教案是教師根據教學大綱和學生特點,對教學內容、教學目標、教學方法和教學過程進行詳細規(guī)劃的一種教學設計文稿。教案的編寫要注重引導學生自主學習和合作學習,激發(fā)學生的學習興趣和動力。推薦給大家一些教學案例,希望對大家的教學工作有所幫助。
人教版八年級數學教案及反思篇一
會應用平方差公式進行因式分解,發(fā)展學生推理能力.
2.過程與方法。
經歷探索利用平方差公式進行因式分解的過程,發(fā)展學生的逆向思維,感受數學知識的完整性.
3.情感、態(tài)度與價值觀。
培養(yǎng)學生良好的互動交流的習慣,體會數學在實際問題中的應用價值.
重、難點與關鍵。
1.重點:利用平方差公式分解因式.
2.難點:領會因式分解的解題步驟和分解因式的徹底性.
3.關鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉化成能夠應用公式的方面上來.
教學方法。
采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維.
教學過程。
一、觀察探討,體驗新知。
【問題牽引】。
請同學們計算下列各式.
(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演.
(1)(a+5)(a-5)=a2-52=a2-25;。
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動】引導學生完成下面的兩道題目,并運用數學“互逆”的思想,尋找因式分解的規(guī)律.
1.分解因式:a2-25;2.分解因式16m2-9n.
【學生活動】從逆向思維入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教師活動】引導學生完成a2-b2=(a+b)(a-b)的同時,導出課題:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
評析:平方差公式中的字母a、b,教學中還要強調一下,可以表示數、含字母的代數式(單項式、多項式).
二、范例學習,應用所學。
【例1】把下列各式分解因式:(投影顯示或板書)。
(1)x2-9y2;(2)16x4-y4;。
(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;。
(5)m2(16x-y)+n2(y-16x).
【思路點撥】在觀察中發(fā)現1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
【教師活動】啟發(fā)學生從平方差公式的角度進行因式分解,請5位學生上講臺板演.
【學生活動】分四人小組,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);。
(5)m2(16x-y)+n2(y-16x)。
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
人教版八年級數學教案及反思篇二
一、教學目標
1.理解分式的基本性質.
2.會用分式的基本性質將分式變形.
二、重點、難點
1.重點:理解分式的基本性質.
2.難點:靈活應用分式的基本性質將分式變形.
3.認知難點與突破方法
教學難點是靈活應用分式的基本性質將分式變形.突破的方法是通過復習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質.應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形.
三、例、習題的意圖分析
1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變.
2.p9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母.
教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解.
3.p11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變.
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的應用之一,所以補充例5.
四、課堂引入
1.請同學們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據?
3.提問分數的基本性質,讓學生類比猜想出分式的基本性質.
五、例題講解
p7例2.填空:
[分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.
p11例3.約分:
[分析]約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結果要是最簡分式.
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母.
人教版八年級數學教案及反思篇三
1.使學生理解并能證明勾股定理的逆定理.
2.能應用逆定理判斷一個三角形是否是直角三角形.
3.使學生進一步加深性質定理與判定定理之間關系的認識.
4.使學生初步了解,用代數計算方法證明幾何問題這一數學思想方法對開闊思路,提高能力有很大意義.
人教版八年級數學教案及反思篇四
1.重點:勾股定理逆定理的應用.
2.難點:勾股定理逆定理的證明.
3.疑點及分析和解決方法:勾股定理逆定理的證明方法,又是學生前所未見的,是運用代數計算方法證明幾何問題,是解析幾何中研究問題的方法,以后會逐步見到,這一點要讓學生有所認識.
人教版八年級數學教案及反思篇五
一、教學目標:(1)熟練地進行同分母的分式加減法的運算.
(2)會把異分母的分式通分,轉化成同分母的分式相加減.
二、重點、難點
1.重點:熟練地進行異分母的分式加減法的運算.
2.難點:熟練地進行異分母的分式加減法的運算.
3.認知難點與突破方法
進行異分母的分式加減法的運算是難點,異分母的分式加減法的運算,必須轉化為同分母的分式加減法,,然后按同分母的分式加減法的法則計算,轉化的關鍵是通分,通分的關鍵是正確確定幾個分式的最簡公分母,確定最簡公分母的一般步驟:(1)取各分母系數的最小公倍數;(2)所出現的字母(或含字母的式子)為底的冪的因式都要取;(3)相同字母(或含字母的式子)的冪的因式取指數的.在求出最簡公分母后,還要確定分子、分母應乘的因式,這個因式就是最簡公分母除以原分母所得的商.
異分母的分式加減法的一般步驟:(1)通分,將異分母的分式化成同分母的分式;(2)寫成“分母不便,分子相加減”的形式;(3)分子去括號,合并同類項;(4)分子、分母約分,將結果化成最簡分式或整式.
三、例、習題的意圖分析
1.p18問題3是一個工程問題,題意比較簡單,只是用字母n天來表示甲工程隊完成一項工程的時間,乙工程隊完成這一項工程的時間可表示為n+3天,兩隊共同工作一天完成這項工程的.這樣引出分式的加減法的實際背景,問題4的目的與問題3一樣,從上面兩個問題可知,在討論實際問題的數量關系時,需要進行分式的加減法運算.
2.p19[觀察]是為了讓學生回憶分數的加減法法則,類比分數的加減法,分式的加減法的實質與分數的加減法相同,讓學生自己說出分式的加減法法則.
第(2)題是異分母的分式加法的運算,最簡公分母就是兩個分母的乘積,沒有涉及分母要因式分解的題型.例6的練習的題量明顯不足,題型也過于簡單,教師應適當補充一些題,以供學生練習,鞏固分式的加減法法則.
(4)p21例7是一道物理的電路題,學生首先要有并聯電路總電阻r與各支路電阻r1,r2,…,rn的關系為.若知道這個公式,就比較容易地用含有r1的式子表示r2,列出,下面的計算就是異分母的分式加法的運算了,得到,再利用倒數的概念得到r的結果.這道題的數學計算并不難,但是物理的知識若不熟悉,就為數學計算設置了難點.鑒于以上分析,教師在講這道題時要根據學生的物理知識掌握的情況,以及學生的具體掌握異分母的分式加法的運算的情況,可以考慮是否放在例8之后講.
四、課堂堂引入
1.出示p18問題3、問題4,教師引導學生列出答案.
引語:從上面兩個問題可知,在討論實際問題的數量關系時,需要進行分式的加減法運算.
2.下面我們先觀察分數的加減法運算,請你說出分數的加減法運算的法則嗎?
3.分式的加減法的實質與分數的加減法相同,你能說出分式的加減法法則?
