優(yōu)秀人工智能的論文結(jié)語(yǔ)(案例18篇)

字號(hào):

    社會(huì)文化是人們生活方式和價(jià)值觀念的綜合體現(xiàn)。要注重總結(jié)的邏輯性,讓讀者在閱讀過(guò)程中能夠清晰地理解和把握論述的條理。以下是小編為大家整理的一些專家觀點(diǎn)和研究成果,希望能夠引起大家的思考和討論。
    人工智能的論文結(jié)語(yǔ)篇一
    簡(jiǎn)要地介紹了人工智能科技技術(shù)的基本概念。對(duì)專家系統(tǒng)、人工神經(jīng)網(wǎng)絡(luò)、模糊理論、遺傳算法等人工智能技術(shù)的含義進(jìn)行了介紹,并對(duì)這些技術(shù)在電力系統(tǒng)中的應(yīng)用和存在問(wèn)題進(jìn)行了分析。
    人工智能技術(shù)(aiartificialintelligence)是一項(xiàng)將人類知識(shí)轉(zhuǎn)化為機(jī)器智能的技術(shù)。它研究的是怎樣用機(jī)器模仿人腦從事推理、規(guī)劃、設(shè)計(jì)、思考和學(xué)習(xí)等思維活動(dòng),解決需要由專家才能處理好的復(fù)雜問(wèn)題。在應(yīng)用方面,以專家系統(tǒng)、人工神經(jīng)網(wǎng)絡(luò)、遺傳算法等最為普遍。
    1.1專家系統(tǒng)(es)。
    專家系統(tǒng)是利用知識(shí)和推理來(lái)解決專家不能解決的問(wèn)題。傳統(tǒng)程序需要固定程序和復(fù)雜算法,輸入數(shù)據(jù)并得出結(jié)果。專家系統(tǒng)集中大量的符號(hào)處理,采用啟發(fā)式方法模擬專家的推理過(guò)程,通過(guò)推理,利用知識(shí)解決問(wèn)題。它具有邏輯思維和符號(hào)處理能力,能修改原來(lái)知識(shí),適合于電力系統(tǒng)問(wèn)題的分析。
    1.2人工神經(jīng)網(wǎng)絡(luò)(ann)。
    人工神經(jīng)網(wǎng)絡(luò)是大量處理單元廣泛互聯(lián)而成的網(wǎng)絡(luò),是一種模擬動(dòng)物神經(jīng)系統(tǒng)的技術(shù)。神經(jīng)網(wǎng)絡(luò)具有自適應(yīng)和自學(xué)習(xí)的能力,能并行處理分布信息。電力系統(tǒng)應(yīng)用人工神經(jīng)網(wǎng)絡(luò)可以進(jìn)行實(shí)時(shí)控制、狀態(tài)評(píng)估等。
    1.3遺傳算法(ga)。
    遺傳算法是一種進(jìn)化論的數(shù)學(xué)模型,借鑒自然遺傳機(jī)制的隨機(jī)搜索算法。它的主要特征是群體搜索和群體中個(gè)體之間的信息交換。該方法適用于處理傳統(tǒng)搜索方法難以解決的非線性問(wèn)題。
    1.4模糊邏輯(fl)。
    當(dāng)輸入是離散的變量,難以建立數(shù)學(xué)模型。而模糊邏輯則成功地應(yīng)用在潮流計(jì)算、系統(tǒng)規(guī)劃、故障診斷等電力系統(tǒng)問(wèn)題。
    1.5混合技術(shù)。
    以上各種智能控制方法各有局限性,有些甚至難以處理電力系統(tǒng)實(shí)際問(wèn)題。因此需要結(jié)合各個(gè)算法的優(yōu)勢(shì),采用人工智能混合技術(shù)。其中包括:模糊專家系統(tǒng)、神經(jīng)網(wǎng)絡(luò)模糊系統(tǒng)、神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)等技術(shù)。
    2.1在電能質(zhì)量研究中的應(yīng)用。
    人工智能技術(shù)可以對(duì)電壓波動(dòng)、電壓不平衡、電網(wǎng)諧波等電能質(zhì)量參數(shù)進(jìn)行在線監(jiān)測(cè)和分析。在檢測(cè)和識(shí)別電能質(zhì)量擾動(dòng)時(shí)能克服傳統(tǒng)方法的缺陷。專家系統(tǒng)隨著經(jīng)驗(yàn)的積累、擾動(dòng)類型變化而不斷擴(kuò)充和修改,便于用戶的.掌握[3]。
    此外,專家系統(tǒng)和模糊邏輯可用于培訓(xùn)變電站工作人員。智能軟件可以模擬故障情形,有利于提高運(yùn)行人員的操作技能。
    2.2變壓器狀態(tài)監(jiān)測(cè)與故障診斷專家系統(tǒng)。
    變壓器事故原因判斷起來(lái)十分復(fù)雜。判斷過(guò)程中,必須通過(guò)內(nèi)外部的檢測(cè)等各種方法綜合分析作出判斷。變壓器監(jiān)測(cè)和診斷專家系統(tǒng)首先對(duì)油中氣體進(jìn)行分析。異常時(shí),根據(jù)異常程度結(jié)合試驗(yàn)進(jìn)行分析,決定變壓器的停運(yùn)檢查。若經(jīng)分析發(fā)現(xiàn)變壓器已嚴(yán)重故障,需立即退出運(yùn)行,則要結(jié)合電氣試驗(yàn)手段對(duì)變壓器的故障性質(zhì)及部位做出確診。
    變壓器監(jiān)測(cè)和診斷專家系統(tǒng)通過(guò)診斷模塊和推理機(jī)制,能診斷出變壓器的故障并提出相應(yīng)對(duì)策,提高了變壓器內(nèi)部故障的診斷水平,實(shí)現(xiàn)了電力變壓器狀態(tài)檢修和在線監(jiān)測(cè)。
    2.3人工智能技術(shù)在低壓電器中的應(yīng)用。
    低壓電器的設(shè)計(jì)以實(shí)驗(yàn)為基礎(chǔ),需要分析靜態(tài)模型和動(dòng)態(tài)過(guò)程。人工智能技術(shù)能進(jìn)行分段過(guò)程的動(dòng)態(tài)設(shè)計(jì),對(duì)變化規(guī)律進(jìn)行曲線擬合并進(jìn)行人工神經(jīng)網(wǎng)絡(luò)訓(xùn)練,建立變化規(guī)律預(yù)測(cè)模型,降低了開(kāi)發(fā)成本。
    低壓電器需要通過(guò)試驗(yàn)進(jìn)行性能認(rèn)證。而低壓電器的壽命很難進(jìn)行評(píng)價(jià)。模糊識(shí)別方法,從考慮產(chǎn)品性能的角度出發(fā),將動(dòng)態(tài)測(cè)得的反映性能的特性指標(biāo)作為模糊識(shí)別的變量特征值,能夠建立評(píng)估電器性能的模糊識(shí)別模型。
    2.4人工智能在電力系統(tǒng)無(wú)功優(yōu)化中的應(yīng)用。
    無(wú)功優(yōu)化是保證電力系統(tǒng)安全,提高運(yùn)行經(jīng)濟(jì)性的手段之一。通過(guò)無(wú)功優(yōu)化,可以使各個(gè)性能指標(biāo)達(dá)到最優(yōu)。但是無(wú)功優(yōu)化是一個(gè)復(fù)雜的非線性問(wèn)題。
    人工智能算法能應(yīng)用于電力系統(tǒng)無(wú)功優(yōu)化。如改進(jìn)的模擬退火算法,在求解高中壓配電網(wǎng)的無(wú)功優(yōu)化問(wèn)題中,采用了記憶指導(dǎo)搜索方法來(lái)加快搜索速度。模式法進(jìn)行局部尋優(yōu)以增加獲得全局最優(yōu)解的可能性,能夠以較大概率獲得全局最優(yōu)解,提高了收斂穩(wěn)定性。禁忌搜索方法尋優(yōu)速度較快,在跳出局部最優(yōu)解方面有較大優(yōu)勢(shì)。遺傳算法在解決多變量、非線性、離散性的問(wèn)題時(shí)有極大的優(yōu)勢(shì)。要求較少的求解信息的,模型簡(jiǎn)單,適用范圍廣。
    2.5人工智能在電力系統(tǒng)繼電保護(hù)中應(yīng)用。
    自適應(yīng)型繼電保護(hù)裝置能地適應(yīng)各種變化,改善保護(hù)的性能,使之適應(yīng)各種運(yùn)行方式和故障類型。它能夠有效地處理各種故障信息,獲得可靠的保護(hù)。
    借助于人工智能技術(shù)不但能夠提取故障信息,還能利用其自學(xué)習(xí)和自適應(yīng)能力,根據(jù)不同運(yùn)行工況,自適應(yīng)地調(diào)整保護(hù)定值和動(dòng)作特性。
    2.6人工智能在抑制電力系統(tǒng)低頻振蕩的應(yīng)用。
    大規(guī)模電網(wǎng)互聯(lián)易產(chǎn)生低頻振蕩,嚴(yán)重威脅著電力系統(tǒng)的安全。人工智能為電力系統(tǒng)低頻振蕩的控制提供了技術(shù)支持。神經(jīng)網(wǎng)絡(luò)、模糊理論、ga等人工智能技術(shù)應(yīng)用于facts控制器和自適應(yīng)pss的研究,為抑制電力系統(tǒng)低頻振蕩提供了新的手段。
    作為一門交叉學(xué)科,人工智能將隨著其他理論的發(fā)展而進(jìn)入新的發(fā)展階段。應(yīng)用新方法解決問(wèn)題,或促進(jìn)各種方法的融合,保持簡(jiǎn)單的數(shù)學(xué)模型和全局尋優(yōu)情況下,尋求到更少的運(yùn)算量,提高算法效率,將是未來(lái)發(fā)展的趨勢(shì)。
    隨著電力系統(tǒng)的發(fā)展,電力系統(tǒng)的復(fù)雜性不斷增加,不確定因素越來(lái)越多。隨著人工智能技術(shù)的不斷發(fā)展和提高,利用人工智能技術(shù)來(lái)解決電力系統(tǒng)的問(wèn)題將會(huì)受到越來(lái)越多的重視。
    隨著我國(guó)電力系統(tǒng)的持續(xù)穩(wěn)步發(fā)展,電力系統(tǒng)數(shù)據(jù)量不斷增加,管理上復(fù)雜程度大幅度增長(zhǎng),市場(chǎng)競(jìng)爭(zhēng)的加大,為人工智能技術(shù)在電力系統(tǒng)的應(yīng)用提供了廣闊前景。
    但人工智能技術(shù)的基本理論還不成熟,只是停留在仿真和實(shí)驗(yàn)階段。人工智能的開(kāi)發(fā)是一個(gè)長(zhǎng)期的過(guò)程,需要不斷改進(jìn)和完善,并在實(shí)際應(yīng)用中接受檢驗(yàn)。
    人工智能的論文結(jié)語(yǔ)篇二
    在二十一世紀(jì)的將來(lái),寧波市室驗(yàn)小學(xué)的中心,有一座巨大的建筑物――大本鐘。
    這不是大本鐘的仿照,而是一座高科技的智能教學(xué)樓。這座樓分成一個(gè)個(gè)小小的圓,那是一個(gè)個(gè)教室?,F(xiàn)在,可以讓你見(jiàn)識(shí)見(jiàn)識(shí)所謂的“高科技”啦。走上樓梯,來(lái)到四(五)班的教室門口,門口擺著好多雙鞋,不用驚奇,教室是圓的,固然得穿特別的鞋啦。在門框上,有一個(gè)指甲大小的洞,那是微形錄像頭,假如你晚到了便會(huì)自動(dòng)發(fā)信息給教師,以防你不誠(chéng)懇,偷偷溜進(jìn)來(lái)。教室的中心有一大個(gè)一大個(gè)的沙包,那是學(xué)生座椅,你任憑怎么坐都可以,由于它有一個(gè)芯片,可以測(cè)你的心理,只要在聽(tīng)課就可以。假如沒(méi)聽(tīng)課,它就會(huì)像一把扎滿釘子的“活火山”,把你弄得苦痛不堪。教室里沒(méi)有桌子,一人一個(gè)平板電腦,教師講課的板書占一半,不用怕看不見(jiàn),在為可以放大。另一半是錄像機(jī),把教師講的課全程錄像。
    教室前面的講臺(tái)更牛,還有那個(gè)“大本鐘”語(yǔ)。數(shù)教師(包括全部教師)要拖課,那把教室建成大本鐘干嗎?鐘一響,學(xué)生倒安平穩(wěn)穩(wěn)的,教師在講臺(tái)上卻被震得象在12級(jí)地震現(xiàn)場(chǎng),五臟六腑都“蹦”了出來(lái)。假如學(xué)生很喜愛(ài),只要在“課后評(píng)分”地方點(diǎn)一個(gè)好,教師就會(huì)留下來(lái)。“墻”上的黑板也有芯片,教師不用找文件,心里一想,文件就會(huì)立即翻開(kāi)。芯片還能識(shí)別人。同學(xué)假如在動(dòng),不到5秒,電腦就會(huì)自動(dòng)關(guān)機(jī),以防壞掉。黑板角落一個(gè)個(gè)白色的,上面畫有圖案的是教室按扭,一按,相應(yīng)的教室布置,讓同學(xué)們和教師不會(huì)為沒(méi)有教室而苦惱。
    教室后邊的圖書角也很奇妙。想到什么書,什么書就會(huì)被推出一個(gè)角,不用我們一本本地找了。圖書角的邊上有一個(gè)生物角,透亮的玻璃里一個(gè)“動(dòng)物園”一樣的地方。每天都會(huì)引來(lái)很多奇怪的眼睛,里面除了兇狠的野獸,其它動(dòng)物幾乎都不缺。進(jìn)入邊上的“更衣室”,一套適合你的衣服就穿在了你身上,再走進(jìn)“迷你動(dòng)物園”,邊上不是透亮的了,而是一望無(wú)際的“動(dòng)物天堂”。盡管知道這是幻覺(jué),但學(xué)是很吸引人。走近那些動(dòng)物,衣服起了作用,讓人聽(tīng)懂了它們的語(yǔ)言,還能和它們溝通呢!
