優(yōu)質(zhì)二次函數(shù)定義教案范文(14篇)

字號:

    一份好的教案必須符合教學大綱的要求,并且能夠滿足學生的學習需求。教案的編寫需要注重培養(yǎng)學生的創(chuàng)新思維和動手實踐能力。接下來是一些教案的模板,供大家參考使用。
    二次函數(shù)定義教案篇一
    2、會用二次函數(shù)的圖象與性質(zhì)解決問題;
    學習難點:二次函數(shù)的性質(zhì)與圖像的應用;
    函數(shù)函數(shù)。
    圖象a0a0。
    性質(zhì)。
    例2:
    (1)已知函數(shù)n在區(qū)間上為增函數(shù),求a的范圍;
    (2)已知函數(shù)n的單調(diào)區(qū)間是(0,1),求a;
    例3:求二次函數(shù)n在區(qū)間[0,3]上的最大值和最小值;
    變式:
    (1)已知m在[t,t+1]上的最小值為g(t),求g(t)的表達式。
    (2)已知m在區(qū)間[0,1]內(nèi)有最大值-5,求a。
    (略)。
    二次函數(shù)定義教案篇二
    3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    1.體會方程與函數(shù)之間的聯(lián)系。
    2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    1.探索方程與函數(shù)之間關系的過程。
    2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關系。
    啟發(fā)引導 合作交流
    課件
    計算機、實物投影。
    檢查預習 引出課題
    1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
    2. 回顧一次函數(shù)與一元一次方程的關系,利用函數(shù)的圖象求方程3x-4=0的解.
    教師展示預習作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當總結(jié)和評價。
    學生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
    這兩道預習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學生回顧二次方程的相關知識;2題是一次函數(shù)與一元一次方程的關系的問題,這題的設計是讓學生用學過的熟悉的知識類比探究本課新知識。
    二次函數(shù)定義教案篇三
    《34.4二次函數(shù)的應用》選自義務教育課程標準試驗教科書《數(shù)學》(冀教版)九年級上冊第三十四章第四節(jié),這節(jié)課是在學生學習了二次函數(shù)的概念、圖象及性質(zhì)的基礎上,讓學生繼續(xù)探索二次函數(shù)與一元二次方程的關系,教材通過小球飛行這樣的實際情境,創(chuàng)設三個問題,這三個問題對應了一元二次方程有兩個不等實根、有兩個相等實根、沒有實根的三種情況。這樣,學生結(jié)合問題實際意義就能對二次函數(shù)與一元二次方程的關系有很好的體會;從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標的要求:注重知識與實際問題的聯(lián)系。
    本節(jié)教學時間安排1課時。
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關系的過程,體會方程與函數(shù)之間的聯(lián)系.
    2.理解拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.
    3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神.
    2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗.
    3.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學生的數(shù)形結(jié)合思想。
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關系的過程,體驗數(shù)學活動充滿著探索與創(chuàng)造,感受數(shù)學的嚴謹性以及數(shù)學結(jié)論的確定性。
    2.通過利用二次函數(shù)的圖象估計一元二次方程的根,進一步掌握二次函數(shù)圖象與x軸的交點坐標和一元二次方程的根的關系,提高估算能力。
    1.從學生感興趣的問題入手,讓學生親自體會學習數(shù)學的價值,從而提高學生學習數(shù)學的好奇心和求知欲。
    2.通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識。
    1.體會方程與函數(shù)之間的聯(lián)系。
    2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    1.探索方程與函數(shù)之間關系的過程。
    2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關系。
    預習作業(yè):
    1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
    2.回顧一次函數(shù)與一元一次方程的關系,利用函數(shù)的圖象求方程3x-4=0的解.
    師生行為:教師展示預習作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當總結(jié)和評價。
    教師重點關注:學生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
    設計意圖:這兩道預習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學生回顧二次方程的相關知識;2題是一次函數(shù)與一元一次方程的關系的問題,這題的設計是讓學生用學過的熟悉的知識類比探究本課新知識。
    問題。
    1.課本p94問題.