4.請同學們說出的最簡公分母是什么?你能說出最簡公分母的確定方法嗎?
五、例題講解
(p20)例6.計算
[分析]第(1)題是同分母的分式減法的運算,分母不變,只把分子相減,第二個分式的分子式個單項式,不涉及到分子是多項式時,第二個多項式要變號的問題,比較簡單;第(2)題是異分母的分式加法的運算,最簡公分母就是兩個分母的乘積.
(補充)例.計算
(1)
[分析]第(1)題是同分母的分式加減法的運算,強調分子為多項式時,應把多項事看作一個整體加上括號參加運算,結果也要約分化成最簡分式.
解:
=
=
=
=
(2)
[分析]第(2)題是異分母的分式加減法的運算,先把分母進行因式分解,再確定最簡公分母,進行通分,結果要化為最簡分式.
解:
=
=
=
=
=
六、隨堂練習
計算
(1)(2)
(3)(4)
七、課后練習
計算
(1)(2)
(3)(4)
八、答案:
四.(1)(2)(3)(4)1
五.(1)(2)(3)1(4)
人教版八年級數學教案及反思篇六
一、教學目的:
1.掌握菱形概念,知道菱形與平行四邊形的關系.
2.理解并掌握菱形的定義及性質1、2;會用這些性質進行有關的論證和計算,會計算菱形的面積.
3.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.
4.根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想.
二、重點、難點。
1.教學重點:菱形的性質1、2.
2.教學難點:菱形的性質及菱形知識的綜合應用.
三、例題的意圖分析。
本節(jié)課安排了兩個例題,例1是一道補充題,是為了鞏固菱形的性質;例2是教材p108中的例2,這是一道用菱形知識與直角三角形知識來求菱形面積的實際應用問題.此題目,除用以鞏固菱形性質外,還可以引導學生用不同的方法來計算菱形的面積,以促進學生熟練、靈活地運用知識.
四、課堂引入。
1.(復習)什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?
2.(引入)我們已經學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,請看演示:(可將事先按如圖做成的一組對邊可以活動的教具進行演示)如圖,改變平行四邊形的邊,使之一組鄰邊相等,從而引出菱形概念.
人教版八年級數學教案及反思篇七
活動目標:
1、認知目標:理解二等分的含義,學習二等分的方法。
2、操作目標:通過操作探索出不同的方法給圖形二等分,體驗等分中的包含關系、等量關系。
3、能力目標:探索對不同圖形進行二等分。
發(fā)散點:
運用不同的等分線對圖形進行等分。
活動準備:
正方形彩色紙片若干、多項操作學具、棋盤若干,記錄單,剪刀,鉛筆、手偶。
活動過程:
(一)等分圖形。
1、以情景引入。結合大班幼兒的年齡特點,創(chuàng)設了這個問題情境,吸引幼兒參與活動的同時,也能夠更加生活化地展現生活的數學,更加易于幼兒的理解。
(1)出示手偶:“你們看誰來了?”幼兒:“是平平姐姐?!?BR> (2)以手偶表演,教師問:“平平姐姐今天怎么不高興了,有什么煩惱嗎?”平平(教師扮):“今天早上吃早點,我發(fā)現只有一片面包片了,可是我要和盈盈一起來分享,小朋友,你們快幫我想想我該怎么辦呢?”
(3)師:“誰想到好辦法了?”幼兒:“把面包片分成兩份不就行了嗎!”
(4)平平(教師扮):“可是分完了會有大有小,怎么辦?”
(5)教師出示正方形的彩色紙片,提問:“面包片是什么形狀的?”幼兒:“正方形的?!苯處煟骸澳俏覀兙陀谜叫蔚募垇泶婷姘瑤推狡浇憬銇矸殖蓛蓧K一樣大的!”
2、提供幼兒正方形紙和剪刀,請幼兒操作。提供給幼兒嘗試的機會,驗證自己的想法,并可以不受限制地嘗試各種二等分的方法,用剪刀將其剪開的方法便于幼兒驗證兩部分是否相等。
3、小結:
(1)師:“你把正方形分成了幾塊什么形狀,你是怎樣分的?”
(2)師:“有幾種分的方法”(對角和對邊折)。
(3)師:“怎樣證明這兩塊一樣大呢?”(比一比)。
(4)師:“怎樣分才能一樣大呢?”
(5)教師于幼兒共同總結:只要找到了中心線,就可以將一個分成兩個一樣大的。進一步引導幼兒掌握二等分的關鍵要點。
(二)運用學具進一步探索。只用紙來等分,以現階段幼兒的年齡特點所致,比較精確的二等分方法只有對角和對邊折兩種,運用學具,抓住學具有洞洞點的特點,可以讓幼兒進一步嘗試以各種折線為中心線進行正方形的二等分,并且能夠保證精確性。促進幼兒發(fā)散性思維的發(fā)展,是幼兒在明確等分要求的.基礎上自由地嘗試二等分的多種方法。此環(huán)節(jié)更加注重幼兒的創(chuàng)造性和獨特性,同時滲透了做一件事情可以有多種方法解決的道理。
1、師:“你們用了兩種辦法,還有沒有更多的方法呢?”
2、請幼兒運用學具進行嘗試,并準確找到不同形狀的中心線,探索檢驗的方法。檢驗能夠證明所分的兩部分是一樣大的,檢驗的方法并不是單一的,為幼兒投放了與一塊學具板相同的作業(yè)單的目的就是能夠在記錄等分方法的同時,還可以剪開記錄后的作業(yè)單進行比較證明。除此方法還可以比較等分線兩側的洞洞子每排數量是否相同等方法。
3、幼兒分組操作,教師針對尋找不同的中心線以及檢查的辦法進行指導,并引導幼兒記錄、檢驗。
4、小結:展示幼兒作業(yè)單,誰來說一說你用了什么方法進行了等分,你是怎樣指導它們是一樣大的。請幼兒將有創(chuàng)新的分法介紹給其他的幼兒,并展示不同檢驗相等的方法。讓幼兒能夠有交流展示的機會,并且結合大班幼兒集體學習的特點,鼓勵幼兒創(chuàng)新。
人教版八年級數學教案及反思篇八
1.理解分式的基本性質。
2.會用分式的基本性質將分式變形。
二、重點、難點
1.重點:理解分式的基本性質。
2.難點:靈活應用分式的基本性質將分式變形。
3.認知難點與突破方法
教學難點是靈活應用分式的基本性質將分式變形。突破的方法是通過復習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質。應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形。
三、練習題的意圖分析
1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
2.p9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解。
3.p11習題16.1的`第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的應用之一,所以補充例5。
四、課堂引入
1.請同學們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據?