    不止這些呢,節(jié)日里,“天花板”上的燈會(huì)身出五彩的`光線,平常只會(huì)在摔倒時(shí)變軟的“地板”現(xiàn)在一不當(dāng)心踩著了哪塊,“砰”地一下就會(huì)炸出五色的彩帶,立即又自動(dòng)恢復(fù),為節(jié)日增加不少樂(lè)趣。
    噢,差點(diǎn)遺忘了,教室是園的,真正的目的就是不讓教師體罰學(xué)生。由于那把“沙包椅”已經(jīng)起到這個(gè)作用了啦!
    這樣一個(gè)智能教室,肯定會(huì)在21世紀(jì)被創(chuàng)造出來(lái)讓我們用的。我們肯定要去研發(fā)出這種高科技的智能教室。
    人工智能的論文結(jié)語(yǔ)篇三
    隨著新型科技的持續(xù)更新,工程中逐漸應(yīng)用新科技,這也是科技朝著應(yīng)用式與開(kāi)放式方向發(fā)展的開(kāi)始。電子工程在傳統(tǒng)工程基礎(chǔ)上的革新,隨著人工智能化發(fā)展,逐漸轉(zhuǎn)換為信息化產(chǎn)業(yè)鏈接。這一智能化技術(shù)機(jī)械生產(chǎn)明顯減少,經(jīng)濟(jì)效益與產(chǎn)量提升,我國(guó)逐漸進(jìn)入到智能化階段。
    (一)發(fā)展歷程。
    在機(jī)械電子工程發(fā)展初期,主要體現(xiàn)為手工制作,生產(chǎn)力水平較低,資源技術(shù)等對(duì)其發(fā)展產(chǎn)生制約。為了提升生產(chǎn)效率,逐漸朝著機(jī)械工業(yè)方向發(fā)展。
    在生產(chǎn)線階段,機(jī)械工程已逐漸發(fā)展到流水線生產(chǎn),實(shí)現(xiàn)標(biāo)準(zhǔn)化大批量生產(chǎn),這一生產(chǎn)模式使勞動(dòng)力得到解放,生產(chǎn)力水平大大提升,同時(shí)生產(chǎn)效率也得到提高。但是仍然存在一些不足,比如,部分生產(chǎn)仍就以進(jìn)口為主,生產(chǎn)成本較大,在市場(chǎng)方面缺少適應(yīng)力;靈活性較差,難以滿足不斷變化的市場(chǎng)需求。
    在機(jī)械電子產(chǎn)業(yè)發(fā)展階段中,產(chǎn)品生產(chǎn)能夠適應(yīng)市場(chǎng)的需求,對(duì)于不斷變化的產(chǎn)品需求產(chǎn)業(yè)化發(fā)展能夠滿足。
    (二)機(jī)械電子工程主要特征。
    機(jī)械電子工程是復(fù)雜綜合性學(xué)科,同各類學(xué)科之間都有著密切的聯(lián)系。機(jī)械電子工程發(fā)展要以計(jì)算機(jī)、電子以及機(jī)械為基礎(chǔ),結(jié)合其他學(xué)科做出合理、科學(xué)的設(shè)計(jì)。在設(shè)計(jì)的過(guò)程中,要求每一個(gè)模塊都能夠?qū)崿F(xiàn)有機(jī)結(jié)合,進(jìn)而使得各個(gè)模塊都能將其最大優(yōu)勢(shì)發(fā)揮出來(lái)。機(jī)械電子產(chǎn)品內(nèi)部結(jié)構(gòu)簡(jiǎn)單明了,并不復(fù)雜,無(wú)需復(fù)雜原件的投入,這樣能在一定程度上使產(chǎn)品性能得到提升,進(jìn)而擴(kuò)大消費(fèi)市場(chǎng)。
    人工智能是一門復(fù)雜,并且綜合性較強(qiáng)的學(xué)科,所涉及到的學(xué)科比較多。也可以說(shuō),21世紀(jì)人工智能是最偉大學(xué)科之一。人工智能實(shí)現(xiàn)了對(duì)人的智能模擬,并且能通過(guò)計(jì)算機(jī)使認(rèn)得智能化得到進(jìn)一步的延伸,人工智能這門學(xué)科有著較好的發(fā)展?jié)摿?。人工智能在發(fā)展的過(guò)程中主要經(jīng)歷下列幾個(gè)階段。
    初步階段。人工智能在17世紀(jì)開(kāi)始發(fā)生萌芽,法國(guó)在這一階段成功誕生世界上的第一部計(jì)算機(jī),這一計(jì)算器只是單純的能進(jìn)行加法簡(jiǎn)單運(yùn)算,但是仍就轟動(dòng)世界,進(jìn)而在世界范圍內(nèi),對(duì)這項(xiàng)技術(shù)開(kāi)始進(jìn)一步研宄。在最初階段,人工智能并沒(méi)有明顯的進(jìn)展,主要是在實(shí)踐的過(guò)程中積累與總結(jié)知識(shí),這為今后人工智能發(fā)展奠定堅(jiān)實(shí)的基礎(chǔ)。
    發(fā)展初始階段。美國(guó)人在二十世紀(jì)首次提出人工智能專業(yè)用語(yǔ)。在這個(gè)發(fā)展階段,人工智能主要以證明與闡釋為主要體現(xiàn),在這一時(shí)期對(duì)于人工智能的研宄就是首要任務(wù)。
    發(fā)展起伏階段。隨著人們對(duì)于人工智能的不斷深入研宄,人工智能也處于持續(xù)的發(fā)展階段,但是在實(shí)踐過(guò)程中發(fā)現(xiàn),要想使人工智能模仿和人類思維同步是非常困難的。大部分對(duì)于人工智能的科學(xué)研宄僅僅是停留于簡(jiǎn)單映射層面,對(duì)于邏輯思維的研宄仍就沒(méi)有突破性進(jìn)展。不論怎么說(shuō),在發(fā)展的起伏階段,人功能智能也在發(fā)展中得到了技術(shù)創(chuàng)新,特別是在系統(tǒng)方面、計(jì)算機(jī)機(jī)器人以及語(yǔ)言掌握方面取得了較大的成就。
    起伏階段發(fā)展以后。在這一階段,人工智能的相關(guān)研究得到了發(fā)展,尤其是第五屆國(guó)際人工智能聯(lián)合會(huì)議的召開(kāi),人工智能逐漸朝著知識(shí)層面的方向發(fā)展,大部分的人工智能研都會(huì)結(jié)合相應(yīng)的知識(shí)工程,在這個(gè)階段中,人工智能發(fā)展的高度是前所未有的,在一定程度上促進(jìn)了人工智能應(yīng)用于實(shí)際工程中。
    穩(wěn)步發(fā)展階段。隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,對(duì)于人工智能研宄方向發(fā)生重大轉(zhuǎn)變,由原本的單一主體朝著集中統(tǒng)一主體的方向發(fā)展。關(guān)于人工智能在實(shí)際中的運(yùn)用以及研究,受到了互聯(lián)網(wǎng)技術(shù)的影響。網(wǎng)絡(luò)的普及與快速發(fā)展,在一定程度上促進(jìn)了信息化的發(fā)展,信息在傳送方面發(fā)生率重大性變革。在人們逐漸進(jìn)入信息化社會(huì)后,在信息有效處理方面人工智能的發(fā)展到了重要的作用,在模擬設(shè)計(jì)方面,機(jī)械電子工程的發(fā)展需要人工智能的大力支持。
    隨著我國(guó)社會(huì)經(jīng)濟(jì)的持續(xù)發(fā)展,社會(huì)不斷的進(jìn)步,對(duì)于信息人們?cè)絹?lái)越重視。在21世紀(jì),互聯(lián)網(wǎng)技術(shù)得到快速發(fā)展,同時(shí)信息的傳遞也逐漸注入新鮮血液。互聯(lián)網(wǎng)應(yīng)用的普及說(shuō)明人們正朝著信息時(shí)代的方向邁進(jìn),在社會(huì)逐步信息化以后,更加需要有人工智能這一技術(shù)的支持,特別是機(jī)械電子工程發(fā)展中有著重要作用,機(jī)械電子系統(tǒng)本身缺少一定的穩(wěn)定性,這樣在機(jī)械電子工程設(shè)計(jì)方面就有著較大阻礙存在。在現(xiàn)代社會(huì)中,信息的處理量持續(xù)增大,并且較為復(fù)雜,有些時(shí)候需要同時(shí)對(duì)不同類型的信息進(jìn)行處理,所以需要采取人工智能的.支持才能完成信息處理。人工智能主要包含模糊推理系統(tǒng)、神經(jīng)網(wǎng)絡(luò)系統(tǒng)這種兩種方法。神經(jīng)網(wǎng)絡(luò)系統(tǒng)傾向于對(duì)人腦結(jié)構(gòu)的綜合分析,模糊推理系統(tǒng)更加重視對(duì)于語(yǔ)言信號(hào)的分析與理解。隨著現(xiàn)代社會(huì)的發(fā)展,僅僅采取單一的人工智能方法,明顯已經(jīng)無(wú)法適應(yīng)目前社會(huì)中不斷變化的市場(chǎng)需求,所以,對(duì)于人工智能相關(guān)問(wèn)題的研宂正逐漸朝著多方位、全面的人工智能方向轉(zhuǎn)變。多方位全面人工智能系統(tǒng)通過(guò)模糊推理系統(tǒng)和神經(jīng)網(wǎng)絡(luò)系統(tǒng)相互統(tǒng)一的方式,揚(yáng)長(zhǎng)補(bǔ)短,將二者有效的結(jié)合起來(lái),使得二者的優(yōu)勢(shì)得到最大程度的發(fā)揮。
    智能同機(jī)械電子工程之間在相互影響的過(guò)程中,逐漸產(chǎn)生嶄新的行業(yè)。首先通過(guò)現(xiàn)代科技逐漸,將人工智能融入到機(jī)械電子工程中,使機(jī)械工業(yè)發(fā)展?jié)摿Φ玫匠浞滞诰?。其次隨著機(jī)械電子工程發(fā)展難度的加大,對(duì)于人工智能也就提出來(lái)新的要求,這從某種程度上來(lái)推動(dòng)了人工智能發(fā)展。在將機(jī)械電子工程與人工智能有效結(jié)合的基礎(chǔ)上,促進(jìn)社會(huì)生產(chǎn)力發(fā)展,同時(shí)也能促進(jìn)有關(guān)經(jīng)濟(jì)產(chǎn)業(yè)的快速發(fā)展,這種效應(yīng)將會(huì)對(duì)整個(gè)社會(huì)產(chǎn)生一定影響,使我國(guó)經(jīng)濟(jì)得到全面發(fā)展。
    人工智能的論文結(jié)語(yǔ)篇四
    摘要:在航空業(yè)的發(fā)展中,人工智能技術(shù)起著積極的促進(jìn)作用。本文介紹了空中交通管理中的人工智能理論及方法運(yùn)用,為優(yōu)化空中交通流量管理系統(tǒng)提供理論依據(jù),更好地服務(wù)于空管系統(tǒng)。
    關(guān)鍵詞:人工智能;空中交通;管理
    人工智能,即artificialintelligence,是計(jì)算機(jī)科學(xué)的一個(gè)分支,研究對(duì)人的意識(shí)及思維的信息過(guò)程的模擬并對(duì)其進(jìn)行延伸和擴(kuò)展,通過(guò)了解人類智能,研究出類似的反應(yīng)的智能機(jī)器。隨著計(jì)算機(jī)技術(shù)的發(fā)展,人工智能越來(lái)越多的運(yùn)用于民航的各個(gè)方面,如飛行間隔的控制,空中流量的預(yù)測(cè),飛行沖突的調(diào)配。但隨著民航業(yè)的飛速發(fā)展,飛行流量日益增大,需要將人工智能技術(shù)有效運(yùn)用于空中交通流量管理中,建立人工智能輔助系統(tǒng),擴(kuò)大空域容量,優(yōu)化空中交通流量,提升空管秩序。
    1空中交通流量管理探討
    在空中交通流量管理(airtrafficflowcontrolmanagement)中,空中交通流量是指單位時(shí)間和空間通過(guò)的航空器數(shù)量。通過(guò)優(yōu)化空中交通流量,將空中交通管制服務(wù)與機(jī)場(chǎng)、航路有效結(jié)合,減少延誤,提高機(jī)場(chǎng)和空域的利用率。從時(shí)間角度上,空中交通流量管理可以分為航路流量管理和機(jī)場(chǎng)終端區(qū)流量管理兩部分,從時(shí)間上又可劃分為戰(zhàn)略流量管理,預(yù)戰(zhàn)術(shù)流量管理和戰(zhàn)術(shù)流量管理。當(dāng)航空器數(shù)量飽和時(shí)就要對(duì)航空器進(jìn)行流量控制,目前的常用的控制措施如下:1)地面等待,最主要的空中交通流量管理措施,本著地面讓空中的原則,對(duì)地面航空器的起飛時(shí)間進(jìn)行限制;2)空中等待,航空器在航路上或終端區(qū)規(guī)定的等待點(diǎn)或沒(méi)有沖突的臨時(shí)等待點(diǎn)進(jìn)行盤旋等待;3)更改航路等待,當(dāng)航路航線的容量飽和時(shí),航空器可以通過(guò)選擇其他航路航線;4)控制航路間隔,通過(guò)對(duì)航空器進(jìn)入空域的間隔進(jìn)行限制,來(lái)達(dá)到流量管理的目的,吸收部分擁擠的流量。
    2人工智能的應(yīng)用研究探討