    3.結(jié)合預習題1,完成課本p94觀察中的題目。
    師生行為:教師提出問題1,給學生獨立思考的時間,教師可適當引導,對學生的解題思路和格式進行梳理和規(guī)范;問題2學生獨立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導學生總結(jié)歸納出正確結(jié)論。
    1.學生能否把實際問題準確地轉(zhuǎn)化為數(shù)學問題;。
    2.學生在思考問題時能否注重數(shù)形結(jié)合思想的應用;。
    3.學生在探究問題的過程中,能否經(jīng)歷獨立思考、認真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準確。
    設計意圖:由現(xiàn)實中的實際問題入手給學生創(chuàng)設熟悉的問題情境,促使學生能積極地參與到數(shù)學活動中去,體會二次函數(shù)與實際問題的關系;學生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關系,培養(yǎng)學生的合作精神,積累學習經(jīng)驗。
    [活動3]例題學習鞏固提高。
    問題。
    例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1).
    師生行為:教師提出問題,引導學生根據(jù)預習題2獨立完成,師生互相訂正。
    教師關注:(1)學生在解題過程中格式是否規(guī)范;(2)學生所畫圖象是否準確,估算方法是否得當。
    設計意圖:通過預習題2的鋪墊,同學們已經(jīng)從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。
    [活動4]練習反饋鞏固新知。
    二次函數(shù)定義教案篇四
    1.質(zhì)疑問難是學生自主學習的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學生的主體意識,必須鼓勵學生質(zhì)疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
    2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學生要學習的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關系的重要的數(shù)學模型。
    3.學生有疑而問、質(zhì)疑問難,是用心思考、自主學習、主動探究的可貴表現(xiàn),理應得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學生的隨時“插嘴”,提出的各種疑難問題,應抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
    4.初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關知識分析和解決簡單的實際問題。
    二次函數(shù)定義教案篇五
    1.教學案例、教學設計、教學實錄、教學敘事的區(qū)別:教學案例與教案:教案(教學設計)是事先設想的教育教學思路,是對準備實施的教育措施的簡要說明,反映的是教學預期;而教學案例則是對已發(fā)生的教育教學過程的描述,反映的是教學結(jié)果。
    2.教學案例與教學實錄:它們同樣是對教育教學情境的描述,但教學實錄是有聞必錄(事實判斷),而教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
    4.教學案例必須從教學任務分析的目標出發(fā),有意識地選擇有關信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學案例的素材積累。
    二次函數(shù)定義教案篇六
    二、立足課堂,提高效率:做到教師入題海,學生出題海.教師應多做題、多研究近幾年的中考試題,并根據(jù)本班學生的實際情況,從眾多復習資料中,選擇適合本班學生的最佳練習,也可通過對題目的重組。
    三、教師在設計教學目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學生的參與度,激發(fā)他們的學習興趣,達到最佳的復習效果.