3.提問分數的基本性質,讓學生類比猜想出分式的基本性質。
五、例題講解
p7例2.填空:
[分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。
p11例3.約分:
[分析]約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結果要是最簡分式。
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母。
人教版八年級數學教案及反思篇九
分式的分子和分母同時乘以(或除以)一個不等于零的整式,分式的只不變。
2、分式的運算。
(1)分式的乘除。
乘法法則:分式乘以分式,用分子的'積作為積的分子,分母的積作為積的分母。
除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
(2)分式的加減。
加減法法則:同分母分式相加減,分母不變,把分子相加減;。
異分母分式相加減,先通分,變?yōu)橥帜傅姆质?,再加減。
3、整數指數冪的加減乘除法。
4、分式方程及其解法。
第二章反比例函數。
1、反比例函數的表達式、圖像、性質。
圖像:雙曲線。
表達式:y=k/x(k不為0)。
性質:兩支的增減性相同;
2、反比例函數在實際問題中的應用。
第三章勾股定理。
1、勾股定理:直角三角形的兩個直角邊的平方和等于斜邊的平方。
2、勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形。
第四章四邊形。
1、平行四邊形。
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,并且等于第三邊的一半。
2、特殊的平行四邊形:矩形、菱形、正方形。
(1)矩形。
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質。
判定:有一個角是直角的平行四邊形是矩形;
對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等于斜邊的一半。
(2)菱形。
性質:菱形的四條邊都相等;
菱形的對角線互相垂直,并且每一條對角線平分一組對角;
菱形具有平行四邊形的一切性質。
判定:有一組鄰邊相等的平行四邊形是菱形;
對角線互相垂直的平行四邊形是菱形;
四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3、梯形:直角梯形和等腰梯形。
等腰梯形:等腰梯形同一底邊上的兩個角相等;
等腰梯形的兩條對角線相等;
同一個底上的兩個角相等的梯形是等腰梯形。
第五章數據的分析。
加權平均數、中位數、眾數、極差、方差。
人教版八年級數學教案及反思篇十
結合數學內容,布置有個性發(fā)展的興趣作業(yè),培養(yǎng)學生的創(chuàng)新能力。
在初二上期,同學們對乘方知識掌握比較牢固之時,我給學生留了一道作業(yè):
觀察下列等式:
13=12
13+23=32
13+23+33=62
13+23+33+43=102
…
猜想:當有n項立方相加時的計算結果是_________。
第二天過去了,沒人應答;第三天過去了,沒人應答;第四天,有幾位同學找到我,遞給我答案:
當我點頭示意時,他們竟高興得歡呼起來,甚至有一個同學竟哽咽起來。是啊!同學要通過觀察、思考,再通過猜想,探索規(guī)律,從而完成從特殊到一般的創(chuàng)新過程,而且跟應該注意到學生這方面的數學基礎,很大程度都還不具備,但卻能超出個人能力完成任務,實屬不易。更難能可貴的是,學生的創(chuàng)新意識得到突破,創(chuàng)新能力得到了提高,這是何等的重要啊!
興趣就是最好的老師。讓學生通過自己鉆研所得到的結果肯定是印象深刻的,以往的經驗告訴我很多學生之所以害怕學習數學,就是因為他們經常體驗不到成功的喜悅,沒有成就感,只是在感受到學習數學的失敗,無論家長、老師如何引導,學生都會產生強烈的自卑感,數學學習無法正常進行。我本人也欣賞成功教學模式,讓每一個層次的.學生都能夠感受到學習的成就感,課堂上的一個小問題可能就會點燃學生思維的火炬。
人教版八年級數學教案及反思篇十一
嚴格的講教材本節(jié)課沒有引入的問題,而是在復習和延伸中位數的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經和同學們研究過了平均數的這個數據代表。它在分析數據過程中擔當了重要的角色,今天我們來共同研究和認識數據代表中的新成員——中位數和眾數,看看它們在分析數據過程中又起到怎樣的作用。
人教版八年級數學教案及反思篇十二
教材只是為教師提供最基本的教學素材,教師完全可以根據學生的實際情況進行調整。本節(jié)教材中的引例分式方程較復雜,學生直接探索它的`解法有些困難。我是從簡單的整式方程引出分式方程后,再引導學生探究它的解法。這樣很輕松地找到新知識的切入點:用等式性質去分母,轉化為整式方程再求解。因此,學生學的效果也較好。
學生已經學習了一元一次去探究分式方程的解法及分式方程檢驗的必要性。
講例題時,先講一個產生增根的較好,這樣便于說明分式方程有時無解的原因,也便于講清分式方程檢驗的必要性,也是解分式方程與整式方程最大的區(qū)別所在,從而再強調解分式方程必須檢驗,不能省略不寫這一步。
八年級。
將本文的word文檔下載到電腦,方便收藏和打印。
人教版八年級數學教案及反思篇十三
下面是我在教學中的幾點體會:
一、教學中的發(fā)現。
(1)分式的運算錯的較多。分式加減法主要是當分子是多次式時,如果不把分子這個整體用括號括上,容易出現符號和結果的錯誤。所以我們在教學分式加減法時,應教育學生分子部分不能省略括號。其次,分式概念運算應按照先乘方、再乘除,最后進行加減運算的順序進行計算,有括號先做括號里面的。
(2)分式方程也是錯誤重災區(qū)。一是增根定義模糊,對此,我對增根的概念進行深入淺出的闡述:
1.增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;
(3)列分式方程錯誤百出。
針對上述問題,我在課堂復習中從基礎知識和題型入手,用類比的方法講解,特別強調列分式方程解應用題與列整式方程一樣,先分析題意,準確找出應用題中數量問題的相等關系,恰當地設出未知數,列出方程;不同之處是,所列方程是分式方程,最后進行檢驗,既要檢驗是否為所列分式方程的解,又要檢驗是否符合題意。
通過這節(jié)課的教學及課后幾位專家的點評,這節(jié)課的教學目的基本達到,不足之處本節(jié)課的容量較大,如果能采用多媒體教學效果會更好;在以后的教學中我將繼續(xù)努力,提高自己的教學水平。
人教版八年級數學教案及反思篇十四
學生往往不善于預習,也不知道預習起什么作用,預習僅是流于形式,草草看一遍,看不出問題和疑點。在指導學生預習時應要求學生做到:新知識的接受,數學能力的培養(yǎng)主要在課堂上進行,所以要特別重視課堂的學習效率,尋求正確的學習方法。預習前教師先布置預習提綱,使學生有的放矢。實踐證明,養(yǎng)成良好的預習習慣,能使學生變被動學習為主動學習,同時能逐漸培養(yǎng)學生的自學能力。
教師在教學中要注意培養(yǎng)差生的自信心外,更應該充分利用優(yōu)等生這個教育資源,進行好生差生配對,這也是合作學習的一種方式,它從以人為本的理念出發(fā),關注了差生的發(fā)展,構建了團結,合作共同發(fā)展的`良好的,和諧的學習環(huán)境。同時它也彌補了教師課后輔導時間不足的缺陷。
人教版八年級數學教案及反思篇十五
(1)本節(jié)課的設計體現了以教師為主導、學生為主體,以知識為載體、以培養(yǎng)學生的思維能力為重點的教學思想。教師以探究任務引導學生自學自悟的方式,提供了學生自主合作探究的舞臺,營造了思維馳騁的空間,在經歷知識的發(fā)現過程中,培養(yǎng)了學生分類、探究、合作、歸納的能力。
(2)在課堂教學設計中,盡量為學生提供“做中學”的.時空,不放過任何一個發(fā)展學生智力的契機,讓學生在“做”的過程中,借助已有的知識和方法主動探索新知識,擴大認知結構,發(fā)展能力,完善人格,從而使課堂教學真正落實到學生的發(fā)展上。
(3)“樂思方有思泉涌”,在課堂教學中,時時注意營造積極的思維狀態(tài),關注學生的思維發(fā)展過程,創(chuàng)設民主、寬松、和諧的課堂氣氛,讓學生暢所欲言,這樣學生的創(chuàng)造火花才會不斷閃現,個性才得以發(fā)展。
人教版八年級數學教案及反思篇十六
部門abcdefg
人數1124225
每人創(chuàng)得利潤2052.521.51.51.2
該公司每人所創(chuàng)年利潤的平均數是多少萬元?