    agent在人工智能的研究中,指能自主活動(dòng)的軟件或者硬件實(shí)體,目前國(guó)內(nèi)普遍翻譯為智能體。在人工智能中,設(shè)計(jì)關(guān)鍵智能體,對(duì)于研究人工智能的應(yīng)用是非常重要的。在空中交通流量管理中,設(shè)計(jì)如下關(guān)鍵智能體:航班智能體、航路智能體和機(jī)場(chǎng)終端區(qū)智能體。航班智能體的屬性有高度、速度、上升/下降率、起飛機(jī)場(chǎng)、目的地等。航班智能體可以與區(qū)域內(nèi)或終端區(qū)的其他航班智能體建立通信,通過(guò)獲取航班信息和邏輯判斷,結(jié)合周圍環(huán)境與自身狀況,指導(dǎo)控制自身行為。如果航班智能體需要做出相應(yīng)的調(diào)整如改變高度航向等,需要給上級(jí)的航路智能體或機(jī)場(chǎng)終端區(qū)智能體發(fā)出申請(qǐng),上級(jí)智能體批準(zhǔn)后,航班智能體才能采取相應(yīng)的調(diào)整,作出相應(yīng)的控制行為,才能通過(guò)交互環(huán)境反饋相應(yīng)結(jié)果。在實(shí)際工作中,這個(gè)過(guò)程是通過(guò)空中交通管制員指揮航空器實(shí)現(xiàn)的??罩薪煌ü苤茊T在實(shí)際指揮工作中,需要結(jié)合當(dāng)時(shí)的空中交通狀況和自身的經(jīng)驗(yàn)知識(shí)。航路智能體的主要屬性有航路的`高度、寬度、容量等。航路智能體需要對(duì)航班智能體進(jìn)行指揮,管理航路上的智能體,同時(shí)與其他航路智能體和機(jī)場(chǎng)終端區(qū)智能體進(jìn)行通信,對(duì)航班智能體進(jìn)入和離開(kāi)航路的時(shí)機(jī)進(jìn)行協(xié)調(diào),記錄流量信息并報(bào)告給上級(jí)流量管理部門,接收上級(jí)智能體的指令。在航班智能體進(jìn)入航路之前首先要進(jìn)行容量評(píng)估。通過(guò)評(píng)估后的航班智能體回收到航路智能體發(fā)出的放行許可才能進(jìn)入航路。如果沒(méi)有通過(guò)容量評(píng)估,則要向上級(jí)智能體發(fā)送將流量限制的申請(qǐng),發(fā)布流量限制后航路就不能批準(zhǔn)航班智能體的進(jìn)入,通過(guò)減少航班智能體的數(shù)量,控制航路交通流量。機(jī)場(chǎng)終端區(qū)智能體:在實(shí)際工作中,機(jī)場(chǎng)終端區(qū)的航班管理包括管制指揮、流量控制、地面場(chǎng)面監(jiān)視、進(jìn)離場(chǎng)等,難度較大。終端區(qū)智能體(通常運(yùn)行中為塔臺(tái)管制)首先要處理所收到的信息,如天氣雷達(dá)信息、地面運(yùn)行信息和情報(bào)信息等等,結(jié)合已有知識(shí)開(kāi)展機(jī)場(chǎng)的容量評(píng)估。如遇到低云低能見(jiàn)度、雷雨等天氣時(shí)可以調(diào)低終端區(qū)/機(jī)場(chǎng)容量,對(duì)進(jìn)入離開(kāi)的航空器進(jìn)行限制。通過(guò)容量評(píng)估,塔臺(tái)會(huì)給航班智能體一個(gè)slottime,航班智能體按照塔臺(tái)的slottime起飛或降落,從而達(dá)到流量控制。如果沒(méi)有通過(guò)容量評(píng)估,則需要通過(guò)上級(jí)的智能體批準(zhǔn),發(fā)布流量控制,限制終端區(qū)的流量,通過(guò)控制進(jìn)入或離開(kāi)的航空器數(shù)量達(dá)到流量限制的目的。機(jī)場(chǎng)終端區(qū)智能體(塔臺(tái))對(duì)終端區(qū)的航空器進(jìn)行管理,還需要與航路智能體和平級(jí)的終端去智能體進(jìn)行通信,對(duì)航班進(jìn)出的slottime進(jìn)行協(xié)調(diào),并將流量管理信息報(bào)告給上級(jí)流量管理部門,接收上級(jí)智能體的命令。如果出現(xiàn)擁堵機(jī)場(chǎng)終端區(qū)智能體需要通過(guò)一些措施來(lái)管理流量,如分配slottime、指揮航空器地面或空中盤旋等待。
    3結(jié)論
    綜上所述,以往在模擬空中交通流量進(jìn)行研究的時(shí)候,首先制定流量控制信息,再在系統(tǒng)模擬航班飛行計(jì)劃。這樣的模擬過(guò)程不能解決容量告警問(wèn)題。如果流量控制不合理,只能重新設(shè)定流控信息,再次進(jìn)行模擬,因而加大模擬過(guò)程的工作量。而通過(guò)智能體的運(yùn)用,可以在模擬中不斷調(diào)整智能體來(lái)模擬空中流量,增加了模擬流量過(guò)程中的靈活性,將人工智能運(yùn)用于模擬中,借助智能體來(lái)模擬空中流量,可以更好的分析空中交通流量問(wèn)題。
    參考文獻(xiàn)
    [2]甘鑫鑫基于多agent的空中交通協(xié)同流量管理研究[j].科學(xué)與財(cái)富,20xx(30):278.
    [5]陳言俊,劉甜甜.人工智能與機(jī)器人.[6]黃昱斌.基于multi-agent的空中交通流量的探究[j].科技創(chuàng)新與應(yīng)用,20xx(14):57-57.
    人工智能的論文結(jié)語(yǔ)篇五
    人工智能是一門交叉性的前沿學(xué)科,也是一門極富挑戰(zhàn)性的科學(xué)。人工智能技術(shù)和理論在一定程度上代表了信息技術(shù)的發(fā)展方向,所以對(duì)其人才的培養(yǎng)也是重中之重。
    人工智能;信息技術(shù);智能教育
    人工智能是多種學(xué)科相互滲透而發(fā)展起來(lái)的交叉性學(xué)科,其涉及計(jì)算機(jī)科學(xué)、信息論、數(shù)學(xué)、哲學(xué)和認(rèn)知科學(xué)、心理學(xué)、控制論、不定性論、神經(jīng)生理學(xué)、語(yǔ)言學(xué)等多種學(xué)科。隨著科技的飛速發(fā)展和人工智能技術(shù)應(yīng)用的不斷擴(kuò)延,其涉及的學(xué)科領(lǐng)域?qū)⒂鷣?lái)愈多,它已和人們的學(xué)習(xí)、生活息息相關(guān),時(shí)代和社會(huì)需要此方面的大量人才。在高中信息技術(shù)課中開(kāi)設(shè)人工智能初步模塊是十分必要的,本文擬從其發(fā)展現(xiàn)狀、存在問(wèn)題等幾個(gè)方面對(duì)我國(guó)高中信息課程中人工智能教育做一下探討。
    (1)人工智能定義
    人工智能(ai,artificial intelligence)是計(jì)算機(jī)科學(xué)的一個(gè)分支,己成為一門具有廣泛應(yīng)用的交叉學(xué)科和前沿學(xué)科。它研究如何用計(jì)算機(jī)模擬人腦所從事的推理、證明、識(shí)別、理解、設(shè)計(jì)、學(xué)習(xí)、規(guī)劃以及問(wèn)題求解等思維活動(dòng),來(lái)解決人類專家才能解決的復(fù)雜問(wèn)題,例如咨詢、探測(cè)、診斷、策劃等。
    (2)開(kāi)設(shè)人工智能課程的意義
    現(xiàn)實(shí)世界的問(wèn)題可以按照結(jié)構(gòu)化程度劃分成三個(gè)層次:結(jié)構(gòu)化問(wèn)題,是能用形式化(或稱公式化)方法描述和求解的一類問(wèn)題;非結(jié)構(gòu)化問(wèn)題難以用確定的形式來(lái)描述,主要根據(jù)經(jīng)驗(yàn)來(lái)求解;半結(jié)構(gòu)化問(wèn)題則介于上述兩者之間。
    將人工智能課程引入到我國(guó)現(xiàn)行的教育中,可以讓學(xué)生在了解人工智能基本語(yǔ)言特征、理解智能化問(wèn)題求解的基本策略過(guò)程中,體驗(yàn)、認(rèn)識(shí)人工智能技術(shù)的同時(shí)獲得對(duì)非結(jié)構(gòu)化、半結(jié)構(gòu)化問(wèn)題解決過(guò)程的了解,從而使學(xué)生了解計(jì)算機(jī)解決問(wèn)題方法的多樣性,培養(yǎng)學(xué)生的多種思維方式,更好的解決現(xiàn)實(shí)問(wèn)題。
    目前,該學(xué)科的教育正處于摸索階段,由于中學(xué)信息技術(shù)師資水平、學(xué)校硬軟件設(shè)備等條件的制約,我國(guó)尚未在中學(xué)專門開(kāi)設(shè)獨(dú)立的人工智能類課程,internet上與人工智能教育相關(guān)的中文信息資源也十分貧乏,在教學(xué)環(huán)境上大致存在以下問(wèn)題:
    (一)教學(xué)條件參差不齊
    開(kāi)設(shè)好人工智能課程,就要求安排更多的實(shí)踐課程和活動(dòng)來(lái)增強(qiáng)課程的趣味性,讓廣大師生切實(shí)體會(huì)到人工智能對(duì)我們生活的影響。這些活動(dòng)大部分要求上機(jī)操作或利用網(wǎng)絡(luò)資源來(lái)學(xué)習(xí)交流,這就對(duì)教學(xué)條件提出了較高的要求,尤其是一些偏遠(yuǎn)農(nóng)村、條件相對(duì)落后的中學(xué)在開(kāi)設(shè)人工智能課程上存在很大困難。
    (1)對(duì)硬件性能的要求
    人工智能課程中有較多的實(shí)踐課程需要老師和學(xué)生利用網(wǎng)絡(luò)資源,使用計(jì)算機(jī)進(jìn)行操作。這就需要學(xué)校配備計(jì)算機(jī)網(wǎng)絡(luò)教學(xué)機(jī)房,若其性能較差,會(huì)延長(zhǎng)學(xué)生在線進(jìn)行人機(jī)對(duì)話的時(shí)間,一旦遇到網(wǎng)絡(luò)堵塞,可能連網(wǎng)頁(yè)都打不開(kāi),這不僅浪費(fèi)了僅有的'上課時(shí)間,而且大大降低了學(xué)生的學(xué)習(xí)興趣。
    (2)對(duì)軟件性能的要求
    為了降低成本,學(xué)??梢岳没ヂ?lián)網(wǎng)上提供的免費(fèi)下載軟件和免費(fèi)在線教學(xué)網(wǎng)站等進(jìn)行實(shí)踐教學(xué),可大大減少自研開(kāi)發(fā)軟件和軟件維護(hù)的費(fèi)用。但一旦遇到網(wǎng)絡(luò)不通、網(wǎng)絡(luò)擁擠或在線網(wǎng)站停止服務(wù)等情況,將無(wú)法使用網(wǎng)絡(luò)資源進(jìn)行教學(xué),可見(jiàn),軟件的依賴性較強(qiáng)也存在很大的問(wèn)題。
    (二)對(duì)人工智能科學(xué)的認(rèn)識(shí)不足
    (1)學(xué)生的認(rèn)識(shí)誤區(qū)
    提及人工智能,給大多數(shù)學(xué)生的感覺(jué)是一門神秘、遙不可及的科學(xué)。很多學(xué)生認(rèn)為人工智能技術(shù)是很高深的科學(xué),離我們現(xiàn)實(shí)生活有一定距離,研究和接觸這門科學(xué)是少數(shù)科學(xué)家的事情,從而對(duì)該科學(xué)的關(guān)注程度不高。其實(shí),人工智能學(xué)科是一門漸漸成長(zhǎng)的科學(xué),它將應(yīng)用在我們生活的方方面面。我們應(yīng)在教學(xué)中讓學(xué)生多去體驗(yàn)人工智能的魅力所在,吸引更多對(duì)該學(xué)科感興趣的人去研究和使用它。
    (2)教師對(duì)人工智能學(xué)科開(kāi)設(shè)存在偏見(jiàn)
    一些從事該學(xué)科教學(xué)的教師沒(méi)有接觸過(guò)人工智能方面的知識(shí),在接觸過(guò)后被其中深?yuàn)W難理解的知識(shí)所嚇倒,認(rèn)為即使開(kāi)設(shè)了這門課程也不易被同學(xué)們所接受;而一些在大學(xué)接觸過(guò)人工智能課程的教師則認(rèn)為,其理論枯燥乏味,知識(shí)內(nèi)容艱深,不適合放在高中開(kāi)設(shè)。
    (三)一線教師經(jīng)驗(yàn)不足
    在我國(guó)大學(xué)教育中,開(kāi)展人工智能專業(yè)課程的大學(xué)為數(shù)不多,師范類院校更是少之又少。從事人工智能領(lǐng)域的專業(yè)人才輸出少,所以,缺乏具備一定知識(shí)結(jié)構(gòu)、有專業(yè)素養(yǎng)的教師來(lái)?yè)?dān)任高中信息技術(shù)課中人工智能課程的教育工作。絕大多數(shù)的一線教師并沒(méi)有接受過(guò)人工智能課程的專業(yè)培訓(xùn),在授課內(nèi)容上的著重點(diǎn)掌握不好,教學(xué)目標(biāo)不夠明確;在授課形式上也沒(méi)有前人的經(jīng)驗(yàn)可尋,這就給一線教師帶來(lái)了極大的挑戰(zhàn)。
    (一)加強(qiáng)軟、硬件建設(shè)
    在學(xué)校條件允許的條件下,應(yīng)加大硬件設(shè)施的投入,改善網(wǎng)絡(luò)傳遞信息的效率,同時(shí)加強(qiáng)軟件資源建設(shè)。鼓勵(lì)師生上網(wǎng)搜索更多適合ai教學(xué)的網(wǎng)站,教師應(yīng)整理出和ai相關(guān)的趣味小故事、電影、光盤等和教材相關(guān)的素材,以便更好的配合硬件教學(xué)。
    (二)端正認(rèn)識(shí),增強(qiáng)支持
    作為教師要樹立對(duì)高中人工智能選修課程的正確認(rèn)識(shí)。通過(guò)對(duì)課標(biāo)中規(guī)定的相關(guān)內(nèi)容的深入了解和學(xué)習(xí),克服對(duì)人工智能的神秘感或恐懼感,理性而客觀的看待人工智能技術(shù)及其應(yīng)用,明確在高中開(kāi)設(shè)該課程的目的。同時(shí),教師也不能因?yàn)樵撜n程的“選修”性質(zhì),從而輕視該課程的作用。
    作為學(xué)生不應(yīng)該僅僅看見(jiàn)這門課程的娛樂(lè)趣味性,應(yīng)把一些重要的技術(shù)理論知識(shí)重視起來(lái),不能過(guò)分的放松自己而偏離了我們的教學(xué)目標(biāo)。家長(zhǎng)也應(yīng)該支持和贊同學(xué)生選擇該課程,不能應(yīng)認(rèn)識(shí)不到這門課程的作用、怕耽誤學(xué)生主干課的學(xué)習(xí)而反對(duì)學(xué)生積極參與。
    校方領(lǐng)導(dǎo)也不應(yīng)條件限制就輕易放棄這門課程的開(kāi)設(shè),應(yīng)給予積極的配合。社會(huì)各界也應(yīng)加強(qiáng)輿論與正確引導(dǎo),讓更多的人們認(rèn)識(shí)人工智能并予以肯定。
    總之,人工智能是一門逐漸成長(zhǎng)的科學(xué),開(kāi)設(shè)好該課程需要廣大教育工作者和校方領(lǐng)導(dǎo)不斷努力,互相交流,共同克服困難。
    參考文獻(xiàn):
    [1]張劍平.人工智能技術(shù)與“問(wèn)題解決”[j].中小學(xué)信息技術(shù)教育,2003(10).
