之為教,不在全盤授予,而在相機(jī)誘導(dǎo)?!币虼私處熇脦缀沃庇^提出問題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計(jì)實(shí)驗(yàn)讓學(xué)生進(jìn)行驗(yàn)證,感悟其中所蘊(yùn)涵的思想方法。
學(xué)法指導(dǎo)為把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,教師鼓勵(lì)學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗(yàn)知識(shí)的形成過程。
教資勾股定理教案篇六
本節(jié)課探究體驗(yàn)貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
采用“七巧板”代替教材中“畢達(dá)哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學(xué)文化為主線這一設(shè)計(jì)理念,展現(xiàn)了我國古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。
教資勾股定理教案篇七
教學(xué)目標(biāo):
1、知識(shí)與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問題。
2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價(jià)值觀目標(biāo):了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
教學(xué)重點(diǎn):
引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問題。
教學(xué)難點(diǎn):
用面積法方法證明勾股定理
課前準(zhǔn)備:
多媒體ppt,相關(guān)圖片
教學(xué)過程:
(一)情境導(dǎo)入
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,國際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。
教資勾股定理教案篇八
隨著社會(huì)的發(fā)展,新課程改革的不斷深入,數(shù)學(xué)課已不僅是一些數(shù)學(xué)知識(shí)的學(xué)習(xí),更重要的是體現(xiàn)知識(shí)的認(rèn)知發(fā)展過程。教育的目的是培養(yǎng)具有獨(dú)立思考能力、具有實(shí)踐精神和創(chuàng)新能力的人。一堂好課應(yīng)該是學(xué)生最大限度參與的課。《數(shù)學(xué)課程標(biāo)準(zhǔn)》中指出學(xué)生的數(shù)學(xué)學(xué)習(xí)應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的,內(nèi)容要有利與學(xué)生主動(dòng)進(jìn)行觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理與交流。內(nèi)容的呈現(xiàn)應(yīng)采取不同的表達(dá)方式,以滿足多樣化的學(xué)習(xí)需求。數(shù)學(xué)活動(dòng)不能單純的依賴模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。
八年級(jí)數(shù)學(xué)勾股定理教案(教材、學(xué)情分析與處理)
本節(jié)知識(shí)是在學(xué)生掌握了直角三角形的三個(gè)性質(zhì):直角三角形兩銳角互余和30°所對(duì)的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的角為30°的基礎(chǔ)上展開的。勾股定理是直角三角形的一個(gè)非常重要的性質(zhì),它揭示了一個(gè)直角三角形三邊的數(shù)量關(guān)系,可解決直角三角形的許多有關(guān)的計(jì)算,是初三解直角三角形的主要依據(jù)之一,中考中的四邊形和圓等綜合題中也經(jīng)常出現(xiàn)。貫穿了整個(gè)幾何學(xué)習(xí),更是數(shù)形結(jié)合的重要典范。更重要的是學(xué)生在探索定理的過程中,無論是課前準(zhǔn)備和課上交流以及課下活動(dòng)都讓學(xué)生充分感受到學(xué)習(xí)、思考的重要性,與人合作的重要性以及數(shù)學(xué)在實(shí)際生活中的重要作用,是進(jìn)行愛國教育的重要題材!
本節(jié)課的教育對(duì)象是初二下的學(xué)生,共性是思維活躍,參與意識(shí)較強(qiáng)。而且一般家庭都有電腦,對(duì)教師布置的網(wǎng)上作業(yè)也頗感興趣,并能制作簡(jiǎn)單課件。形成了一定的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
教資勾股定理教案篇九
本節(jié)課教學(xué)模式主要采用“互動(dòng)式”教學(xué)模式及“類比”的教學(xué)方法.通過前面所學(xué)的垂直平分線定理及其逆定理,做類比對(duì)象,讓學(xué)生自己提出問題并解決問題.在課堂教學(xué)中營造輕松、活潑的課堂氣氛.通過師生互動(dòng)、生生互動(dòng)、學(xué)生與教材之間的互動(dòng),造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達(dá)到培養(yǎng)學(xué)生思維能力的目的.具體說明如下:
(1)讓學(xué)生主動(dòng)提出問題
(2)讓學(xué)生自己解決問題
(3)通過實(shí)際問題的解決,培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí).