年齡頻數
28≤x
30≤x
32≤x
34≤x
36≤x
38≤x
40≤x
3、為調查居民生活環(huán)境質量,環(huán)保局對所轄的50個居民區(qū)進行了噪音(單位:分貝)水平的調查,結果如下圖,求每個小區(qū)噪音的平均分貝數。
答案:1.約2.95萬元2.約29歲3.60.54分貝
人教版八年級數學教案及反思篇十七
在教學實踐中我覺得要提高教學效果,達到教學目的,必須在引導學生參與教學活動的全過程上做好文章:加強學生的參與意識;增加學生的參與機會;提高學生的參與質量;培養(yǎng)學生的參與能力。
一、重視學習動機在教學過程中的激勵作用,通過激發(fā)學生的參與熱情,逐步強化學生的參與意識從教育心理學的角度來說,教師應操縱或控制教學過程中影響學生學習的各有關變量。在許許多多的變量中,學習動機是對學生的學習起著關鍵作用的一個,它是有意義學習活動的催化劑,是具有情感性的因素。只有具備良好的學習動機,學生才能對學習積極準備,集中精力,認真思考,主動地探索未知的領域。在實際教學中,向學生介紹富有教育意義的數學發(fā)展史、數學家故事、趣味數學等,通過興趣的誘導、激發(fā)、升華使學生形成學好數學的動機。
教學中,激發(fā)學生參與熱情的方法很多。用貼近學生生活的實例引入新知,既能化難為易,又使學生倍感親切;提出問題,設置懸念,能激勵學生積極投入探求新知識的活動;對學生的學習效果及時肯定;組織競賽;設置愉快情景等,使學生充分展示自己的才華,不斷體驗解決問題的愉悅。堅持這佯做,可以逐步強化學生的參與熱情。
二、重視實踐活動在教學過程中的啟智功能,通過觀察、思考、討論等形式誘導學生參與知識形成發(fā)展的全過程,盡可能增加學生的參與機會。在數學教學中,促使學生多種感官并用,讓學生積累豐富的典型的感性材料,建立清晰的表象,才能更好地進行比較、分析、概括等一系列思維活動,進而真正參與到知識形成和發(fā)展的全過程中來。
1。通過討論,學生間可充分發(fā)表自己的見解,達到交流進而共同提高的效果。
此外,教學中讓學生多練習、多提問、多板演等都可增加學生參與的機會。
三、
重視學習環(huán)境在教學過程中的作用,通過創(chuàng)設良好的人場關系和學習氛圍激勵學生學習潛能的釋放,努力提高學生的參與質量和諧的師生關系便于發(fā)揮學生學習的主動性、積極性。
總之,在數學課堂教學中,教師要時時刻刻注意給學生提供參與的機會,體現學生的主體地位,充分發(fā)揮學生的主觀能動作用。只有這樣才能收到良好的教學效果,在反思過程中提高學生能力。
讓學生多觀察。
數學雖不同于一些實驗性較強的學科,能讓學生直接觀察實驗情況,得出結論,但數學概念的概括抽象,數學公式的發(fā)現推導,數學題目的解答論證,都可以讓學生多觀察。
2。讓學生多思考。
課堂教學中概念的提出與抽象,公式的提出與概括,題目解答的思路與方法的尋找,問題的辨析,知識的聯系與結構,都需要學生多思考。
3。讓學生多討論。
課堂教學中,教師的質疑、討論、設問可討論,問題怎樣解決可討論。
人教版八年級數學教案及反思篇十八
在新課程改革背景下的生物課堂教學中,教學生"學會學習"已成為現代教育的重要特征。預習就是一種行之有效的學習方法,是培養(yǎng)自學能力的有效途徑?,F代教學論認為,教學的基本任務之一,就在于培養(yǎng)學生的能力,而培養(yǎng)學生獨立獲取知識的自學能力又是其中的重要內容。然而。預習又是不少同學所忽視的。如何在教學中指導學生掌握預習方法,激發(fā)學習動機,提高自學能力而達到教學目的?下面就談談我的一些體會。
預習的過程就是自學的過程,就是憑自己已有的綜合能力獨立地發(fā)現問題、分析問題、解決問題的過程,就是學生獨立理解、識記知識的過程。預習是學習的極為重要的階段,它的特點是先人一步,它的本質是獨立學習。從這個意義上講,預習就是學習的第一核心。因此,課堂教學應緊緊的抓住了這一點,并且高于這一點。我們在一般教學中的常用的預習就是讓學生自己看看課本,或者這節(jié)課沒事干了讓學生預習預習下節(jié)課內容。
1學生要注意各個學科孰輕孰重,注意時間的分配
2給學生一種預習的思路。可以給學生提示一些知識點。
3讓課代表抄一下這節(jié)課的學習目標
4老師晚自習可以去輔導學生,讓學生有一些預習的思路
5保證充分的時間,時間是預習的保證
這樣,使教師在課堂上講的時間少了,學生自己學習訓練的時間多了,學生獲得了主體地位,課堂教學過程大部分是學生自學過程,符合學生認知學習規(guī)律。真正實現課堂教學以“自主,合作,探究”為主要學習方式。
人教版八年級數學教案及反思篇一
會應用平方差公式進行因式分解,發(fā)展學生推理能力.