    [2]段東輝.淺談信息技術(shù)課程中人工智能教育[j].新鄉(xiāng)教育學(xué)院學(xué)報(bào),第19卷第二期2006,6.
    [3]教育部.普通高中技術(shù)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿).人民教育出版社,2003年4月.
    [4]張家華,張劍平.開(kāi)展高中人工智能教學(xué)存在的問(wèn)題及對(duì)策[j].
    人工智能的論文結(jié)語(yǔ)篇六
    智能交通系統(tǒng)(intelligent transportation systems,簡(jiǎn)稱its)是將先進(jìn)的信息技術(shù)、數(shù)據(jù)通訊傳輸技術(shù)、電子傳感技術(shù)、電子控制技術(shù)及計(jì)算機(jī)處理技術(shù)等有效地集成運(yùn)用于整個(gè)地面交通管理系統(tǒng)而建立的一種在大范圍內(nèi)、全方位發(fā)揮作用的,實(shí)時(shí)、準(zhǔn)確、高效的綜合交通運(yùn)輸管理系統(tǒng)。its能有效地利用現(xiàn)有交通設(shè)施、減少交通負(fù)荷和環(huán)境污染、保證交通安全、提高運(yùn)輸效率、促進(jìn)社會(huì)經(jīng)濟(jì)發(fā)展、提高人民生活質(zhì)量,并以推動(dòng)社會(huì)信息化及形成新產(chǎn)業(yè)而受到各國(guó)的重視。目前已形成世界二十一世紀(jì)的發(fā)展方向。
    交通仿真是智能交通領(lǐng)域的重要分支,它是利用最先進(jìn)的計(jì)算機(jī)技術(shù),通過(guò)仿真模擬的方法來(lái)分析交通問(wèn)題,輔助交通管理人員做決策。傳統(tǒng)上,數(shù)學(xué)推導(dǎo)、科學(xué)實(shí)驗(yàn)是進(jìn)行科學(xué)研究、解決科學(xué)問(wèn)題的主要方法。對(duì)于交通問(wèn)題來(lái)說(shuō),由于參與交通的人很多,影響交通出行的因素也很多,人們很難、甚至無(wú)法對(duì)交通問(wèn)題建立精確的數(shù)學(xué)模型。同時(shí),由于安全、法規(guī),以及開(kāi)銷方面的原因,進(jìn)行現(xiàn)場(chǎng)交通實(shí)驗(yàn)通常也是不可行的。而交通仿真恰恰能夠有效地解決上述兩個(gè)方面的困難。
    然而,傳統(tǒng)的交通仿真由于設(shè)計(jì)理念上的原因,并不能從根本上有效地解決交通問(wèn)題。這是因?yàn)?,交通系統(tǒng)是一個(gè)龐大的復(fù)雜系統(tǒng),必須用對(duì)付復(fù)雜系統(tǒng)的方法來(lái)處理,也就是要用綜合的方法,而不是還原分解的方法來(lái)處理。
    1)城市交通系統(tǒng)是由經(jīng)濟(jì)、環(huán)境、人口等因素綜合作用的結(jié)果,必須全面綜合地考慮城市交通和這些系統(tǒng)之間的關(guān)系。例如,不能為例城市交通問(wèn)題的解決,而導(dǎo)致城市生態(tài)惡化,危害人居環(huán)境;不能為了城市交通的暢通,阻礙城市社會(huì)經(jīng)濟(jì)活動(dòng)的健康發(fā)展。我們必須在已有工作的基礎(chǔ)上,突破傳統(tǒng)思維,探索研究此類復(fù)雜系統(tǒng)的新途徑,而基于人工系統(tǒng)的研究方法正是這種有效途徑之一。
    2)城市交通問(wèn)題不存在“一勞永逸”的解決方案。城市交通系統(tǒng)涉及人與社會(huì)的動(dòng)態(tài)變化,本身也在不斷變化和發(fā)展之中,不可避免地需要一個(gè)不斷深化地認(rèn)識(shí)過(guò)程,這類系統(tǒng)實(shí)際上不存在精確完備的整體解析模型。因此,無(wú)法“一勞永逸”地解決城市交通問(wèn)題,我們需要基于“不斷探索和改善”的'原則,研究建立有效可行的計(jì)算實(shí)驗(yàn)方法體系,為不斷地完善城市交通系統(tǒng)的綜合可持續(xù)發(fā)展方案提供科學(xué)依據(jù)。
    3)城市交通問(wèn)題不存在一般意義下的最優(yōu)解,更不存在唯一的最優(yōu)解。首先,基于解析模型的最優(yōu)解與假設(shè)條件直接相關(guān),具有條件敏感性,但對(duì)于城市交通這樣的問(wèn)題,假設(shè)條件與實(shí)際情況往往存在很大差別。其次,解決這些問(wèn)題一般不存在單一的優(yōu)化指標(biāo),而多層次多目標(biāo)優(yōu)化往往導(dǎo)致多個(gè)甚至無(wú)數(shù)個(gè)解決方案,就連采用近似模型的多目標(biāo)優(yōu)化也是如此。再者,對(duì)于這類復(fù)雜系統(tǒng),有時(shí)甚至連確定一個(gè)量化的綜合優(yōu)化指標(biāo)也有困難,特別是由于復(fù)雜系統(tǒng)長(zhǎng)期行為的不可預(yù)測(cè)性,試圖求解其某一最優(yōu)化解決方案本身就是不可行的。因此,我們應(yīng)當(dāng)接受有效解決方案的概念,而且還要接受一般情況下存在多個(gè)有效解決方案的事實(shí)。在這種情況下,我們應(yīng)該利用平行系統(tǒng)方法,追求具有動(dòng)態(tài)適應(yīng)能力的有效解決方案。
    基于以上分析,中國(guó)科學(xué)研自動(dòng)化所王飛躍研究員提出了人工交通系統(tǒng)的概念。其基本思想是利用人工社會(huì)的理論與方法,把交通仿真推向更高的層次、獲得更廣的視野。它利用基于代理的建模、面向?qū)ο蟮木幊毯筒⑿蟹植际接?jì)算等方法和技術(shù),“生長(zhǎng)”和“培育”交通系統(tǒng),即“人工交通系統(tǒng)”。
    利用人工交通系統(tǒng)解決問(wèn)題的思路跟改革開(kāi)放摸著石頭過(guò)河差不多,不斷探索和改善,使過(guò)程、方法更科學(xué)化、系統(tǒng)化、綜合化,不斷改善探索建立城市交通、物流、生態(tài)綜合發(fā)展的理論和方法體系。
    三是平行管理運(yùn)行,虛擬交通系統(tǒng)與實(shí)際交通系統(tǒng)相結(jié)合,直接采集現(xiàn)實(shí)交通數(shù)據(jù),進(jìn)行超前運(yùn)算,以判斷可能發(fā)生的交通事件,提前采取預(yù)防措施,為交通的高效暢通提供保障。
    1)在宏觀認(rèn)識(shí)上,人工交通系統(tǒng)不是單純的討論交通自身的問(wèn)題。相反,人工交通系統(tǒng)將交通看作社會(huì)整體的一個(gè)子系統(tǒng),與經(jīng)濟(jì)、人口、環(huán)境、氣候等子系統(tǒng)具有平等的地位,并將各個(gè)子系統(tǒng)之間的相互銜接、相互聯(lián)系、相互作用和相互影響作為研究的重點(diǎn)之一。
    2)在仿真方法上,人工交通系統(tǒng)屬于微觀仿真的范疇,但是不局限于研究局部的交通問(wèn)題。人工交通系統(tǒng)面向大區(qū)域的仿真研究,采用復(fù)雜性科學(xué)中“涌現(xiàn)”的原理,在底層建立單個(gè)交通出行元素的代理模型,通過(guò)大交通區(qū)域內(nèi)單個(gè)代理模型之間的相互作用,“涌現(xiàn)”出宏觀的交通現(xiàn)象。
    3)在實(shí)現(xiàn)手段上,人工交通系統(tǒng)不能在單一、孤立的計(jì)算機(jī)上進(jìn)行仿真,要使人工交通系統(tǒng)具備真實(shí)交通系統(tǒng)的分散性和社會(huì)性,必須采用先進(jìn)的分布式計(jì)算方法,如網(wǎng)格和p2p等,在互聯(lián)網(wǎng)上建立結(jié)構(gòu)化、分散化的虛擬交通路網(wǎng)系統(tǒng),并且通過(guò)終端界面將網(wǎng)絡(luò)中的真實(shí)人吸引到人工交通系統(tǒng)的運(yùn)行中來(lái),以使每一個(gè)代理模型具有逼近現(xiàn)實(shí)的社會(huì)屬性。
    4)在仿真目的上,人工交通系統(tǒng)不是一味的追求逼近現(xiàn)實(shí)交通環(huán)境和狀態(tài)。除此之外,人工交通系統(tǒng)可以通過(guò)調(diào)整參數(shù)、添加隨機(jī)事件等方法產(chǎn)生現(xiàn)實(shí)交通系統(tǒng)可能但尚未發(fā)生的交通現(xiàn)象,用以制定突發(fā)事故的緊急預(yù)案、交通控制方案的預(yù)評(píng)估以及交通參與人員的培訓(xùn)等等。
    人工系統(tǒng)說(shuō)起來(lái)有一點(diǎn)抽象,其實(shí)說(shuō)穿了很簡(jiǎn)單。第一是充分利用計(jì)算機(jī)技術(shù)的發(fā)展,第二是仿真與模擬的常態(tài)化。仿真不再是一個(gè)項(xiàng)目立項(xiàng)前跑一跑看看行不行的手段,仿真要秒秒在、分分在、永遠(yuǎn)在。它是經(jīng)驗(yàn)與知識(shí)的數(shù)字化、動(dòng)態(tài)化和即時(shí)化,使人工影響現(xiàn)實(shí),虛擬影響實(shí)在。
    人工交通系統(tǒng)完善之后,人們可以像玩網(wǎng)絡(luò)游戲一樣,作為一個(gè)行人或司機(jī)加入到系統(tǒng)中,不必出門即可體驗(yàn)交通;交警同志可以在人工交通系統(tǒng)中學(xué)習(xí)指揮交通,而不必?fù)?dān)心造成擁堵;交通分析人員可以利用人工交通系統(tǒng)研究各種突發(fā)事故對(duì)交通的影響,而不必?fù)?dān)心人民的生命財(cái)產(chǎn)受到威脅;交通管理和決策人員可以在人工交通系統(tǒng)試驗(yàn)交通政策和方案,而不必承擔(dān)決策失敗的風(fēng)險(xiǎn)。
    人工智能的論文結(jié)語(yǔ)篇七
    (一)人工智能的發(fā)展
    1950年,艾倫,麥席森,圖靈發(fā)表了一篇?jiǎng)潟r(shí)代之作《制作機(jī)器會(huì)思考嗎?》里面提出了測(cè)試機(jī)器是否具有智能的方法,并因此摘得“人工智能之父”的桂冠。約翰,麥卡錫在1956年的達(dá)特茅斯學(xué)術(shù)會(huì)議上,第一次提出人工智能(artificialintelligence,ai)。1997年,ibm公司“深藍(lán)”電腦擊敗了人類的世界國(guó)際象棋冠軍更是人工智能技術(shù)的一個(gè)完美表現(xiàn)。2017年7月,國(guó)務(wù)院印發(fā)了《新一代人工智能發(fā)展規(guī)劃》,這是我國(guó)首個(gè)面向2030年的人工智能技術(shù)的戰(zhàn)略發(fā)展藍(lán)圖,也表現(xiàn)出我國(guó)對(duì)發(fā)展人工智能技術(shù)的重視與支持,同時(shí),人工智能人選“2017年度中國(guó)媒體十大流行語(yǔ)”。
    人工智能是計(jì)算機(jī)科學(xué)的一個(gè)分支,可以對(duì)人的意識(shí)、思維的信息過(guò)程的模擬,人工智能不是人的智能,但能像人那樣思考、也可能超過(guò)人的智能。該領(lǐng)域的研究包括機(jī)器人、語(yǔ)言識(shí)別、圖像識(shí)別、自然語(yǔ)言處理和專家系統(tǒng)等。人工智能從誕生以來(lái),理論和技術(shù)日益成熟,應(yīng)用領(lǐng)域也不斷擴(kuò)大,未來(lái)人工智能帶來(lái)的科技產(chǎn)品,將會(huì)是人類智慧的“容器”。
    (二)人工智能的意義