教資勾股定理教案篇十
教材分析:勾股定理是直角三角形的重要性質(zhì),它把三角形有一個(gè)直角的"形"的特點(diǎn),轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計(jì)算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說明勾股定理的正確性。
學(xué)生分析:
1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過三角尺的同學(xué)并不多,通過這樣的情景設(shè)計(jì),能非常簡(jiǎn)單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。
2、以與勾股定理有關(guān)的人文歷史知識(shí)為背景展開對(duì)直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。
設(shè)計(jì)理念:本教案以學(xué)生手中舞動(dòng)的三角尺為知識(shí)背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學(xué)生對(duì)勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗(yàn)勾股定理的探索和運(yùn)用過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
教學(xué)目標(biāo):
1、經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過程,培養(yǎng)學(xué)生主動(dòng)探究意識(shí),發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
2、經(jīng)歷用多種割、補(bǔ)圖形的方法驗(yàn)證勾股定理的過程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界和有條理地思考能力以及語言表達(dá)能力等,感受勾股定理的文化價(jià)值。
3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛國熱情。
4、欣賞設(shè)計(jì)圖形美。
教學(xué)準(zhǔn)備階段:
學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
(一)引入
同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時(shí),你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)
(二)實(shí)驗(yàn)探究
設(shè)網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b ,斜邊為c ,觀察并計(jì)算每個(gè)正方形的面積,以四人小組為單位填寫下表:
(討論難點(diǎn):以斜邊為邊的正方形的面積找法)
交流后得出一般結(jié)論: (用關(guān)于a、b、c的式子表示)
(三)探索所得結(jié)論的正確性
當(dāng)直角三角形的直角邊分別為a 、b,斜邊為c時(shí), 是否一定成立?
1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計(jì)合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)
在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來交流講解,并引導(dǎo)學(xué)生進(jìn)行說理:
如圖2(用補(bǔ)的方法說明)
師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對(duì)角線為邊向形外作正方形的面積。于是他回到家里立刻對(duì)他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為"畢達(dá)哥拉斯定理"。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計(jì)的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見課本52頁彩圖2—1,欣賞圖片)
如圖3(用割的方法去探索)
師介紹: (出示圖片) 中國古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個(gè)結(jié)論。早在公元前2000年左右,大禹治水時(shí)期,就曾經(jīng)用過此方法測(cè)量土地的`等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測(cè)量土地,他們對(duì)這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國時(shí)期吳國數(shù)學(xué)家趙爽曾構(gòu)造此圖驗(yàn)證了這一結(jié)論的正確性。他的這個(gè)證明,可謂別具匠心,極富創(chuàng)新意識(shí),他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹立了一個(gè)典范。他是我國有記載以來第一個(gè)證明這一結(jié)論的數(shù)學(xué)家。我國數(shù)學(xué)家們?yōu)榱思o(jì)念我國在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。(點(diǎn)題)
20xx年,世界數(shù)學(xué)家大會(huì)在中國北京召開,當(dāng)時(shí)選用這個(gè)圖案作為會(huì)場(chǎng)主圖,它標(biāo)志著我國古代數(shù)學(xué)的輝煌成就。(見課本50頁彩圖,欣賞圖片)
如圖4(構(gòu)造新圖形的方法去探索)
本節(jié)課學(xué)習(xí)的勾股定理用語言敘說為:
1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。
2、探索勾股定理的運(yùn)用。
教資勾股定理教案篇十一
教學(xué)目標(biāo):
1、知識(shí)與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問題。
2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價(jià)值觀目標(biāo):了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
教學(xué)重點(diǎn):
引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問題。
教學(xué)難點(diǎn):
用面積法方法證明勾股定理
課前準(zhǔn)備:
多媒體ppt,相關(guān)圖片
教學(xué)過程:
(一)情境導(dǎo)入
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,國際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。
已知一直角三角形的兩邊,如何求第三邊?
學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了
(二)學(xué)習(xí)新課
教資勾股定理教案篇十二
一、學(xué)情分析:
知識(shí)技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)過分?jǐn)?shù)的乘除法,掌握了分?jǐn)?shù)的乘除法法則,在學(xué)習(xí)分式的乘除法法則時(shí)可通過與分?jǐn)?shù)的乘除法法則進(jìn)行類比學(xué)習(xí)。在前面學(xué)習(xí)了整式乘法和因式分解,為分式的運(yùn)算和結(jié)果的化簡(jiǎn)奠定基礎(chǔ)。
能力基礎(chǔ):在過去的數(shù)學(xué)學(xué)習(xí)過程中,學(xué)生已初步具備觀察、分析、歸納的能力和類比的學(xué)習(xí)方法。
二、教學(xué)目標(biāo):
知識(shí)目標(biāo):1、分式的乘除運(yùn)算法則
2、會(huì)進(jìn)行簡(jiǎn)單的分式的乘除法運(yùn)算
能力目標(biāo):1、類比分?jǐn)?shù)的乘除運(yùn)算法則,探索分式的乘除運(yùn)算法則。
2、能解決一些與分式有關(guān)的簡(jiǎn)單的實(shí)際問題。
情感目標(biāo):1、通過師生討論、交流,培養(yǎng)學(xué)生合作探究的意識(shí)和能力。
2、培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和應(yīng)用意識(shí)。
三、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):分式乘除法的法則及應(yīng)用
難點(diǎn):分子、分母是多項(xiàng)式的分式的乘除法的運(yùn)算
三、教學(xué)過程:
第一環(huán)節(jié)復(fù)習(xí)舊知識(shí)
復(fù)習(xí)小學(xué)學(xué)的分?jǐn)?shù)乘除法法則,
活動(dòng)目的:
復(fù)習(xí)小學(xué)學(xué)過的分?jǐn)?shù)的乘除法運(yùn)算,為學(xué)習(xí)分式乘除法的法則做準(zhǔn)備。
第二環(huán)節(jié)引入新課
活動(dòng)內(nèi)容
你能總結(jié)分式乘除法的法則嗎?與同伴交流。
分式的乘除法的法則:
兩個(gè)分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;
兩個(gè)分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.