2.過程與方法。
經歷探索利用平方差公式進行因式分解的過程,發(fā)展學生的逆向思維,感受數學知識的完整性.
3.情感、態(tài)度與價值觀。
培養(yǎng)學生良好的互動交流的習慣,體會數學在實際問題中的應用價值.
重、難點與關鍵。
1.重點:利用平方差公式分解因式.
2.難點:領會因式分解的解題步驟和分解因式的徹底性.
3.關鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉化成能夠應用公式的方面上來.
教學方法。
采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維.
教學過程。
一、觀察探討,體驗新知。
【問題牽引】。
請同學們計算下列各式.
(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演.
(1)(a+5)(a-5)=a2-52=a2-25;。
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動】引導學生完成下面的兩道題目,并運用數學“互逆”的思想,尋找因式分解的規(guī)律.
1.分解因式:a2-25;2.分解因式16m2-9n.
【學生活動】從逆向思維入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教師活動】引導學生完成a2-b2=(a+b)(a-b)的同時,導出課題:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
評析:平方差公式中的字母a、b,教學中還要強調一下,可以表示數、含字母的代數式(單項式、多項式).
二、范例學習,應用所學。
【例1】把下列各式分解因式:(投影顯示或板書)。
(1)x2-9y2;(2)16x4-y4;。
(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;。
(5)m2(16x-y)+n2(y-16x).
【思路點撥】在觀察中發(fā)現1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
【教師活動】啟發(fā)學生從平方差公式的角度進行因式分解,請5位學生上講臺板演.
【學生活動】分四人小組,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);。
(5)m2(16x-y)+n2(y-16x)。
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
人教版八年級數學教案及反思篇二
一、教學目標
1.理解分式的基本性質.
2.會用分式的基本性質將分式變形.
二、重點、難點
1.重點:理解分式的基本性質.
2.難點:靈活應用分式的基本性質將分式變形.
3.認知難點與突破方法
教學難點是靈活應用分式的基本性質將分式變形.突破的方法是通過復習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質.應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形.
三、例、習題的意圖分析
1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變.
2.p9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母.
教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解.
3.p11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變.
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的應用之一,所以補充例5.
四、課堂引入
1.請同學們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據?
3.提問分數的基本性質,讓學生類比猜想出分式的基本性質.
五、例題講解
p7例2.填空:
[分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.
p11例3.約分:
[分析]約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結果要是最簡分式.
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母.
人教版八年級數學教案及反思篇三
1.使學生理解并能證明勾股定理的逆定理.
2.能應用逆定理判斷一個三角形是否是直角三角形.
3.使學生進一步加深性質定理與判定定理之間關系的認識.
4.使學生初步了解,用代數計算方法證明幾何問題這一數學思想方法對開闊思路,提高能力有很大意義.
人教版八年級數學教案及反思篇四
1.重點:勾股定理逆定理的應用.
2.難點:勾股定理逆定理的證明.
3.疑點及分析和解決方法:勾股定理逆定理的證明方法,又是學生前所未見的,是運用代數計算方法證明幾何問題,是解析幾何中研究問題的方法,以后會逐步見到,這一點要讓學生有所認識.
人教版八年級數學教案及反思篇五
一、教學目標:(1)熟練地進行同分母的分式加減法的運算.
(2)會把異分母的分式通分,轉化成同分母的分式相加減.
二、重點、難點
1.重點:熟練地進行異分母的分式加減法的運算.
2.難點:熟練地進行異分母的分式加減法的運算.
3.認知難點與突破方法
進行異分母的分式加減法的運算是難點,異分母的分式加減法的運算,必須轉化為同分母的分式加減法,,然后按同分母的分式加減法的法則計算,轉化的關鍵是通分,通分的關鍵是正確確定幾個分式的最簡公分母,確定最簡公分母的一般步驟:(1)取各分母系數的最小公倍數;(2)所出現的字母(或含字母的式子)為底的冪的因式都要取;(3)相同字母(或含字母的式子)的冪的因式取指數的.在求出最簡公分母后,還要確定分子、分母應乘的因式,這個因式就是最簡公分母除以原分母所得的商.
異分母的分式加減法的一般步驟:(1)通分,將異分母的分式化成同分母的分式;(2)寫成“分母不便,分子相加減”的形式;(3)分子去括號,合并同類項;(4)分子、分母約分,將結果化成最簡分式或整式.
三、例、習題的意圖分析
1.p18問題3是一個工程問題,題意比較簡單,只是用字母n天來表示甲工程隊完成一項工程的時間,乙工程隊完成這一項工程的時間可表示為n+3天,兩隊共同工作一天完成這項工程的.這樣引出分式的加減法的實際背景,問題4的目的與問題3一樣,從上面兩個問題可知,在討論實際問題的數量關系時,需要進行分式的加減法運算.
2.p19[觀察]是為了讓學生回憶分數的加減法法則,類比分數的加減法,分式的加減法的實質與分數的加減法相同,讓學生自己說出分式的加減法法則.
第(2)題是異分母的分式加法的運算,最簡公分母就是兩個分母的乘積,沒有涉及分母要因式分解的題型.例6的練習的題量明顯不足,題型也過于簡單,教師應適當補充一些題,以供學生練習,鞏固分式的加減法法則.
(4)p21例7是一道物理的電路題,學生首先要有并聯電路總電阻r與各支路電阻r1,r2,…,rn的關系為.若知道這個公式,就比較容易地用含有r1的式子表示r2,列出,下面的計算就是異分母的分式加法的運算了,得到,再利用倒數的概念得到r的結果.這道題的數學計算并不難,但是物理的知識若不熟悉,就為數學計算設置了難點.鑒于以上分析,教師在講這道題時要根據學生的物理知識掌握的情況,以及學生的具體掌握異分母的分式加法的運算的情況,可以考慮是否放在例8之后講.
四、課堂堂引入
1.出示p18問題3、問題4,教師引導學生列出答案.
引語:從上面兩個問題可知,在討論實際問題的數量關系時,需要進行分式的加減法運算.
2.下面我們先觀察分數的加減法運算,請你說出分數的加減法運算的法則嗎?
3.分式的加減法的實質與分數的加減法相同,你能說出分式的加減法法則?
4.請同學們說出的最簡公分母是什么?你能說出最簡公分母的確定方法嗎?