    人工智能在會(huì)計(jì)、審計(jì)、稅務(wù)等行業(yè)的廣泛運(yùn)用,使得傳統(tǒng)、簡(jiǎn)單、重復(fù)性的基礎(chǔ)會(huì)計(jì)工作崗位將面臨被智能化取代,人工智能已成為促進(jìn)會(huì)計(jì)行業(yè)轉(zhuǎn)型發(fā)展的重要推手。近三年來(lái),德勤、普華永道、安永、畢馬威4大國(guó)際會(huì)計(jì)師事務(wù)所通過(guò)利用財(cái)務(wù)機(jī)器人進(jìn)行會(huì)計(jì)、審計(jì)等工作,使得數(shù)據(jù)的準(zhǔn)確性、工作效率、管理決策水平等明顯提升,由此可見(jiàn),人工智能早已潛移默化的影響到了會(huì)計(jì)工作的方方面面。
    (一)會(huì)計(jì)工作效率提高了。人工智能技術(shù)與財(cái)務(wù)管理系統(tǒng)的對(duì)接,實(shí)現(xiàn)了系統(tǒng)自動(dòng)識(shí)別票據(jù)、生成會(huì)計(jì)記賬憑證、記錄明細(xì)賬戶以及生成總賬和各類報(bào)表。作業(yè)過(guò)程中系統(tǒng)按時(shí)間順序記錄每筆業(yè)務(wù),對(duì)每一筆賬務(wù)進(jìn)行核實(shí)和驗(yàn)證。財(cái)務(wù)機(jī)器人還實(shí)現(xiàn)了信息的語(yǔ)音、掃描錄入,財(cái)務(wù)軟件可自動(dòng)生成證、帳、表,這將更加高效準(zhǔn)確地完成基礎(chǔ)會(huì)計(jì)核算工作,提高此項(xiàng)工作的效率,會(huì)計(jì)人員因此節(jié)省了大量用于基礎(chǔ)核算工作的時(shí)間,從而能將更多的精力投入在企業(yè)內(nèi)部管理型的工作上,同時(shí)又提高了管理工作的效率。
    (二)會(huì)計(jì)信息質(zhì)量提高了。受自身能力、專業(yè)素質(zhì)以及外部環(huán)境等因素的影響,會(huì)計(jì)信息數(shù)據(jù)的滯后性和人為失誤在所難免。人工智能將會(huì)計(jì)模型和方法程序化,它既減少了人為失誤又極大地提升了數(shù)據(jù)處理能力,工作重心逐漸轉(zhuǎn)向數(shù)據(jù)的挖掘、分析等重要環(huán)節(jié)和高附加值工作中,同時(shí),會(huì)計(jì)檔案由紙質(zhì)變成電子檔案更便于信息系統(tǒng)的管理、流程化的管理和監(jiān)控,避免了人工作業(yè)的失誤以及造假的可能,數(shù)據(jù)信息和記錄的真實(shí)性和精準(zhǔn)度得到保證。
    (三)會(huì)計(jì)職能重心轉(zhuǎn)移了。人工智能雖然可以替人做一些簡(jiǎn)單、繁冗、重復(fù)性的基礎(chǔ)會(huì)計(jì)工作,但并不能完全替代會(huì)計(jì)人員,隨著人工智能與會(huì)計(jì)信息系統(tǒng)的不斷結(jié)合,從事簡(jiǎn)單記賬工作的初級(jí)會(huì)計(jì)人員將會(huì)越來(lái)越少,而中高級(jí)會(huì)計(jì)人員將會(huì)集中于行業(yè)中涉及分析、預(yù)測(cè)和統(tǒng)籌的領(lǐng)域。因而會(huì)計(jì)職能的重心將向預(yù)測(cè)、決策、規(guī)劃、控制、評(píng)價(jià)等目前人工智能無(wú)法取代的管理會(huì)計(jì)的職能轉(zhuǎn)移。
    (四)會(huì)計(jì)人員從業(yè)壓力加大了。隨著人工智能被引入到會(huì)計(jì)行業(yè)中,一方面,簡(jiǎn)單的會(huì)計(jì)核算工作將被智能化財(cái)務(wù)軟件逐步替代,普通核算類型工作的崗位勢(shì)必減少,基層會(huì)計(jì)人員面臨失業(yè)的壓力:另一方面,由于財(cái)務(wù)軟件能夠高效完成基礎(chǔ)財(cái)務(wù)工作,企業(yè)更需要財(cái)會(huì)人員發(fā)揮管理會(huì)計(jì)的職能,會(huì)計(jì)從業(yè)人員需要將工作重心轉(zhuǎn)移到?jīng)Q策分析和經(jīng)營(yíng)管理上,使其有從財(cái)務(wù)會(huì)計(jì)到管理會(huì)計(jì)轉(zhuǎn)型的壓力。
    人工智能的發(fā)展與應(yīng)用是社會(huì)經(jīng)濟(jì)發(fā)展過(guò)程中的必然產(chǎn)物,它的到來(lái)就像一把雙刃劍,雖然可以對(duì)會(huì)計(jì)行業(yè)整體工作效率與工作方式帶來(lái)提升,但是人工智是不能完全代替會(huì)計(jì)人員的工作的。比如,智能化的設(shè)備無(wú)法完全替代充滿人情味的服務(wù)。李開(kāi)復(fù)也指出,社交能力強(qiáng)、應(yīng)變能力強(qiáng)、協(xié)商能力強(qiáng)的人,永遠(yuǎn)不會(huì)被人工智能取代。人類的感情,想象、創(chuàng)造等特質(zhì)也是人工智能所無(wú)法企及的。所以,對(duì)于會(huì)計(jì)從業(yè)人員而言,人工智能只是一種行業(yè)對(duì)于自身的探索以及進(jìn)步,順應(yīng)這種變化,會(huì)計(jì)人員應(yīng)當(dāng)認(rèn)清挑戰(zhàn),抓住機(jī)遇。
    一方面,會(huì)計(jì)從業(yè)人員應(yīng)調(diào)整好心態(tài),快速適應(yīng)行業(yè)的變革,重新找回自己的價(jià)值。努力提升自己的專業(yè)分析能力和管理能力,成為人工智能代替不了的高級(jí)會(huì)計(jì)工作者。比如:財(cái)務(wù)戰(zhàn)略制定,納稅籌劃,風(fēng)險(xiǎn)控制,合理避稅、財(cái)務(wù)分析等。同時(shí),向復(fù)合型人才發(fā)展。正如任正非所說(shuō),稱職的cfo應(yīng)隨時(shí)可以接任ceo。會(huì)計(jì)人員應(yīng)當(dāng)開(kāi)闊眼界,放大格局,不能只著眼于本職工作,還應(yīng)該了解工作其他崗位的工作內(nèi)容,比如銷售類、生產(chǎn)類等部門的業(yè)務(wù),提高自己的企業(yè)價(jià)值以及行業(yè)地位,做一名復(fù)合型人才。
    另一方面,人工智能技術(shù)在財(cái)會(huì)領(lǐng)域的突破離不開(kāi)懂會(huì)計(jì)知識(shí)的專業(yè)人員的配合,財(cái)務(wù)人員要努力學(xué)習(xí)新技能,加強(qiáng)計(jì)算機(jī)、信息技術(shù)的知識(shí)儲(chǔ)備,協(xié)助人工智能會(huì)計(jì)信息系統(tǒng)的研發(fā),擔(dān)當(dāng)人工智能會(huì)計(jì)系統(tǒng)的設(shè)計(jì)者和監(jiān)督者。
    參考文獻(xiàn):
    [1]閏鈺.企業(yè)人工智能時(shí)代下對(duì)會(huì)計(jì)行業(yè)的思考[j].商場(chǎng)現(xiàn)代化.2018(1z)
    [2]楊秀琴.淺議人工智能時(shí)代財(cái)務(wù)會(huì)計(jì)與管理會(huì)計(jì)的融合發(fā)展趨勢(shì)[j].現(xiàn)代商業(yè).2018(18)
    [3]李牧陽(yáng),運(yùn)用給會(huì)計(jì)行業(yè)帶來(lái)的問(wèn)題和思考[j],中國(guó)管理信息化.2019(42)
    人工智能的論文結(jié)語(yǔ)篇八
    1、構(gòu)思要圍繞主題展開(kāi):若要使論文寫得條理清晰、脈絡(luò)分明,必須要使全文有一條貫穿線,這就是論文的主題。主題是一篇學(xué)術(shù)論文的精髓,它是體現(xiàn)作者的學(xué)術(shù)觀點(diǎn)學(xué)術(shù)見(jiàn)解的。
    2、構(gòu)思論文布局,要力求結(jié)構(gòu)完整統(tǒng)一:在對(duì)一篇論文構(gòu)思時(shí),有時(shí)按時(shí)間順序編寫,有時(shí)按地域位置(空間)順序編寫,但更多的還是按邏輯關(guān)系編寫,即要求符合客觀事物的內(nèi)在聯(lián)系和規(guī)律,符合科學(xué)研究和認(rèn)識(shí)事物的邏輯。但不管屬于何種情形,都應(yīng)保持合乎情理、連貫完整。
    3、要作讀者分析:撰寫并發(fā)表任何一篇科技文章,其最終目的是讓別人讀的,因此,構(gòu)思時(shí)要求做“心中裝著讀者”,多作讀者分析。有了清晰的讀者對(duì)象,才能有效地展開(kāi)構(gòu)思,也才能順利地確定立意、選材以及表達(dá)的角度。
    提高構(gòu)思能力
    1、寫學(xué)術(shù)論文之前,先擬定提綱,可以極大地幫助作者鍛煉思想,提高構(gòu)思能力。
    2、寫作提綱,可以幫助作者勾劃出全篇論文的框架,體現(xiàn)自己經(jīng)過(guò)對(duì)材料的消化與進(jìn)行邏輯思維后形成的初步設(shè)想,可計(jì)劃先寫什么、后寫什么,前后如何表述一致,重點(diǎn)又放在哪里,哪里需要進(jìn)行一些注釋或解說(shuō)。按此計(jì)劃寫作,可使論文層次清晰,前后照應(yīng),內(nèi)容連貫,表達(dá)嚴(yán)密。
    3、擬制寫作提綱,只需要運(yùn)用一些簡(jiǎn)單的句子甚至是詞與詞組加以提示,把材料單元與相應(yīng)的論點(diǎn)有機(jī)組織編成順序號(hào),工作量并不大,也容易辦到。提綱中用以提示寫作的句子,有時(shí)即可用來(lái)做論文段落的標(biāo)題。
    討論部分的寫作技巧
    1.描述結(jié)論:首先,從專業(yè)角度對(duì)自己的研究進(jìn)行總結(jié),此部分務(wù)必與研究結(jié)果和研究目的保持一致,也就是說(shuō)討論部分的內(nèi)容必須在結(jié)果中找到依據(jù)。否則就會(huì)給人一種課題設(shè)計(jì)不完善的感覺(jué)。
    2.解釋結(jié)論:對(duì)本研究的結(jié)論進(jìn)行解釋,為了突出解釋的科學(xué)性和可靠性,一般是在和別人的研究分析對(duì)比中進(jìn)行解釋。列出幾篇和自己結(jié)論一致的文獻(xiàn),同時(shí)也要列出幾篇和自己不一致或者相悖的文獻(xiàn),但要解釋出不一致的理由,比如是因?yàn)樗x群體不一致,研究條件不一致等等,因?yàn)榭茖W(xué)研究中的可控變量較多,所以解釋兩個(gè)結(jié)論不一致一般不難。
    3.研究?jī)r(jià)值:結(jié)論解釋完之后,還要說(shuō)明本研究的應(yīng)用價(jià)值,也就本研究所能給社會(huì)或者臨床帶來(lái)什么實(shí)際價(jià)值,比如本研究可以進(jìn)一步明確某種方法治療某種疾病的效果,本研究發(fā)現(xiàn)某種藥物存在一些尚未發(fā)現(xiàn)的治療作用,或者本研究可以為相關(guān)研究提供參考。
    4.不足之處:任何一項(xiàng)研究由于客觀條件的限制,不可能盡善盡美,都會(huì)或多或少存在一些不足之處,或者由于當(dāng)前科技水平的限制,也會(huì)導(dǎo)致研究所存在的一些局限性,描述此部分內(nèi)容時(shí),一定要慎重。
    盡量列出1~2個(gè)不影響本研究結(jié)論科學(xué)性和準(zhǔn)確性的限制,比如本研究的樣本含量較小,或者本研究隨訪時(shí)間較短等等,一般不要列出諸如本研究所用統(tǒng)計(jì)方法不當(dāng),或者本課題的所用評(píng)價(jià)標(biāo)準(zhǔn)不夠成熟等。