    四、激發(fā)興趣,提高質(zhì)量:興趣是學習最好的動力,在上復習課時尤為重要.因此,我們在授課的過程中,在關注知識復習的同時,也要關注學生的學習欲望和學習效果,要讓學生在學習的過程中體驗成功的快感.這樣他們才會更有興趣的學習下去.
    二次函數(shù)定義教案篇七
    1、教材所處的地位:
    2、教學目的要求:
    (2)讓學生學習了二次函數(shù)的定義后,能夠表示簡單變量之間的二次函數(shù)關系;
    (3)知道實際問題中存在的二次函數(shù)關系中,多自變量的取值范圍的要求。
    (4)把數(shù)學問題和實際問題相聯(lián)系,使學生初步體會數(shù)學與人類生活的密切聯(lián)系及對人類歷史發(fā)展的作用。
    3、教學重點和難點。
    本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點:
    重點:
    (2)能夠表示簡單變量之間的二次函數(shù)關系.。
    難點:
    具體的分析、確定實際問題中函數(shù)關系式。
    下面,為了講清重點、難點,使學生能達到本節(jié)設定的教學目標,我再從教法和學法上談談:
    1、教法研究。
    教學中教師應當暴露概念的再創(chuàng)造過程,鼓勵學生不但要動口、動腦,而且要動手,學生經(jīng)過自己親身的實踐活動,形成自己的經(jīng)驗、猜想,產(chǎn)生對結(jié)論的感知,這不僅讓學生對所學內(nèi)容留下了深刻的印象,而且能力得到培養(yǎng),素質(zhì)得以提高,充分地調(diào)動學生學習的熱情,讓學生學會主動學習,學會研究問題的方法,培養(yǎng)學生的能力。本節(jié)課的設計堅持以學生為主體,充分發(fā)揮學生的主觀能動性。教學過程中,注重學生探究能力的培養(yǎng)。還課堂給學生,讓學生去親身體驗知識的產(chǎn)生過程,拓展學生的創(chuàng)造性思維。同時,注意加強對學生的啟發(fā)和引導,鼓勵培養(yǎng)學生們大膽猜想,小心求證的科學研究的思想。
    2、學法研究。
    初中學生的思維方式往往還是比較具象的,要讓他們在問題的探究過程中充分體驗問題的發(fā)現(xiàn)、解決及最終表述的方式方法,遇到困難可以和同伴、老師進行交流甚至爭論,這樣既可以加深學生對問題的理解又可以讓學生體驗獲得學習的快樂。
    3、教學方式。
    (1)由于本節(jié)課的內(nèi)容是學生在學習了《一次函數(shù)》和《正比例函數(shù)》的基礎上的加深,所以可以利用學生已有的知識在問題一、二中放手讓學生先去探究探究兩個問題中的變量之間的關系,在得到具體的關系式后,再引導學生觀察關系式都有著什么樣的特點,可以和多項式中的二次三項式或一元二次方程比較認識,并最終得出二次函數(shù)的一般式及二次項系數(shù)的取值為什么不為零的道理。
    (2)要特別提醒學生注意:二次函數(shù)是解決實際生活生產(chǎn)的一個很有效的模板,因而對二次函數(shù)解析式中自變量的取值范圍一定要從理論上和實際中加以綜合討論和認定。
    (3)可以多讓學生解決實際生活中的一些具有二次函數(shù)關系的實例來加深和提高學生對這一關系模型的理解。
    這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想。
    1、溫故知新—揭示課題。
    由回顧所學過的正比例函數(shù),一次函數(shù)入手,引入函數(shù)大家庭中還會認識那一種函數(shù)呢?再由例子打籃球投籃時籃球運動的軌跡如何?何時達到最高點?引入二次函數(shù)。
    2、自我嘗試、合作探究—探求新知。
    通過學生自己獨立解決運用函數(shù)知識表述變量間關系,即自我探討環(huán)節(jié);合作探究環(huán)節(jié),學生間互動,集群體力量,共破難關,來自主探究新知,從而通過觀察,歸納得到二次函數(shù)的解析式,獲取新知。
    3、小試身手—循序漸進。
    本組題目是對新學的直接應用,目的在于使學生能辨認二次函數(shù),準確指出a、b、c,并應用其定義求字母系數(shù)的值,能應用二次函數(shù)準確表示具體問題中的變量間關系。本組題目的解決以學生快速解答為主,重點對第2題分析解決方法。這一環(huán)節(jié)主要由學生處理解決,以檢查學生的掌握程度。
    4、課堂回眸—歸納提高。
    本課小結(jié)從內(nèi)容、應用、數(shù)學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學生學知識,用知識是有很大的促進的。方法以學生暢談收獲為主。