五、例題講解
(p20)例6.計算
[分析]第(1)題是同分母的分式減法的運算,分母不變,只把分子相減,第二個分式的分子式個單項式,不涉及到分子是多項式時,第二個多項式要變號的問題,比較簡單;第(2)題是異分母的分式加法的運算,最簡公分母就是兩個分母的乘積.
(補充)例.計算
(1)
[分析]第(1)題是同分母的分式加減法的運算,強調分子為多項式時,應把多項事看作一個整體加上括號參加運算,結果也要約分化成最簡分式.
解:
=
=
=
=
(2)
[分析]第(2)題是異分母的分式加減法的運算,先把分母進行因式分解,再確定最簡公分母,進行通分,結果要化為最簡分式.
解:
=
=
=
=
=
六、隨堂練習
計算
(1)(2)
(3)(4)
七、課后練習
計算
(1)(2)
(3)(4)
八、答案:
四.(1)(2)(3)(4)1
五.(1)(2)(3)1(4)
人教版八年級數學教案及反思篇六
一、教學目的:
1.掌握菱形概念,知道菱形與平行四邊形的關系.
2.理解并掌握菱形的定義及性質1、2;會用這些性質進行有關的論證和計算,會計算菱形的面積.
3.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.
4.根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想.
二、重點、難點。
1.教學重點:菱形的性質1、2.
2.教學難點:菱形的性質及菱形知識的綜合應用.
三、例題的意圖分析。
本節(jié)課安排了兩個例題,例1是一道補充題,是為了鞏固菱形的性質;例2是教材p108中的例2,這是一道用菱形知識與直角三角形知識來求菱形面積的實際應用問題.此題目,除用以鞏固菱形性質外,還可以引導學生用不同的方法來計算菱形的面積,以促進學生熟練、靈活地運用知識.
四、課堂引入。
1.(復習)什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?
2.(引入)我們已經學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,請看演示:(可將事先按如圖做成的一組對邊可以活動的教具進行演示)如圖,改變平行四邊形的邊,使之一組鄰邊相等,從而引出菱形概念.
人教版八年級數學教案及反思篇七
活動目標:
1、認知目標:理解二等分的含義,學習二等分的方法。
2、操作目標:通過操作探索出不同的方法給圖形二等分,體驗等分中的包含關系、等量關系。
3、能力目標:探索對不同圖形進行二等分。
發(fā)散點:
運用不同的等分線對圖形進行等分。
活動準備:
正方形彩色紙片若干、多項操作學具、棋盤若干,記錄單,剪刀,鉛筆、手偶。
活動過程:
(一)等分圖形。
1、以情景引入。結合大班幼兒的年齡特點,創(chuàng)設了這個問題情境,吸引幼兒參與活動的同時,也能夠更加生活化地展現生活的數學,更加易于幼兒的理解。
(1)出示手偶:“你們看誰來了?”幼兒:“是平平姐姐?!?BR> (2)以手偶表演,教師問:“平平姐姐今天怎么不高興了,有什么煩惱嗎?”平平(教師扮):“今天早上吃早點,我發(fā)現只有一片面包片了,可是我要和盈盈一起來分享,小朋友,你們快幫我想想我該怎么辦呢?”
(3)師:“誰想到好辦法了?”幼兒:“把面包片分成兩份不就行了嗎!”
(4)平平(教師扮):“可是分完了會有大有小,怎么辦?”
(5)教師出示正方形的彩色紙片,提問:“面包片是什么形狀的?”幼兒:“正方形的?!苯處煟骸澳俏覀兙陀谜叫蔚募垇泶婷姘瑤推狡浇憬銇矸殖蓛蓧K一樣大的!”
2、提供幼兒正方形紙和剪刀,請幼兒操作。提供給幼兒嘗試的機會,驗證自己的想法,并可以不受限制地嘗試各種二等分的方法,用剪刀將其剪開的方法便于幼兒驗證兩部分是否相等。
3、小結:
(1)師:“你把正方形分成了幾塊什么形狀,你是怎樣分的?”
(2)師:“有幾種分的方法”(對角和對邊折)。
(3)師:“怎樣證明這兩塊一樣大呢?”(比一比)。
(4)師:“怎樣分才能一樣大呢?”
(5)教師于幼兒共同總結:只要找到了中心線,就可以將一個分成兩個一樣大的。進一步引導幼兒掌握二等分的關鍵要點。
(二)運用學具進一步探索。只用紙來等分,以現階段幼兒的年齡特點所致,比較精確的二等分方法只有對角和對邊折兩種,運用學具,抓住學具有洞洞點的特點,可以讓幼兒進一步嘗試以各種折線為中心線進行正方形的二等分,并且能夠保證精確性。促進幼兒發(fā)散性思維的發(fā)展,是幼兒在明確等分要求的.基礎上自由地嘗試二等分的多種方法。此環(huán)節(jié)更加注重幼兒的創(chuàng)造性和獨特性,同時滲透了做一件事情可以有多種方法解決的道理。
1、師:“你們用了兩種辦法,還有沒有更多的方法呢?”
2、請幼兒運用學具進行嘗試,并準確找到不同形狀的中心線,探索檢驗的方法。檢驗能夠證明所分的兩部分是一樣大的,檢驗的方法并不是單一的,為幼兒投放了與一塊學具板相同的作業(yè)單的目的就是能夠在記錄等分方法的同時,還可以剪開記錄后的作業(yè)單進行比較證明。除此方法還可以比較等分線兩側的洞洞子每排數量是否相同等方法。
3、幼兒分組操作,教師針對尋找不同的中心線以及檢查的辦法進行指導,并引導幼兒記錄、檢驗。
4、小結:展示幼兒作業(yè)單,誰來說一說你用了什么方法進行了等分,你是怎樣指導它們是一樣大的。請幼兒將有創(chuàng)新的分法介紹給其他的幼兒,并展示不同檢驗相等的方法。讓幼兒能夠有交流展示的機會,并且結合大班幼兒集體學習的特點,鼓勵幼兒創(chuàng)新。
人教版八年級數學教案及反思篇八
1.理解分式的基本性質。
2.會用分式的基本性質將分式變形。
二、重點、難點
1.重點:理解分式的基本性質。
2.難點:靈活應用分式的基本性質將分式變形。
3.認知難點與突破方法
教學難點是靈活應用分式的基本性質將分式變形。突破的方法是通過復習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質。應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形。
三、練習題的意圖分析
1.p7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。
2.p9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母。
教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解。
3.p11習題16.1的`第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的應用之一,所以補充例5。
四、課堂引入
1.請同學們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據?