    5.研究心得:在文章最后,應(yīng)說(shuō)明本文所要傳遞的信息,或者是對(duì)后續(xù)研究的展望。一般文章最后寫出本文要傳遞給讀者什么有價(jià)值的知識(shí)或信息,也可以是給讀者帶來(lái)的啟發(fā)。比如:“隨著對(duì)不穩(wěn)定型上頸椎結(jié)核性骨折的研究不斷深入,探求一種既能實(shí)現(xiàn)理想的復(fù)位固定,又可保留寰樞椎關(guān)節(jié)活動(dòng)功能的內(nèi)固定方法是我們當(dāng)前研究的方向?!?BR>    人工智能的論文結(jié)語(yǔ)篇九
    語(yǔ)言文學(xué)專業(yè)學(xué)術(shù)論文具有突出的學(xué)術(shù)性,它只能把學(xué)術(shù)問(wèn)題當(dāng)作自己的論題,把學(xué)術(shù)成果當(dāng)作自己的描述對(duì)象,把學(xué)術(shù)見(jiàn)解作為自己的核心內(nèi)容。它以學(xué)術(shù)性區(qū)別于一般的社會(huì)理論文章和政治理論文章。學(xué)術(shù)是有系統(tǒng)、較專門的學(xué)問(wèn),它往往以學(xué)科的形式表現(xiàn)出來(lái)。人們通常將學(xué)科分為自然科學(xué)和社會(huì)科學(xué)兩大類。兩大類又可逐層劃分下去。如社會(huì)科學(xué)可以分為哲學(xué)、政治、經(jīng)濟(jì)、法律、歷史、語(yǔ)言文學(xué)等,語(yǔ)言文學(xué)又可劃分出語(yǔ)言、文學(xué),文學(xué)又可以劃分出文學(xué)理論、文學(xué)史,文學(xué)史又可以分為中外文學(xué)史,中外文學(xué)史又可以劃階段、設(shè)專題。分工越細(xì),學(xué)問(wèn)也就越專門化。但一切專門化的學(xué)問(wèn),又隸屬于它的上級(jí)學(xué)科。語(yǔ)言文學(xué)專業(yè)學(xué)術(shù)論文所研究的,就是這些專門化的學(xué)問(wèn)。語(yǔ)言文學(xué)專業(yè)學(xué)術(shù)論文所要研究和解決的問(wèn)題,是這些專業(yè)知識(shí)中的某一問(wèn)題。
    (二)獨(dú)創(chuàng)性
    人工智能的論文結(jié)語(yǔ)篇十
    摘要:隨著工業(yè)領(lǐng)域的迅猛發(fā)展,自動(dòng)化、智能化被當(dāng)做是電氣控制領(lǐng)域的重點(diǎn)發(fā)展趨勢(shì)。為了讓電氣自動(dòng)化控制中人工智能技術(shù)發(fā)揮更大的作用,本文概括了人工智能技術(shù),闡述了人工智能技術(shù)在電氣自動(dòng)化領(lǐng)域的使用實(shí)例,以此期望對(duì)有關(guān)工作人員能有幫助。
    關(guān)鍵詞:電氣控制;自動(dòng)化控制;人工智能
    近年來(lái)隨著國(guó)內(nèi)外人工智能研究的興起與發(fā)展,越來(lái)越多的傳統(tǒng)領(lǐng)域開(kāi)始思考能否在自己的產(chǎn)品生產(chǎn)線上使用人工智能技術(shù),所以它的實(shí)際使用領(lǐng)域廣泛?,F(xiàn)代社會(huì)的發(fā)展離不開(kāi)人工智能技術(shù)的使用,特別是在現(xiàn)代工業(yè)的領(lǐng)域,在方法上需要依靠最新的人工智能技術(shù)為支持,但要做到讓人工智能技術(shù)在電氣自動(dòng)化控制中更好的發(fā)揮作用,我們先要知道人工智能技術(shù)到底是什么樣的技術(shù)[1]。
    1人工智能技術(shù)的概述
    國(guó)內(nèi)的創(chuàng)新熱潮近幾年正在蓬勃的發(fā)展,各種新技術(shù)競(jìng)相展現(xiàn),人工智能技術(shù)也逐漸成熟了,而且它在當(dāng)今社會(huì)中的使用也更加寬泛。人工智能技術(shù)的建立,不僅要有計(jì)算機(jī)技術(shù)知識(shí)進(jìn)行有效支持,還與其他學(xué)科知識(shí)息息相關(guān),人工智能技術(shù)通俗上講就是生產(chǎn)出可以替代人類來(lái)工作的智能化機(jī)器人,將來(lái)許多崗位都可以由機(jī)器來(lái)替代人類工作[2]。隨著科技的日新月異,科學(xué)家們已經(jīng)成功地生產(chǎn)出了類似于人腦一樣思考的人工大腦芯片,并將這種新技術(shù)命名為人工智能技術(shù)。在人們平常的生產(chǎn)活動(dòng)中,已有非常多的范圍都使用了人工智能技術(shù),而且它們的現(xiàn)實(shí)使用效率非常高。
    2人工智能技術(shù)在電氣自動(dòng)化中的應(yīng)用廣闊前景
    電氣自動(dòng)化中應(yīng)用人工智能技術(shù),不僅在極大程度上讓工人更好的操控電氣自動(dòng)化設(shè)備,還極大地減少了電氣自動(dòng)化的使用成本,這說(shuō)明發(fā)展人工智能技術(shù)的前景是非常有利的。
    2.1電氣自動(dòng)化控制中加入人工智能技術(shù)的重要性
    人工智能技術(shù)同人類的工作方式相比有許多人類不能替代的優(yōu)勢(shì),例如人工智能對(duì)于數(shù)字和程式非常敏感,可以長(zhǎng)時(shí)間的集中于處理同一個(gè)問(wèn)題,這些優(yōu)勢(shì)可以幫助人類解決一些繁復(fù)的工作,所以電氣自動(dòng)化控制中應(yīng)用人工智能技術(shù)后,它一定可以為人類創(chuàng)造更大的價(jià)值[3]。
    2.2人工智能技術(shù)在電氣自動(dòng)化控制中的應(yīng)用優(yōu)勢(shì)
    因?yàn)殡姎庠O(shè)備的復(fù)雜性和連貫性的要求,所以對(duì)電氣設(shè)備的設(shè)計(jì)人員就提出了非常高的專業(yè)要求,除了具備非常扎實(shí)的專業(yè)知識(shí)以外,還要求他們的設(shè)計(jì)最好可以結(jié)合最新的科學(xué)技術(shù)。在電氣自動(dòng)化控制中使用人工智能技術(shù)之后,會(huì)帶來(lái)很多便利性,具體表現(xiàn)為下面這4點(diǎn):(1)數(shù)據(jù)的收集與運(yùn)算都能利用人工智能技術(shù)來(lái)實(shí)現(xiàn),因?yàn)閾碛辛诉@一作用,以此一來(lái)就能對(duì)電氣設(shè)備的每樣數(shù)值開(kāi)展收集,還可立即對(duì)數(shù)據(jù)進(jìn)行運(yùn)算,因此能讓電氣自動(dòng)化的現(xiàn)實(shí)管控效果得以大范圍提高。(2)人工智能技術(shù)可實(shí)現(xiàn)連續(xù)的監(jiān)管并實(shí)現(xiàn)必要的報(bào)警。人工智能技術(shù)能同步監(jiān)控電氣系統(tǒng)中主要設(shè)備的模擬數(shù)據(jù)值。(3)人工智能管控的操縱監(jiān)控系統(tǒng)較高效。能夠通過(guò)鼠標(biāo)、鍵盤來(lái)對(duì)電氣設(shè)備實(shí)行自動(dòng)化管控,因?yàn)槭褂霉芸亓鞒叹湍軌驅(qū)崿F(xiàn)同步并網(wǎng)帶負(fù)荷操縱,以此以來(lái)不僅能夠大范圍減少工作人員的勞動(dòng)時(shí)間,還能讓控制效率得以提升,這同目前工業(yè)發(fā)展的`現(xiàn)實(shí)需要非常符合[4]。(4)差錯(cuò)記載功能也是人工智能技術(shù)擁有的獨(dú)特特點(diǎn),人類可以更好的運(yùn)用這個(gè)技術(shù)來(lái)監(jiān)測(cè)每一個(gè)運(yùn)行環(huán)節(jié)中出現(xiàn)的點(diǎn)滴差池,以此來(lái)調(diào)試設(shè)備使其達(dá)到最佳的狀態(tài),這從根本上提高了電氣設(shè)備的運(yùn)行效率和使用安全度,使其更好的為人類服務(wù)。
    3人工智能技術(shù)在電氣自動(dòng)化中的應(yīng)用分析
    因?yàn)槟壳皬母旧仙?jí)了人工智能技術(shù),加上它技術(shù)的逐漸完備,越來(lái)越多的電氣設(shè)備開(kāi)始同人工智能技術(shù)掛鉤,為了更加直觀的介紹人工智能設(shè)備的特點(diǎn)與技術(shù)屬性,筆者主要對(duì)電氣自動(dòng)化設(shè)備中人工智能技術(shù)的使用和電氣管控流程中人工智能技術(shù)的使用開(kāi)展了辨析。
    3.1人工智能技術(shù)在電氣自動(dòng)化設(shè)備中的應(yīng)用
    電氣自動(dòng)化系統(tǒng)有極大的繁雜性,它主要牽扯到許多范圍與科目,這就對(duì)操控電氣自動(dòng)化設(shè)備的員工提出了很高的要求,他們應(yīng)該擁有很高的職業(yè)素養(yǎng),而且還要有充足的知識(shí)儲(chǔ)備。因?yàn)殡姎庾詣?dòng)化體系相當(dāng)繁雜,所以在現(xiàn)實(shí)操控中的效率性要加強(qiáng),這樣才能極大程度地降低因?yàn)椴缓侠硎褂?,?dǎo)致出現(xiàn)非常規(guī)錯(cuò)誤,有時(shí)更可能導(dǎo)致安全事故等。這些問(wèn)題的解決都可憑借人工智能技術(shù)來(lái)達(dá)成,就人工智能技術(shù)自身來(lái)看,其系統(tǒng)中心主要是計(jì)算機(jī)系統(tǒng),經(jīng)由編輯每種操控系統(tǒng),能夠使計(jì)算機(jī)控制中的智能管控得以更好的施行[5]。
    3.2人工智能技術(shù)在電氣控制過(guò)程中的應(yīng)用
    就電氣自動(dòng)化的管控流程來(lái)看,人工智能可以幫助人類更好的控制電氣設(shè)備。在電氣設(shè)備的控制系統(tǒng)中,引入人工智能的現(xiàn)金技術(shù)后,能讓實(shí)際工作操作效果在很大范圍上得以提升,還能使得整個(gè)操作過(guò)程實(shí)現(xiàn)無(wú)人化監(jiān)管,這樣一來(lái)達(dá)到了企業(yè)節(jié)約成本的目的,尤其是不用再去花費(fèi)大筆的人工費(fèi)用。除此之外就從整個(gè)控制過(guò)程來(lái)看,人工智能技術(shù)可以實(shí)現(xiàn)同多臺(tái)設(shè)備的同時(shí)控制,專家體系、模擬操控和神經(jīng)網(wǎng)絡(luò)操控是其首要應(yīng)用的人工智能系統(tǒng)[6]。
    4總結(jié)
    科技的發(fā)展讓人類的生活更加便利與美好,人工智能技術(shù)的發(fā)揮在那越來(lái)越推進(jìn)了現(xiàn)代工業(yè)的更好發(fā)展。因?yàn)槿斯ぶ悄芗夹g(shù)具備相當(dāng)多的優(yōu)點(diǎn),它是這些年來(lái)發(fā)展起來(lái)的一門新興高科技技術(shù),它在實(shí)際應(yīng)用中有巨大的使用效率,不僅在電氣自動(dòng)化控制中,加入人工智能技術(shù)后,極大程度上提高了電氣設(shè)備的控制度,讓它能更好的的服務(wù)人類生產(chǎn)活動(dòng);同時(shí)電氣設(shè)備上結(jié)合了人工智能技術(shù),讓電氣自動(dòng)化設(shè)備的操控系統(tǒng)變得更加簡(jiǎn)潔,提高了員工操控效率;降低了企業(yè)的人力物力成本,使得生產(chǎn)流程更加科學(xué)、連貫,所以大力發(fā)展人工智能技術(shù)與電氣自動(dòng)化的結(jié)合是非常有必要的研究。
    參考文獻(xiàn):
    [5]黃開(kāi)平.高級(jí)項(xiàng)目中自動(dòng)化系統(tǒng)的應(yīng)用[j].電氣時(shí)代,20xx(02).