    5、課堂檢測—測評反饋。
    共有6個題目,由學生獨自處理第1、2、3、4、5小題,再發(fā)表自己的看法,第6小題可由學生或獨自或同組交流均可。教師多以巡視為主,注意掌握學生對本節(jié)的掌握情況。
    6、作業(yè)布置。
    作業(yè)我選擇“同步作業(yè)”里的題目,其中基礎訓練為必做題,全員均做;綜合應用為選做題,可供學有余力的學生能力提升用。
    通過引入實例,豐富學生認識,理解新知識的意義,進而擺脫其原型,從而進行更深層次的研究,這種“數(shù)學化”的方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質(zhì)的形成有重要作用,對于學生的終身發(fā)展也有一定的作用。
    二次函數(shù)定義教案篇八
    教師的任務不僅在于教數(shù)學,更主要的是創(chuàng)設情境,激勵學生憑借自己的能力去獲取數(shù)學知識,理解數(shù)學的道理,構(gòu)建數(shù)學思想。因此,在教學中,我們應鼓勵學生通過獨立思考或合作學習研究,“發(fā)現(xiàn)”或“再創(chuàng)造”出數(shù)學知識。
    一、教學背景分析:
    1、教材分析:二次函數(shù)的知識是看中學數(shù)學學習的重要內(nèi)容之一,它是從生活實際問題中抽象出的數(shù)學知識,又是在解決實際問題時廣泛應用的數(shù)學工具,無論是在生活中還是在運用二次函數(shù)知識的方法上,都具有重要意義的教學內(nèi)容。因此,搞好二次函數(shù)的圖像和性質(zhì)的教學,對學生能力的培養(yǎng)有重要的奠基意義。
    2、教學內(nèi)容分析:本節(jié)課二次函數(shù)的圖像的第一課時,主要是研究最簡單的二次函數(shù)的圖像的畫法,從而總結(jié)出它的性質(zhì)。這既是對學生進行理性思維的培養(yǎng),又是進行抽象思維的培養(yǎng),具有較高的數(shù)學教育價值。因此學好本節(jié)內(nèi)容對以后的學習也很重要。我確定本節(jié)課的重點是:根據(jù)圖像觀察、分析出二次函數(shù)的性質(zhì)。
    3、學生情況分析:本節(jié)課的教學對象是職高一年級級學生,在此之前他們對一次函數(shù)的圖像和性質(zhì)有一定的基礎,但他們的觀察能力,概括能力還比較弱,因此我確定本節(jié)課的難點是繼續(xù)滲透數(shù)形結(jié)合的數(shù)學思想方法。
    二、教學目標的確定:
    我根據(jù)數(shù)學課程標準中關于“二次函數(shù)的圖像”的教學要求,結(jié)合學生的實際情況,從以下三個方面確定了本節(jié)課的教學目標:
    知識與技能:
    (2)根據(jù)圖像觀察、分析出二次函數(shù)的性質(zhì)。
    (3)進一步理解二次函數(shù)和拋物線的有關知識。
    過程與方法:通過畫函數(shù)圖像,總結(jié)性質(zhì),滲透由特殊到一般的辨證唯物主義觀點。滲透數(shù)形結(jié)合的數(shù)學思想方法,培養(yǎng)觀察能力和分析問題的能力。
    情感態(tài)度:培養(yǎng)學生勇于探索創(chuàng)新及實事求是的科學精神。
    三、教學方法與手段:
    教學方法主要采用問題導學、小組討論與反饋練習相結(jié)合的方法,通過教。
    師設置問題,引導學生獨立思考,通過總結(jié)二次函數(shù)的性質(zhì)組織學生小組討論,為較差學生提供得到幫助的機會,通過反饋練習了解學生情況,及時分析和矯正,提高課堂教學效果。
    教學手段采用分層教學與學案相結(jié)合的方法。通過分層提問,使不同的學生獲得不同的收獲,通過學案的設計幫助學生檢測學習情況,反思學習過程,不斷提高學習效果。
    四、教學過程的反思:
    優(yōu)點:
    1、上課一開始,我就注重對所學過的平面直角坐標系的有關知識、平面內(nèi)如何確定點的坐標、以及各象限內(nèi)點的坐標特征和關于y軸對稱點的坐標特征的復習。使學生在畫二次函數(shù)圖像時描點找得很快、很準確。在講解拋物線的概念時,出示了同學們很感興趣的姚明投籃的照片,激發(fā)了學生的學習興趣。為了得出a不同對拋物線圖像和性質(zhì)的影響,在學生畫完三個圖像后,教師采用“問題導學”式教學方法,設置問題情境,引導學生自主進行觀察、發(fā)現(xiàn)、歸納、反思等數(shù)學活動,得出二次函數(shù)y=ax2的圖像和性質(zhì),在教學中,由學生自己動手,通過列表、描點、連線繪制出二次函數(shù)的圖像,培養(yǎng)了學生動手動腦的習慣和綜合分析歸納的能力。