活動(dòng)目的:
讓學(xué)生觀察運(yùn)算,通過小組討論交流,并與分?jǐn)?shù)的乘除法的法則類比,讓學(xué)生自己總結(jié)出分式的乘除法的法則。
第三環(huán)節(jié)知識(shí)運(yùn)用
活動(dòng)內(nèi)容
例題1:
(1)(2)例題2
(1)(2)活動(dòng)目的:
通過例題講解,使學(xué)生會(huì)根據(jù)法則,理解每一步的算理,從而進(jìn)行簡(jiǎn)單的分式的乘除法運(yùn)算,并能解決一些與分式有關(guān)的簡(jiǎn)單的實(shí)際問題,增強(qiáng)學(xué)生代數(shù)推理的能力與應(yīng)用意識(shí)。需要給學(xué)生強(qiáng)調(diào)的是分式運(yùn)算的結(jié)果通常要化成最簡(jiǎn)分式或整式,對(duì)于這一點(diǎn),很多學(xué)生在開始學(xué)習(xí)分式計(jì)算時(shí)往往沒有注意到結(jié)果要化簡(jiǎn)。
第四環(huán)節(jié)走進(jìn)中考
(2012.漳州)第五環(huán)節(jié)課時(shí)小結(jié)
活動(dòng)內(nèi)容:
1.分式的乘除法的法則
2.分式運(yùn)算的結(jié)果通常要化成最簡(jiǎn)分式或整式.
3.學(xué)會(huì)類比的數(shù)學(xué)方法
第六環(huán)節(jié)當(dāng)堂檢測(cè)
教資勾股定理教案篇十三
教學(xué)目標(biāo):
1、知識(shí)與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問題。
2、過程與方法目標(biāo):通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。
3、情感、態(tài)度與價(jià)值觀目標(biāo):了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。
教學(xué)重點(diǎn):
引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問題。
教學(xué)難點(diǎn):
用面積法方法證明勾股定理
課前準(zhǔn)備:
多媒體ppt,相關(guān)圖片
教學(xué)過程:
(一)情境導(dǎo)入
1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,20國際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價(jià)值。
教資勾股定理教案篇十四
勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。
本節(jié)教科書從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計(jì)算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對(duì)勾股定理的作用有一定的認(rèn)識(shí)。
一、知識(shí)與技能
1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
2、應(yīng)用勾股定理解決簡(jiǎn)單的實(shí)際問題
3學(xué)會(huì)簡(jiǎn)單的合情推理與數(shù)學(xué)說理
二、過程與方法
引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動(dòng)手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識(shí)。
三、情感與態(tài)度目標(biāo)
通過對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對(duì)勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,以及自主學(xué)習(xí)的能力。
四、重點(diǎn)與難點(diǎn)
1、探索和證明勾股定理
2、熟練運(yùn)用勾股定理
一、創(chuàng)設(shè)情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請(qǐng)教數(shù)學(xué)知識(shí)時(shí)的對(duì)話,為勾股定理的出現(xiàn)埋下伏筆。
周公問:“竊聞乎大夫善數(shù)也,請(qǐng)問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請(qǐng)問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?BR> 2、教師展示圖片并介紹第二情景
畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問題
1、現(xiàn)在請(qǐng)你也動(dòng)手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?
3、你能得到什么結(jié)論嗎?
三、得出命題
勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
第一種方法:邊長為 的正方形可以看作是由4個(gè)直角邊分別為 、,斜邊為 的直角三角形圍在外面形成的。因?yàn)檫呴L為 的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡(jiǎn)得 。
第二種方法:邊長為 的正方形可以看作是由4個(gè)直角邊分別為 、,斜邊為 的
角三角形拼接形成的(虛線表示),不過中間缺出一個(gè)邊長為 的正方形“小洞”。
因?yàn)檫呴L為 的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡(jiǎn)得 。
這種證明方法很簡(jiǎn)明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對(duì)數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。
五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運(yùn)用勾股定理解決一些問題,你可以嗎?試一試。
六、歸納總結(jié)
2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。
七、討論交流
讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個(gè)梳理知識(shí)的機(jī)會(huì),通過提示性的引導(dǎo),讓學(xué)生對(duì)勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請(qǐng)同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。