3.提問分數的基本性質,讓學生類比猜想出分式的基本性質。
五、例題講解
p7例2.填空:
[分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。
p11例3.約分:
[分析]約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結果要是最簡分式。
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母。
人教版八年級數學教案及反思篇九
分式的分子和分母同時乘以(或除以)一個不等于零的整式,分式的只不變。
2、分式的運算。
(1)分式的乘除。
乘法法則:分式乘以分式,用分子的'積作為積的分子,分母的積作為積的分母。
除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
(2)分式的加減。
加減法法則:同分母分式相加減,分母不變,把分子相加減;。
異分母分式相加減,先通分,變?yōu)橥帜傅姆质?,再加減。
3、整數指數冪的加減乘除法。
4、分式方程及其解法。
第二章反比例函數。
1、反比例函數的表達式、圖像、性質。
圖像:雙曲線。
表達式:y=k/x(k不為0)。
性質:兩支的增減性相同;
2、反比例函數在實際問題中的應用。
第三章勾股定理。
1、勾股定理:直角三角形的兩個直角邊的平方和等于斜邊的平方。
2、勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形。
第四章四邊形。
1、平行四邊形。
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,并且等于第三邊的一半。
2、特殊的平行四邊形:矩形、菱形、正方形。
(1)矩形。
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質。
判定:有一個角是直角的平行四邊形是矩形;
對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等于斜邊的一半。
(2)菱形。
性質:菱形的四條邊都相等;
菱形的對角線互相垂直,并且每一條對角線平分一組對角;
菱形具有平行四邊形的一切性質。
判定:有一組鄰邊相等的平行四邊形是菱形;
對角線互相垂直的平行四邊形是菱形;
四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3、梯形:直角梯形和等腰梯形。
等腰梯形:等腰梯形同一底邊上的兩個角相等;
等腰梯形的兩條對角線相等;
同一個底上的兩個角相等的梯形是等腰梯形。
第五章數據的分析。
加權平均數、中位數、眾數、極差、方差。
人教版八年級數學教案及反思篇十
結合數學內容,布置有個性發(fā)展的興趣作業(yè),培養(yǎng)學生的創(chuàng)新能力。
在初二上期,同學們對乘方知識掌握比較牢固之時,我給學生留了一道作業(yè):
觀察下列等式:
13=12
13+23=32
13+23+33=62
13+23+33+43=102
…
猜想:當有n項立方相加時的計算結果是_________。
第二天過去了,沒人應答;第三天過去了,沒人應答;第四天,有幾位同學找到我,遞給我答案:
當我點頭示意時,他們竟高興得歡呼起來,甚至有一個同學竟哽咽起來。是啊!同學要通過觀察、思考,再通過猜想,探索規(guī)律,從而完成從特殊到一般的創(chuàng)新過程,而且跟應該注意到學生這方面的數學基礎,很大程度都還不具備,但卻能超出個人能力完成任務,實屬不易。更難能可貴的是,學生的創(chuàng)新意識得到突破,創(chuàng)新能力得到了提高,這是何等的重要啊!
興趣就是最好的老師。讓學生通過自己鉆研所得到的結果肯定是印象深刻的,以往的經驗告訴我很多學生之所以害怕學習數學,就是因為他們經常體驗不到成功的喜悅,沒有成就感,只是在感受到學習數學的失敗,無論家長、老師如何引導,學生都會產生強烈的自卑感,數學學習無法正常進行。我本人也欣賞成功教學模式,讓每一個層次的.學生都能夠感受到學習的成就感,課堂上的一個小問題可能就會點燃學生思維的火炬。
人教版八年級數學教案及反思篇十一
嚴格的講教材本節(jié)課沒有引入的問題,而是在復習和延伸中位數的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經和同學們研究過了平均數的這個數據代表。它在分析數據過程中擔當了重要的角色,今天我們來共同研究和認識數據代表中的新成員——中位數和眾數,看看它們在分析數據過程中又起到怎樣的作用。
人教版八年級數學教案及反思篇十二
教材只是為教師提供最基本的教學素材,教師完全可以根據學生的實際情況進行調整。本節(jié)教材中的引例分式方程較復雜,學生直接探索它的`解法有些困難。我是從簡單的整式方程引出分式方程后,再引導學生探究它的解法。這樣很輕松地找到新知識的切入點:用等式性質去分母,轉化為整式方程再求解。因此,學生學的效果也較好。
學生已經學習了一元一次去探究分式方程的解法及分式方程檢驗的必要性。
講例題時,先講一個產生增根的較好,這樣便于說明分式方程有時無解的原因,也便于講清分式方程檢驗的必要性,也是解分式方程與整式方程最大的區(qū)別所在,從而再強調解分式方程必須檢驗,不能省略不寫這一步。
八年級。
將本文的word文檔下載到電腦,方便收藏和打印。
人教版八年級數學教案及反思篇十三
下面是我在教學中的幾點體會:
一、教學中的發(fā)現。
(1)分式的運算錯的較多。分式加減法主要是當分子是多次式時,如果不把分子這個整體用括號括上,容易出現符號和結果的錯誤。所以我們在教學分式加減法時,應教育學生分子部分不能省略括號。其次,分式概念運算應按照先乘方、再乘除,最后進行加減運算的順序進行計算,有括號先做括號里面的。
(2)分式方程也是錯誤重災區(qū)。一是增根定義模糊,對此,我對增根的概念進行深入淺出的闡述:
1.增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;
(3)列分式方程錯誤百出。
針對上述問題,我在課堂復習中從基礎知識和題型入手,用類比的方法講解,特別強調列分式方程解應用題與列整式方程一樣,先分析題意,準確找出應用題中數量問題的相等關系,恰當地設出未知數,列出方程;不同之處是,所列方程是分式方程,最后進行檢驗,既要檢驗是否為所列分式方程的解,又要檢驗是否符合題意。
通過這節(jié)課的教學及課后幾位專家的點評,這節(jié)課的教學目的基本達到,不足之處本節(jié)課的容量較大,如果能采用多媒體教學效果會更好;在以后的教學中我將繼續(xù)努力,提高自己的教學水平。
人教版八年級數學教案及反思篇十四
學生往往不善于預習,也不知道預習起什么作用,預習僅是流于形式,草草看一遍,看不出問題和疑點。在指導學生預習時應要求學生做到:新知識的接受,數學能力的培養(yǎng)主要在課堂上進行,所以要特別重視課堂的學習效率,尋求正確的學習方法。預習前教師先布置預習提綱,使學生有的放矢。實踐證明,養(yǎng)成良好的預習習慣,能使學生變被動學習為主動學習,同時能逐漸培養(yǎng)學生的自學能力。
教師在教學中要注意培養(yǎng)差生的自信心外,更應該充分利用優(yōu)等生這個教育資源,進行好生差生配對,這也是合作學習的一種方式,它從以人為本的理念出發(fā),關注了差生的發(fā)展,構建了團結,合作共同發(fā)展的`良好的,和諧的學習環(huán)境。同時它也彌補了教師課后輔導時間不足的缺陷。
人教版八年級數學教案及反思篇十五
(1)本節(jié)課的設計體現了以教師為主導、學生為主體,以知識為載體、以培養(yǎng)學生的思維能力為重點的教學思想。教師以探究任務引導學生自學自悟的方式,提供了學生自主合作探究的舞臺,營造了思維馳騁的空間,在經歷知識的發(fā)現過程中,培養(yǎng)了學生分類、探究、合作、歸納的能力。
(2)在課堂教學設計中,盡量為學生提供“做中學”的.時空,不放過任何一個發(fā)展學生智力的契機,讓學生在“做”的過程中,借助已有的知識和方法主動探索新知識,擴大認知結構,發(fā)展能力,完善人格,從而使課堂教學真正落實到學生的發(fā)展上。
(3)“樂思方有思泉涌”,在課堂教學中,時時注意營造積極的思維狀態(tài),關注學生的思維發(fā)展過程,創(chuàng)設民主、寬松、和諧的課堂氣氛,讓學生暢所欲言,這樣學生的創(chuàng)造火花才會不斷閃現,個性才得以發(fā)展。
人教版八年級數學教案及反思篇十六
部門abcdefg
人數1124225
每人創(chuàng)得利潤2052.521.51.51.2
該公司每人所創(chuàng)年利潤的平均數是多少萬元?