    2、小組合作學習,發(fā)現(xiàn)其中的規(guī)律。鼓勵學生相互交流自己的想法,并說明理由。如在畫出圖像后,提問學生“我們可以從圖中觀察到什么”。滲透了數(shù)形結(jié)合的思想,培養(yǎng)了學生觀察、綜合分析的能力,增加了學習的自信心和學習的能力。在合作學習中,也培養(yǎng)了他們善于與人交流,合作,肯于負責任的良好個性品質(zhì)。
    3、教師適時地總結(jié)、深化,提高認識水平。教師在不斷地總結(jié)中滲透數(shù)學思想方法,抓住時機培養(yǎng)學生思維的深刻性。如這幾個基本函數(shù)的學習上一節(jié)課經(jīng)歷了從實例抽象概括出函數(shù)概念,本節(jié)課由函數(shù)的解析式畫出函數(shù)的圖像,總結(jié)出函數(shù)的性質(zhì),再利用所學知識解決有關問題。在師生的共同討論中,深化所學知識,培養(yǎng)學生具備反省思維的能力。
    4、課堂教學中充分體現(xiàn)了教師和學生的“雙主作用”,其中“問題導學”的教學模式起了重要作用。只有教師創(chuàng)造性的教,學生才能創(chuàng)造性地學,一旦學生的學習活動充滿創(chuàng)造性的時候,學習過程便充滿美的魅力,成為學生積極進取、自我完善的過程。
    不足:對y=-x2的讀法,教師讀的不規(guī)范,沒有注意小的細節(jié)。在總結(jié)二。
    次函數(shù)性質(zhì)時,對于開口寬度,我在備課時用a的絕對值來表示的,a為負數(shù)時與a為正數(shù)時正好相反,一個學生說對了,但不是老師要的答案,我當時沒有多想,就說他說的不對。忽略了不同的說法。另外老師提出問題后,給學生去分析、歸納、總結(jié)的時間還不夠,因此本節(jié)課中教師有包辦現(xiàn)象。
    五、得到的啟示:
    反思這節(jié)課,從課前準備到課堂實施再到課后作業(yè)效果和檢測,我得到如下啟示:
    1、對教材的處理要靈活,要考慮到前后知識的聯(lián)系。
    2、學生是變化的,要能及時準確的了解學生情況。
    3、要不斷探索和完善自己的教學方法和手段,向其他老師學習。
    4、不斷提高學生學習興趣,不斷提高課堂實效。
    5、加強個別輔導。指導學生。
    二次函數(shù)定義教案篇九
    教學目標:
    1、繼續(xù)經(jīng)歷利用二次函數(shù)解決實際最值問題的過程。
    2、會綜合運用二次函數(shù)和其他數(shù)學知識解決如有關距離等函數(shù)最值問題。
    3、發(fā)展應用數(shù)學解決問題的能力,體會數(shù)學與生活的密切聯(lián)系和數(shù)學的應用價值。
    教學重點和難點:
    重點:利用二次函數(shù)的知識對現(xiàn)實問題進行數(shù)學地分析,即用數(shù)學的方式表示問題以及用數(shù)學的方法解決問題。
    難點:例2將現(xiàn)實問題數(shù)學化,情景比較復雜。
    教學過程:
    一、復習:
    1、利用二次函數(shù)的性質(zhì)解決許多生活和生產(chǎn)實際中的最大和最小值的問題,它的一般方法是:
    (1)列出二次函數(shù)的解析式,列解析式時,要根據(jù)自變量的實際意義,確定自變量的取值范圍。
    (2)在自變量取值范圍內(nèi),運用公式或配方法求出二次函數(shù)的最大值和最小值。
    2、上節(jié)課我們討論了用二次函數(shù)的性質(zhì)求面積的最值問題。出示上節(jié)課的引例的動態(tài)。
    圖形(在周長為8米的矩形中)(多媒體動態(tài)顯示)。
    設問:(1)對角線(l)與邊長(x)有什何關系?
    (2)對角線(l)是否也有最值?如果有怎樣求?
    l與x并不是二次函數(shù)關系,而被開方數(shù)卻可看成是關于x的二次函數(shù),并且有最小值。引導學生回憶算術平方根的性質(zhì):被開方數(shù)越大(?。﹦t它的算術平方根也越大(?。?。指出:當被開方數(shù)取最小值時,對角線也為最小值。
    二、例題講解。
    多媒體動態(tài)演示,提出思考問題:(1)兩船的距離隨著什么的變化而變化?
    (2)經(jīng)過t小時后,兩船的行程是多少?兩船的距離如何用t來表示?