    人工智能的論文結(jié)語(yǔ)篇十一
    〔摘要〕人工智能飛速發(fā)展,正在改變?nèi)祟惿?,推?dòng)人類進(jìn)步。人工智能學(xué)者從認(rèn)知科學(xué)、心靈哲學(xué)以及控制論等不同視角對(duì)人工智能進(jìn)行研究,但對(duì)于人工智能哲學(xué)根源的追溯與厘清較少。古希臘畢達(dá)哥拉斯主義的數(shù)論思想、亞里士多德演繹邏輯系統(tǒng)與分析哲學(xué)中的邏輯分析與語(yǔ)言分析方法以及簡(jiǎn)單性哲學(xué)原則為人工智能研究綱領(lǐng)、研究框架以及研究方法等奠定了基礎(chǔ),哲學(xué)核心問(wèn)題決定了人工智能的研究進(jìn)路。只有對(duì)人工智能的哲學(xué)思想源流進(jìn)行追溯與探究,才能理解人工智能的理論基礎(chǔ),以更好地把握人工智能的發(fā)展規(guī)律并合理預(yù)測(cè)人工智能的發(fā)展趨勢(shì)。
    〔關(guān)鍵詞〕人工智能,數(shù)論,簡(jiǎn)單性原則
    人工智能發(fā)展如火如荼,學(xué)者除了對(duì)人工智能技術(shù)本質(zhì)、人工智能社會(huì)影響、發(fā)展路徑及倫理問(wèn)題等進(jìn)行研究之外,還關(guān)注人工智能中的哲學(xué)問(wèn)題。對(duì)人工智能的研究不能僅僅局限于技術(shù)層面及科學(xué)基礎(chǔ)層面的反思,也要涉及對(duì)人工智能的哲學(xué)思考。博登指出:“在科學(xué)家族中,沒(méi)有一門學(xué)科比ai與哲學(xué)的關(guān)系更密切。”〔1〕3人工智能與哲學(xué)緊密聯(lián)系,特別是心靈哲學(xué)與語(yǔ)言哲學(xué),認(rèn)知科學(xué)與認(rèn)知心理學(xué)等學(xué)科也為人工智能發(fā)展奠定了科學(xué)基礎(chǔ)。迄今為止,對(duì)于人工智能哲學(xué)的研究還沒(méi)有形成完整的理論體系,學(xué)者多從哲學(xué)視角對(duì)人工智能中的問(wèn)題進(jìn)行探討,從哲學(xué)思想源流挖掘人工智能基礎(chǔ)的著述不多。筆者嘗試從人工智能的數(shù)論基礎(chǔ)、邏輯學(xué)、分析哲學(xué)基礎(chǔ)以及簡(jiǎn)單性原則等視角分析人工智能的哲學(xué)思想根源。
    人工智能先驅(qū)西蒙與紐維爾作為人工智能符號(hào)主義(symbolicism)學(xué)派的代表,他們的研究著眼于計(jì)算機(jī)程序的邏輯結(jié)構(gòu)、符號(hào)操作系統(tǒng)以及編程語(yǔ)言,這與古希臘哲學(xué)家畢達(dá)哥拉斯學(xué)派的“數(shù)論”思想一脈相承。在畢達(dá)哥拉斯看來(lái),數(shù)是萬(wàn)物的本原,萬(wàn)物皆數(shù)?!鞍凑掌樟_克洛在《歐幾里德〈幾何原理〉注釋》中,‘?dāng)?shù)學(xué)’這個(gè)詞也是畢達(dá)哥拉斯學(xué)派首先使用的”〔2〕268。畢達(dá)哥拉斯將科學(xué)研究的基礎(chǔ)建構(gòu)在數(shù)學(xué)的基礎(chǔ)之上。畢達(dá)哥拉斯哲學(xué)思想的核心即“數(shù)”是萬(wàn)物的本原。按照畢達(dá)哥拉斯的數(shù)論思想,與其說(shuō)水、火、土等都是萬(wàn)物的本原,不如用一個(gè)簡(jiǎn)單詞“數(shù)”來(lái)解釋萬(wàn)物的存在。
    “數(shù)是萬(wàn)物的本原”包含著萬(wàn)物之中存在著某種數(shù)量關(guān)系的含義,不管是天體結(jié)構(gòu)、音階音律以及建筑結(jié)構(gòu)等萬(wàn)物都存在數(shù)量關(guān)系。畢達(dá)哥拉斯學(xué)派認(rèn)為數(shù)是宇宙的元素,科學(xué)研究就是尋找紛繁復(fù)雜現(xiàn)象之后的數(shù)量關(guān)系。例如,物理學(xué)是研究事物運(yùn)動(dòng)方面的數(shù)量關(guān)系,幾何學(xué)是研究事物點(diǎn)、線、面、體之間的數(shù)量關(guān)系等。他們將事物的本質(zhì)歸結(jié)為數(shù)的規(guī)律,認(rèn)為事物的本質(zhì)就是數(shù)。按照亞里士多德“四因說(shuō)”來(lái)看,畢達(dá)哥拉斯的“數(shù)”既是構(gòu)成事物的形式因,又是構(gòu)成事物的質(zhì)料因。質(zhì)料因指的是構(gòu)成事物的原始質(zhì)料,就好比建造房屋用的磚木石瓦,形式因即構(gòu)成事物的樣式和原型,就好比造房屋的圖紙或建筑師頭腦里的房屋原型。這樣的思想家(畢達(dá)哥拉斯主義學(xué)派)認(rèn)為數(shù)既是事物的質(zhì)料、同時(shí)又是形成事物的變化和它們的不變狀態(tài)的形式”〔3〕21-22。因此,數(shù)對(duì)于事物來(lái)說(shuō),既是質(zhì)料因又是形式因。
    畢達(dá)哥拉斯的哲學(xué)思想還表現(xiàn)在數(shù)的和諧論。他認(rèn)為萬(wàn)物包括宇宙在內(nèi)都由數(shù)構(gòu)成,并且萬(wàn)物可以還原為數(shù);他還認(rèn)為宇宙是和諧的,并把和諧的宇宙稱為“科斯摩斯”??扑鼓λ乖饩褪恰爸刃颉钡囊馑?,認(rèn)為世界存在內(nèi)在秩序與內(nèi)在規(guī)律,人類可以通過(guò)數(shù)量之間的關(guān)系找到世界的既定秩序。
    畢達(dá)哥拉斯的“萬(wàn)物皆數(shù),數(shù)之和諧”思想既具有本體論含義,也具有方法論意味。他的哲學(xué)思想影響了古希臘科學(xué)的發(fā)展,亞里士多德的邏輯學(xué)體系、歐幾里德的幾何學(xué)體系、托勒密的天文學(xué)體系、蓋倫的醫(yī)學(xué)體系這四大古希臘的科學(xué)成就皆受畢達(dá)哥拉斯主義哲學(xué)思想的影響。不但如此,畢達(dá)哥拉斯的哲學(xué)思想還影響了西方整個(gè)自然科學(xué)的發(fā)展。達(dá)芬奇、哥白尼、開(kāi)普勒、伽利略、牛頓等人都自稱是“畢達(dá)哥拉斯主義者”。達(dá)芬奇認(rèn)為天體是一架服從確定自然法則的機(jī)器,自然界有確定的規(guī)律;15-16世紀(jì)帶有畢達(dá)哥拉斯主義成分的新柏拉圖主義者把自然事物的行為解釋成數(shù)學(xué)結(jié)構(gòu);哥白尼日心說(shuō)體系的理論基礎(chǔ)也是依據(jù)畢達(dá)哥拉斯主義哲學(xué)理論來(lái)構(gòu)造行星運(yùn)動(dòng)簡(jiǎn)單、和諧的天體幾何學(xué)模型;開(kāi)普勒認(rèn)為自己是畢達(dá)哥拉斯主義者,他的目標(biāo)就是追求造物主心中數(shù)的和諧;伽利略也是畢達(dá)哥拉斯主義的追隨者,他認(rèn)為“自然之書是用數(shù)學(xué)語(yǔ)言書寫的”,自然的真理存在于數(shù)學(xué)事實(shí)中。畢達(dá)哥拉斯的數(shù)論思想還影響了萊布尼茲。萊布尼茨有一個(gè)夢(mèng)想,就是給出一套理想符號(hào)系統(tǒng)或語(yǔ)言和確定的語(yǔ)言變換或演算規(guī)則,把日常問(wèn)題轉(zhuǎn)變成理想語(yǔ)言,利用演算規(guī)則清楚地求解問(wèn)題的答案。在此基礎(chǔ)上,萊布尼茲提出“通用機(jī)”的天才設(shè)想。萊布尼茨嘗試發(fā)明人工智能通用機(jī),他設(shè)計(jì)出一種二進(jìn)制計(jì)算法,用二進(jìn)制數(shù)代替原來(lái)的十進(jìn)制數(shù),二進(jìn)制數(shù)即“1”和“0”。萊布尼茲雖然制作出了簡(jiǎn)單機(jī)器,但其只能進(jìn)行簡(jiǎn)單的算術(shù)計(jì)算,還不是萊布尼茲設(shè)想的能夠進(jìn)行復(fù)雜數(shù)據(jù)處理的通用機(jī)。盡管如此,萊布尼茲思想還是影響了整個(gè)計(jì)算機(jī)系統(tǒng)的發(fā)展。
    圖靈與馮·諾依曼的人工智能機(jī)器也受畢達(dá)哥拉斯主義數(shù)論的影響,他們運(yùn)用數(shù)的和諧以及數(shù)量關(guān)系的計(jì)算嘗試讓“萊布尼茲之夢(mèng)”在現(xiàn)實(shí)生活中得以實(shí)現(xiàn)。圖靈通過(guò)基本的數(shù)學(xué)運(yùn)算將數(shù)學(xué)運(yùn)算符號(hào)化為運(yùn)算符,并用一個(gè)無(wú)限長(zhǎng)紙帶來(lái)表述計(jì)算過(guò)程,制造出了圖靈機(jī),這就是萊布尼茨所說(shuō)的“通用機(jī)”。圖靈認(rèn)為人腦類似通用機(jī),圖靈提出一臺(tái)計(jì)算機(jī)在多大程度上可以模仿人的活動(dòng),進(jìn)而提出“機(jī)器能否思維”這個(gè)哲學(xué)問(wèn)題。圖靈堅(jiān)持通過(guò)特定算法程序,把可計(jì)算的數(shù)量關(guān)系都轉(zhuǎn)化為由一臺(tái)圖靈機(jī)來(lái)計(jì)算。馮·諾依曼指導(dǎo)發(fā)明第一臺(tái)基于運(yùn)算器與存儲(chǔ)器的計(jì)算機(jī),他為圖靈通用機(jī)設(shè)計(jì)出一個(gè)物理模型——edvac,edvac可以執(zhí)行加、減、乘、除等數(shù)學(xué)操作。與圖靈一樣,馮·諾依曼把人腦與機(jī)器類比,機(jī)器通過(guò)存儲(chǔ)器儲(chǔ)存數(shù)據(jù),通過(guò)數(shù)學(xué)規(guī)則設(shè)計(jì)出把思維當(dāng)成數(shù)據(jù)的程序,通過(guò)簡(jiǎn)單、和諧的數(shù)字制造出能進(jìn)行復(fù)雜數(shù)字處理的機(jī)器。不管是圖靈的通用機(jī)還是馮·諾依曼的edvac都是為了解決“萊布尼茲之夢(mèng)”,其哲學(xué)思想均根源于畢達(dá)哥拉斯的“數(shù)論”哲學(xué)思想。除了圖靈與萊布尼茨,紐維爾與西蒙等符號(hào)主義人工智能先驅(qū)也認(rèn)為,不管是人類智能還是機(jī)器智能都是根據(jù)確定的或者規(guī)范的規(guī)則來(lái)進(jìn)行符號(hào)操作的。不但如此,基于認(rèn)知模擬的強(qiáng)人工智能也把心理狀態(tài)作為計(jì)算狀態(tài),所謂認(rèn)知就是計(jì)算,這是對(duì)基于數(shù)論的計(jì)算主義教條的信仰,人類智能類似于信息處理系統(tǒng)。聯(lián)結(jié)主義人工智能不同于符號(hào)主義人工智能,它否認(rèn)智能行為來(lái)自于在形式規(guī)則下對(duì)符號(hào)進(jìn)行操作的觀點(diǎn),“符號(hào)主義人工智能中的信息處理包括明確的應(yīng)用和形式規(guī)則,但是聯(lián)結(jié)主義人工智能沒(méi)有這樣的規(guī)則”〔4〕1366-1367。與符號(hào)主義人工智能不同,聯(lián)結(jié)主義人工智能的工作原理是尋找神經(jīng)網(wǎng)絡(luò)及其間的聯(lián)結(jié)機(jī)制及學(xué)習(xí)算法。雖然聯(lián)結(jié)主義與符號(hào)主義人工智能有區(qū)別,但聯(lián)結(jié)主義人工智能與符號(hào)主義人工智能的共同假設(shè)都是把認(rèn)知看作信息處理,且信息處理都具有可計(jì)算性。可見(jiàn),畢達(dá)哥拉斯的“萬(wàn)物皆數(shù),數(shù)之和諧”思想為符號(hào)主義人工智能與聯(lián)結(jié)主義人工智能的發(fā)展奠定了基礎(chǔ)。
    除了畢達(dá)哥拉斯的數(shù)論思想,古希臘亞里士多德的演繹邏輯系統(tǒng)也是人工智能的哲學(xué)思想源泉。人工智能符號(hào)主義學(xué)派也稱為邏輯主義學(xué)派,可見(jiàn)邏輯思想在人工智能發(fā)展中的重要地位與作用。即使是深受胡塞爾后期的現(xiàn)象學(xué)、海德格爾的存在現(xiàn)象學(xué)和梅洛-龐蒂的知覺(jué)現(xiàn)象學(xué)影響的人工智能專家德雷福斯,也肯定演繹邏輯以及形式系統(tǒng)在人工智能發(fā)展中的作用。在德雷福斯看來(lái),符號(hào)主義人工智能的基礎(chǔ)是邏輯學(xué),是哲學(xué)中的理性主義。人工智能的主要設(shè)想是可以運(yùn)用計(jì)算機(jī)的邏輯運(yùn)算來(lái)模擬人類思考的過(guò)程。圖靈嘗試依靠邏輯發(fā)明通用機(jī),“我希望數(shù)字計(jì)算機(jī)能夠最終激起人們對(duì)符號(hào)邏輯的極大興趣……人與這些機(jī)器進(jìn)行交流的語(yǔ)言……構(gòu)成一種符號(hào)邏輯”〔5〕288。馬丁·戴維斯直接把符號(hào)主義學(xué)派的源頭追溯到亞里士多德,“把邏輯推理簡(jiǎn)化為形式的努力可以追溯到亞里士多德”〔6〕200。亞里士多德是邏輯學(xué)的創(chuàng)始人,他認(rèn)為邏輯學(xué)是獲得真正知識(shí)的重要工具,邏輯學(xué)是哲學(xué)的基礎(chǔ)。亞里士多德注重演繹推理,特別重視三段論推理,他認(rèn)為三段論推理是一切思維運(yùn)動(dòng)的基本形式。三段論是一種典型的演繹推理模式,它由普遍性公理和推理規(guī)則經(jīng)過(guò)嚴(yán)密的邏輯論證得出必然性結(jié)論。圖靈的通用機(jī)以及符號(hào)主義人工智能的根本基礎(chǔ),都可以歸結(jié)為邏輯或者演繹推理。