年齡頻數
28≤x
30≤x
32≤x
34≤x
36≤x
38≤x
40≤x
3、為調查居民生活環(huán)境質量,環(huán)保局對所轄的50個居民區(qū)進行了噪音(單位:分貝)水平的調查,結果如下圖,求每個小區(qū)噪音的平均分貝數。
答案:1.約2.95萬元2.約29歲3.60.54分貝
人教版八年級數學教案及反思篇十七
在教學實踐中我覺得要提高教學效果,達到教學目的,必須在引導學生參與教學活動的全過程上做好文章:加強學生的參與意識;增加學生的參與機會;提高學生的參與質量;培養(yǎng)學生的參與能力。
一、重視學習動機在教學過程中的激勵作用,通過激發(fā)學生的參與熱情,逐步強化學生的參與意識從教育心理學的角度來說,教師應操縱或控制教學過程中影響學生學習的各有關變量。在許許多多的變量中,學習動機是對學生的學習起著關鍵作用的一個,它是有意義學習活動的催化劑,是具有情感性的因素。只有具備良好的學習動機,學生才能對學習積極準備,集中精力,認真思考,主動地探索未知的領域。在實際教學中,向學生介紹富有教育意義的數學發(fā)展史、數學家故事、趣味數學等,通過興趣的誘導、激發(fā)、升華使學生形成學好數學的動機。
教學中,激發(fā)學生參與熱情的方法很多。用貼近學生生活的實例引入新知,既能化難為易,又使學生倍感親切;提出問題,設置懸念,能激勵學生積極投入探求新知識的活動;對學生的學習效果及時肯定;組織競賽;設置愉快情景等,使學生充分展示自己的才華,不斷體驗解決問題的愉悅。堅持這佯做,可以逐步強化學生的參與熱情。
二、重視實踐活動在教學過程中的啟智功能,通過觀察、思考、討論等形式誘導學生參與知識形成發(fā)展的全過程,盡可能增加學生的參與機會。在數學教學中,促使學生多種感官并用,讓學生積累豐富的典型的感性材料,建立清晰的表象,才能更好地進行比較、分析、概括等一系列思維活動,進而真正參與到知識形成和發(fā)展的全過程中來。
1。通過討論,學生間可充分發(fā)表自己的見解,達到交流進而共同提高的效果。
此外,教學中讓學生多練習、多提問、多板演等都可增加學生參與的機會。
三、
重視學習環(huán)境在教學過程中的作用,通過創(chuàng)設良好的人場關系和學習氛圍激勵學生學習潛能的釋放,努力提高學生的參與質量和諧的師生關系便于發(fā)揮學生學習的主動性、積極性。
總之,在數學課堂教學中,教師要時時刻刻注意給學生提供參與的機會,體現學生的主體地位,充分發(fā)揮學生的主觀能動作用。只有這樣才能收到良好的教學效果,在反思過程中提高學生能力。
讓學生多觀察。
數學雖不同于一些實驗性較強的學科,能讓學生直接觀察實驗情況,得出結論,但數學概念的概括抽象,數學公式的發(fā)現推導,數學題目的解答論證,都可以讓學生多觀察。
2。讓學生多思考。
課堂教學中概念的提出與抽象,公式的提出與概括,題目解答的思路與方法的尋找,問題的辨析,知識的聯系與結構,都需要學生多思考。
3。讓學生多討論。
課堂教學中,教師的質疑、討論、設問可討論,問題怎樣解決可討論。
人教版八年級數學教案及反思篇十八
在新課程改革背景下的生物課堂教學中,教學生"學會學習"已成為現代教育的重要特征。預習就是一種行之有效的學習方法,是培養(yǎng)自學能力的有效途徑?,F代教學論認為,教學的基本任務之一,就在于培養(yǎng)學生的能力,而培養(yǎng)學生獨立獲取知識的自學能力又是其中的重要內容。然而。預習又是不少同學所忽視的。如何在教學中指導學生掌握預習方法,激發(fā)學習動機,提高自學能力而達到教學目的?下面就談談我的一些體會。
預習的過程就是自學的過程,就是憑自己已有的綜合能力獨立地發(fā)現問題、分析問題、解決問題的過程,就是學生獨立理解、識記知識的過程。預習是學習的極為重要的階段,它的特點是先人一步,它的本質是獨立學習。從這個意義上講,預習就是學習的第一核心。因此,課堂教學應緊緊的抓住了這一點,并且高于這一點。我們在一般教學中的常用的預習就是讓學生自己看看課本,或者這節(jié)課沒事干了讓學生預習預習下節(jié)課內容。
1學生要注意各個學科孰輕孰重,注意時間的分配
2給學生一種預習的思路。可以給學生提示一些知識點。
3讓課代表抄一下這節(jié)課的學習目標
4老師晚自習可以去輔導學生,讓學生有一些預習的思路
5保證充分的時間,時間是預習的保證
這樣,使教師在課堂上講的時間少了,學生自己學習訓練的時間多了,學生獲得了主體地位,課堂教學過程大部分是學生自學過程,符合學生認知學習規(guī)律。真正實現課堂教學以“自主,合作,探究”為主要學習方式。