    設經(jīng)過t小時后ab兩船分別到達a’,b’,兩船之間距離為a’b’=ab’2+aa’2=(26-5t)2+(12t)2=169t2-260t+676。(這里估計學生會聯(lián)想剛才解決類似的問題)。
    因此只要求出被開方式169t2-260t+676的最小值,就可以求出兩船之間的距離s的最小值。
    解:設經(jīng)過t時后,a,bab兩船分別到達a’,b’,兩船之間距離為。
    s=a’b’=ab’2+aa’2=(26-5t)2+(12t)2。
    =169t2-260t+676=169(t-1013)2+576(t0)。
    當t=1013時,被開方式169(t-1013)2+576有最小值576。
    所以當t=1013時,s最小值=576=24(km)。
    答:經(jīng)過1013時,兩船之間的距離最近,最近距離為24km。
    練習:直角三角形的兩條直角邊的和為2,求斜邊的最小值。
    三、課堂小結(jié)。
    應用二次函數(shù)解決實際問題的一般步驟。
    四、布置作業(yè)。
    見作業(yè)本。
    二次函數(shù)定義教案篇十
    (函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標是(2,1)。
    2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關系?
    (函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)。
    3.函數(shù)y=-4(x-2)2+1具有哪些性質(zhì)?
    (當x2時,函數(shù)值y隨x的增大而增大,當x2時,函數(shù)值y隨x的增大而減小;當x=2時,函數(shù)取得最大值,最大值y=1)。
    5.你能畫出函數(shù)y=-x2+x-的圖象,并說明這個函數(shù)具有哪些性質(zhì)嗎?
    二、解決問題。
    由以上第4個問題的解決,我們已經(jīng)知道函數(shù)y=-x2+x-的圖象的開口方向、對稱軸和頂點坐標。根據(jù)這些特點,可以采用描點法作圖的方法作出函數(shù)y=-x2+x-的圖象,進而觀察得到這個函數(shù)的性質(zhì)。
    解:(1)列表:在x的取值范圍內(nèi)列出函數(shù)對應值表;。
    x…-2-101234…。
    y…-6-4-2-2-2-4-6…。
    (2)描點:用表格里各組對應值作為點的坐標,在平面直角坐標系中描點。
    (3)連線:用光滑的曲線順次連接各點,得到函數(shù)y=-x2+x-的圖象,如圖所示。
    說明:(1)列表時,應根據(jù)對稱軸是x=1,以1為中心,對稱地選取自變量的值,求出相應的函數(shù)值。相應的函數(shù)值是相等的。
    (2)直角坐標系中x軸、y軸的長度單位可以任意定,且允許x軸、y軸選取的長度單位不同。所以要根據(jù)具體問題,選取適當?shù)拈L度單位,使畫出的圖象美觀。
    讓學生觀察函數(shù)圖象,發(fā)表意見,互相補充,得到這個函數(shù)韻性質(zhì);。
    當x=1時,函數(shù)取得最大值,最大值y=-2。
    三、做一做。
    教學要點。
    (1)在學生畫函數(shù)圖象的同時,教師巡視、指導;。
    (2)叫一位或兩位同學板演,學生自糾,教師點評。
    教學要點。
    教師組織學生分組討論,各組選派代表發(fā)言,全班交流,達成共識;。
    y=ax2+bx+c。
    =a(x2+x)+c。
    =a[x2+x+2-()2]+c。
    =a[x2+x+()2]+c-。
    =a(x+)2+。
    當a0時,開口向上,當a0時,開口向下。
    對稱軸是x=-b/2a,頂點坐標是(-,)。
    四、課堂練習。
    課本練習第1、2、3題。
    五、小結(jié)。
    通過本節(jié)課的學習,你學到了什么知識?有何體會?
    六、作業(yè)。
    1.同步練習。
    2.選用課時作業(yè)優(yōu)化設計。
    課時作業(yè)優(yōu)化設計。
    1.填空:
    (1)拋物線y=x2-2x+2的頂點坐標是_______;。
    (2)拋物線y=2x2-2x-的開口_______,對稱軸是_______;。
    (4)拋物線y=-x2+2x+4的對稱軸是_______;。
    (5)二次函數(shù)y=ax2+4x+a的最大值是3,則a=_______.
    2.畫出函數(shù)y=2x2-3x的圖象,說明這個函數(shù)具有哪些性質(zhì)。
    3.通過配方,寫出下列拋物線的開口方向、對稱軸和頂點坐標。
    (1)y=3x2+2x;(2)y=-x2-2x。
    (3)y=-2x2+8x-8(4)y=x2-4x+3。
    4.求二次函數(shù)y=mx2+2mx+3(m0)的圖象的對稱軸,并說出該函數(shù)具有哪些性質(zhì)。
    二次函數(shù)定義教案篇十一
    這節(jié)課我首先讓學生思考了三個列函數(shù)關系式的實際問題,接著在學生探究這三個實際問題的基礎上,思考、歸納出二次函數(shù)的定義以及探討對二次函數(shù)的判斷,最后針對二次函數(shù)的定義和能用二次函數(shù)表示變量之間關系進行了鞏固應用。本節(jié)課通過豐富的現(xiàn)實背景,使學生感受二次函數(shù)的意義,感受數(shù)學的廣泛聯(lián)系和應用價值。通過學生的探究性活動(經(jīng)歷數(shù)學化的過程),和學生之間的合作與交流,通過分析實際問題,引出二次函數(shù)的概念,使學生感受二次函數(shù)與生活的密切聯(lián)系。在新知的鞏固應用環(huán)節(jié),我精心設計了不同題型的問題,很好鞏固應用了本節(jié)的新知,課堂達到了較好的教學效果。通過本節(jié)課也讓我真正意識到:對于每節(jié)課的教學不能僅僅憑經(jīng)驗設計。在每節(jié)課的課前,一定要進行精心的預設。在課堂中,同時要結(jié)合課堂的實際效果和學生的情況注意靈活處理課堂生成。課堂上在進行分組教學時,提前預設好教學時間,在每節(jié)課上,既要放的開,同時又要注意在適當?shù)臅r機收回,以保證每節(jié)教學基本任務完成。
    將本文的word文檔下載到電腦,方便收藏和打印。
    二次函數(shù)定義教案篇十二
    3、理解一元二次方程的根就是二次函數(shù)與y=h(h是實數(shù))交點的橫坐標、
    (二)能力訓練要求。
    1、經(jīng)歷探索二次函數(shù)與一元二次方程的關系的過程,培養(yǎng)學生的探索能力和創(chuàng)新精神、
    3、通過學生共同觀察和討論,培養(yǎng)大家的合作交流意識、
    (三)情感與價值觀要求。
    2、具有初步的創(chuàng)新精神和實踐能力、
    二次函數(shù)定義教案篇十三
    二次函數(shù)的最大值,最小值及增減性的理解和求法·。
    《22·2二次函數(shù)與一元二次方程》同步練習。
    三、解答題。
    7·(1)請在坐標系中畫出二次函數(shù)y=x2—2x的大致圖象;
    (3)觀察圖象,直接寫出方程x2—2x=1的根(精確到0·1)·。
    《22·2二次函數(shù)與一元二次方程》練習題。
    (1)當t=3時,求足球距離地面的高度;
    (2)當足球距離地面的高度為10米時,求t;
    二次函數(shù)定義教案篇十四
    通過學生的討論,使學生更清楚以下事實:
    (1)分解因式與整式的乘法是一種互逆關系;。
    (2)分解因式的結(jié)果要以積的形式表示;。
    (3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式的次數(shù);。
    (4)必須分解到每個多項式不能再分解為止。
    活動5:應用新知。
    例題學習:
    p166例1、例2(略)。
    在教師的引導下,學生應用提公因式法共同完成例題。
    讓學生進一步理解提公因式法進行因式分解。
    活動6:課堂練習。
    1.p167練習;。
    2.看誰連得準。
    x2-y2(x+1)2。
    9-25x2y(x-y)。
    x2+2x+1(3-5x)(3+5x)。
    xy-y2(x+y)(x-y)。
    3.下列哪些變形是因式分解,為什么?
    (1)(a+3)(a-3)=a2-9。
    (2)a2-4=(a+2)(a-2)。
    (3)a2-b2+1=(a+b)(a-b)+1。
    (4)2πr+2πr=2π(r+r)。
    學生自主完成練習。
    通過學生的反饋練習,使教師能全面了解學生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。
    活動7:課堂小結(jié)。
    從今天的課程中,你學到了哪些知識?掌握了哪些方法?明白了哪些道理?
    學生發(fā)言。
    通過學生的回顧與反思,強化學生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關系,加深對類比的數(shù)學思想的理解。
    活動8:課后作業(yè)。
    課本p170習題的第1、4大題。
    學生自主完成。
    通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學會應用。
    板書設計(需要一直留在黑板上主板書)。
    15.4.1提公因式法例題。
    1.因式分解的定義。
    2.提公因式法。