    集邏輯分析方法與語(yǔ)言分析方法于一體的分析哲學(xué)也是人工智能的思想源泉,分析哲學(xué)把邏輯學(xué)看作一切學(xué)科的基礎(chǔ),數(shù)學(xué)的基礎(chǔ)也是邏輯學(xué),數(shù)學(xué)也要用邏輯符號(hào)來(lái)表示。分析哲學(xué)產(chǎn)生于20世紀(jì)初,代表人物是石里克與卡爾納普等人,其理論來(lái)源于英國(guó)的經(jīng)驗(yàn)論者休謨、法國(guó)的實(shí)證主義者孔德、英國(guó)的邏輯主義者密爾和哲學(xué)家與心理學(xué)家馬赫等人的觀點(diǎn)。弗雷格的《算術(shù)基礎(chǔ)》、羅素與懷特海合著的《數(shù)學(xué)原理》、石里克的《普通認(rèn)識(shí)論》以及維特根斯坦的《邏輯哲學(xué)論》是分析哲學(xué)的代表著作。分析哲學(xué)的基本觀點(diǎn)是:哲學(xué)的任務(wù)是對(duì)知識(shí)進(jìn)行分析,強(qiáng)調(diào)通過(guò)對(duì)語(yǔ)言的邏輯分析來(lái)消除形而上學(xué)問(wèn)題,認(rèn)為一切綜合命題都以經(jīng)驗(yàn)為基礎(chǔ)等。分析哲學(xué)家認(rèn)為一切科學(xué)研究必須從經(jīng)驗(yàn)出發(fā),哲學(xué)的主要任務(wù)是運(yùn)用現(xiàn)代數(shù)理邏輯和語(yǔ)言分析把復(fù)雜的概念分析為簡(jiǎn)單的概念,分析哲學(xué)家想通過(guò)對(duì)語(yǔ)言的邏輯分析澄清語(yǔ)句、語(yǔ)詞的意義,通過(guò)語(yǔ)義上升,拋棄含混、模糊、有歧義的自然語(yǔ)言,把自然語(yǔ)言的語(yǔ)句轉(zhuǎn)換成邏輯命題,通過(guò)分析邏輯命題的意義清除偽哲學(xué)問(wèn)題,達(dá)到拒斥形而上學(xué)的目的。分析哲學(xué)注重邏輯分析與語(yǔ)言分析,強(qiáng)調(diào)語(yǔ)言分析的重要性,分析哲學(xué)把科學(xué)的任務(wù)界定為發(fā)現(xiàn)真理,而邏輯的任務(wù)在于識(shí)別真理的規(guī)律。羅素立足于把哲學(xué)建成嚴(yán)密的科學(xué),哲學(xué)像科學(xué)一樣可以獲得真理性的知識(shí)。在羅素看來(lái),哲學(xué)和科學(xué)只有程度之分,沒(méi)有本質(zhì)區(qū)別。哲學(xué)問(wèn)題都是邏輯問(wèn)題,邏輯問(wèn)題就是科學(xué)問(wèn)題。對(duì)科學(xué)問(wèn)題進(jìn)行分析還原之后,如果這個(gè)問(wèn)題是邏輯問(wèn)題,則它是哲學(xué)問(wèn)題,否則就不是哲學(xué)問(wèn)題。因此,邏輯是哲學(xué)的基礎(chǔ)。通過(guò)邏輯分析進(jìn)行還原涉及語(yǔ)言,那么,所有哲學(xué)問(wèn)題命題都是語(yǔ)言表達(dá)式,語(yǔ)言結(jié)構(gòu)是邏輯結(jié)構(gòu),是科學(xué)命題的真正的邏輯形式。
    羅素的邏輯原子論從本體論角度堅(jiān)持奧卡姆剃刀的最小化原則,從語(yǔ)言角度上堅(jiān)持思維經(jīng)濟(jì)原則,語(yǔ)言表述堅(jiān)持最小詞匯量原則?!叭鐭o(wú)必要,勿增實(shí)體”。羅素從邏輯學(xué)角度堅(jiān)持邏輯前提或者公理最小化原則,“寧可構(gòu)造,勿要推論”。根據(jù)公理與推理規(guī)則建構(gòu)的邏輯學(xué)公理系統(tǒng)影響了圖靈、馮·諾依曼及其以后的人工智能專家。馮·諾依曼致力于為新機(jī)器設(shè)計(jì)邏輯方案,戈德斯坦把馮·諾依曼看成將邏輯應(yīng)用于計(jì)算機(jī)的第一人,“據(jù)我所知,馮·諾依曼是一個(gè)清楚地懂得計(jì)算機(jī)本質(zhì)上執(zhí)行的是邏輯功能的人”〔7〕69。馮·諾依曼在edvac的報(bào)告中也提到,不但從數(shù)學(xué)的觀點(diǎn),而且從工程史和邏輯學(xué)家的觀點(diǎn)來(lái)探討大規(guī)模計(jì)算的機(jī)器。在人工智能哲學(xué)先驅(qū)德雷福斯看來(lái),自從古希臘人發(fā)明了邏輯與幾何,就把一切推理歸結(jié)為計(jì)算。人工智能中符號(hào)主義的基礎(chǔ)是邏輯學(xué),是哲學(xué)中的理性主義、還原論傳統(tǒng)。他們把計(jì)算機(jī)看成操作思想符號(hào)的系統(tǒng),試圖用計(jì)算機(jī)來(lái)表達(dá)對(duì)世界的形式表述。心靈與計(jì)算機(jī)都是物理符號(hào)系統(tǒng)。在德雷福斯看來(lái),“伽利略發(fā)現(xiàn)人們可以忽略的品質(zhì)和技術(shù)上的考慮,從而能找到一種用來(lái)描寫物質(zhì)運(yùn)動(dòng)的純形式化系統(tǒng),同樣我們可以設(shè)想,一位研究人類行為的伽利略可能會(huì)把所有語(yǔ)義上的考慮(對(duì)意義的依賴),變成為句法(形式化)操作技巧”〔8〕76。人工智能的代表人物數(shù)理邏輯學(xué)家皮茨與生理學(xué)家麥卡洛克撰寫了《神經(jīng)活動(dòng)中內(nèi)在觀念的邏輯運(yùn)算》,他們的思想受到羅素與懷特海《數(shù)學(xué)原理》的啟發(fā),堅(jiān)持把一切數(shù)學(xué)還原為邏輯,甚至神經(jīng)網(wǎng)絡(luò)也可以用邏輯來(lái)表達(dá)。德雷福斯認(rèn)為人工智能的發(fā)展建立在四種假設(shè)之上,即生物學(xué)假設(shè)、心理學(xué)假設(shè)、本體論假設(shè)以及認(rèn)識(shí)論假設(shè)。其中認(rèn)識(shí)論假設(shè)指的是一切知識(shí)都可被形式化,可以被編碼成數(shù)字形式;本體論假設(shè)指的是存在一組在邏輯上相互獨(dú)立的事實(shí),知識(shí)可以被編入計(jì)算機(jī)程序。紐維爾認(rèn)為:“人工智能科學(xué)家把計(jì)算機(jī)看成操作符號(hào)的機(jī)器,他們認(rèn)為,重要的是每一樣?xùn)|西都可以經(jīng)編碼成為符號(hào),數(shù)字也不例外?!薄?〕196在符號(hào)主義者看來(lái),符號(hào)是人類認(rèn)識(shí)外部世界的基本單元。人工智能的邏輯學(xué)派將人的認(rèn)識(shí)對(duì)象通過(guò)數(shù)學(xué)邏輯的方式抽象為符號(hào),利用計(jì)算機(jī)的程序符號(hào)來(lái)模擬人認(rèn)知世界的過(guò)程。符號(hào)主義學(xué)派主要依靠計(jì)算機(jī)的邏輯符號(hào)來(lái)模擬人的認(rèn)知過(guò)程。人工智能的重量級(jí)人物紐維爾與西蒙構(gòu)造了第一個(gè)真正意義的人工智能程序,稱之為“邏輯專家”,可見(jiàn)人工智能專家受邏輯學(xué)思想影響之深,“任何表現(xiàn)出一般智能的系統(tǒng),都可以證明是一個(gè)物理符號(hào)系統(tǒng)”〔10〕41。西蒙與紐維爾認(rèn)為,作為一般的智能行為,物理符號(hào)系統(tǒng)具有的計(jì)算手段既是必要的也是充分的。紐維爾與西蒙把其理論來(lái)源追溯到分析哲學(xué)家弗雷格、羅素與懷特海,“該假設(shè)的起源要追溯到弗雷格、懷特海與羅素就形式化邏輯提出的方案:以邏輯方式獲取基本的概念式數(shù)學(xué)觀念,把證明和演繹觀念置于可靠的根基上”〔11〕。德雷福斯認(rèn)為,真正的專家解決問(wèn)題是訴諸直覺(jué)與整體性,在此基礎(chǔ)上對(duì)人工智能的認(rèn)識(shí)論假設(shè)與本體論假設(shè)進(jìn)行批判,但他同意專家系統(tǒng)必須使用某種類型的概論度量的邏輯標(biāo)準(zhǔn),“認(rèn)知模擬的先驅(qū)者們——已經(jīng)繼承了霍布斯推理就是計(jì)算的主張,笛卡爾的心理表述、萊布尼茲的‘普遍文字’的思想——所有知識(shí)都可以在一組初始概念中得到表示”〔11〕。正如德雷福斯所言,“人工智能就是試圖找到主體(人或計(jì)算機(jī))中的哲學(xué)本原元素和邏輯關(guān)系”〔12〕??梢?jiàn),人工智能與邏輯學(xué)特別是分析哲學(xué)緊密相關(guān),邏輯學(xué)與分析哲學(xué)是人工智能的一個(gè)重要思想來(lái)源。
    古希臘先哲用簡(jiǎn)單的物質(zhì)元素探索世界的本原。例如,泰勒斯把世界的本原歸結(jié)為水,赫拉克利特把世界的本原歸結(jié)為火,德謨克利特把世界的本原歸結(jié)為原子,認(rèn)為世界由不可分的原子構(gòu)成。他認(rèn)為,萬(wàn)事萬(wàn)物都可以還原為不可分最小微?!?,世界是由原子構(gòu)成的。復(fù)雜的事物由簡(jiǎn)單的事物構(gòu)成,萬(wàn)事萬(wàn)物都由不可分的基本粒子構(gòu)成。世界由最基本的粒子構(gòu)成,復(fù)雜對(duì)象由基本粒子構(gòu)成,基本粒子決定了宇宙的性質(zhì)。
    簡(jiǎn)單性哲學(xué)原則不但用簡(jiǎn)單元素追溯世界的本原,還致力于用力學(xué)解釋自然現(xiàn)象。不管是物理規(guī)律、化學(xué)規(guī)律、生物規(guī)律,甚至是社會(huì)規(guī)律都可以用力學(xué)解釋。哥白尼的日心說(shuō)體系之所以取得科學(xué)界的支持也不是因?yàn)槠浣忉屃?qiáng),而是因?yàn)槠渥裱撕?jiǎn)單性原則,從而取代了托勒密繁瑣的本輪-均輪模型。牛頓的力學(xué)三定律就立足于簡(jiǎn)單性原則,用力來(lái)解釋所有運(yùn)動(dòng)。按照簡(jiǎn)單性哲學(xué)原則,人與動(dòng)物都是由簡(jiǎn)單的粒子構(gòu)成,人與動(dòng)物沒(méi)有根本區(qū)別,人與機(jī)器也沒(méi)有本質(zhì)區(qū)別,甚至可以說(shuō)“人就是機(jī)器”。1747年,拉·梅特里發(fā)表了《人是機(jī)器》這一哲學(xué)巨著,提出“人是動(dòng)物,因而也是機(jī)器,不過(guò)是更復(fù)雜的機(jī)器罷了”〔14〕69。笛卡爾把人體看作是與機(jī)械相類似,用機(jī)械的旋渦來(lái)解釋天體運(yùn)動(dòng)問(wèn)題,他認(rèn)為宇宙是一架機(jī)器,機(jī)械運(yùn)動(dòng)是唯一的運(yùn)動(dòng)規(guī)律。牛頓、開(kāi)普勒、伽利略等都力圖建立嚴(yán)密的力學(xué)體系來(lái)正確描述宏觀物理運(yùn)動(dòng),甚至是天體運(yùn)動(dòng)。愛(ài)因斯坦試圖用公理化方法把自然界描繪成物質(zhì)在時(shí)空中運(yùn)動(dòng)的統(tǒng)一體,德國(guó)物理學(xué)家海森堡也認(rèn)為簡(jiǎn)單性原則可以作為科學(xué)假說(shuō)可接受性的標(biāo)準(zhǔn)。
    不僅自然界的規(guī)律可以用力學(xué)表示,而且社會(huì)關(guān)系也可以用力學(xué)表示。孔德提出社會(huì)動(dòng)力學(xué)和社會(huì)靜力學(xué)概念,社會(huì)動(dòng)力學(xué)又稱為社會(huì)物理學(xué),立足于運(yùn)用力學(xué)規(guī)律分析社會(huì)關(guān)系。1950年,斯賓塞出版《社會(huì)靜力學(xué)》,把事物的基本規(guī)律看作“力的恒久性規(guī)律”(thelawofpersistenceofforce)。“人是機(jī)器”的觀點(diǎn)啟發(fā)人工智能先驅(qū)開(kāi)始了構(gòu)造具有人類智能機(jī)器的探索。
    主體與客體的關(guān)系在哲學(xué)史上占居重要地位,是哲學(xué)研究中的核心問(wèn)題,也是哲學(xué)史上諸多學(xué)派的思想源頭。古希臘米利都學(xué)派的泰勒斯探索萬(wàn)物本源的時(shí)候就開(kāi)始關(guān)注主體如何認(rèn)識(shí)客體,關(guān)注主體與客體的關(guān)系,普羅泰戈拉提出的命題“人是萬(wàn)物的尺度”包括了主客二分思維的萌芽,笛卡爾的精神和物質(zhì)相互獨(dú)立的二元論思想暗含著主體和客體截然二分的思想。人們一般認(rèn)為,只有人類才能成為主體,人之外的世界是客體。那主客二分的標(biāo)準(zhǔn)是什么呢?人之所以為主體的標(biāo)準(zhǔn)又是什么呢?有的學(xué)者認(rèn)為只有主體才具有意向性,客體不具有意向性,客體只是主體認(rèn)識(shí)的對(duì)象。主體一般具有獨(dú)立意識(shí)或者個(gè)體經(jīng)驗(yàn)。哲學(xué)意義的認(rèn)識(shí)論指的是個(gè)體對(duì)知識(shí)和知識(shí)獲得所持有的信念,主要包括知識(shí)結(jié)構(gòu)、知識(shí)本質(zhì)、知識(shí)來(lái)源和知識(shí)判斷的信念等內(nèi)容,主體與客體的關(guān)系問(wèn)題是哲學(xué)的核心問(wèn)題。認(rèn)識(shí)論中的可知論與不可知論是研究主體之外的客體是否可知,唯心主義與唯物主義的區(qū)分以及各種不同的哲學(xué)流派的分野都基于主體與客體截然二分的哲學(xué)基礎(chǔ),哲學(xué)史上,各大流派都曾經(jīng)把主客關(guān)系作為研究的切入點(diǎn)。
    人工智能是賦予機(jī)器智能,讓機(jī)器可以模擬或者代替人類的某種智能。人工智能基于不同的哲學(xué)理念有不同的研究進(jìn)路,人工智能發(fā)展史上不同思想的對(duì)立也是基于對(duì)于主體與客體關(guān)系的哲學(xué)思考。一般來(lái)講,人工智能可分為三種進(jìn)路,即符號(hào)主義進(jìn)路、聯(lián)結(jié)主義進(jìn)路以及行為主義進(jìn)路。人工智能符號(hào)主義進(jìn)路把人類的認(rèn)知過(guò)程看成符號(hào)計(jì)算過(guò)程,人類認(rèn)知是物理符號(hào)系統(tǒng),人工智能先驅(qū)德雷福斯(s)認(rèn)為,人工智能研究者其實(shí)與煉金術(shù)師一樣,也是對(duì)一些符號(hào)進(jìn)行不同的處理。因此,在人工智能的符號(hào)主義看來(lái),人與機(jī)器沒(méi)有本質(zhì)區(qū)別,人類的心智同樣可以還原成符號(hào)計(jì)算。德雷福斯在《計(jì)算機(jī)不能做什么:人工智能的極限》中提出,人工智能機(jī)器是基于生物學(xué)假設(shè)、心理學(xué)假設(shè)、認(rèn)識(shí)論假設(shè)以及本體論假設(shè)基礎(chǔ)之上的?!吧飳W(xué)假設(shè):在某一運(yùn)算水平上,大腦與計(jì)算機(jī)一樣,以離散的運(yùn)算方式加工信息;心理學(xué)假設(shè):大腦被看作一種按照形式規(guī)則加工信息單位的裝置;認(rèn)識(shí)論假設(shè):一切知識(shí)都可被形式化,可以被編碼成數(shù)字形式;本體論假設(shè):存在是一組在邏輯上相互獨(dú)立的事實(shí),知識(shí)可以被編入計(jì)算機(jī)程序”〔17〕156。從德雷福斯關(guān)于人工智能的四個(gè)假設(shè)中我們可以看出,人工智能與人類一樣都是對(duì)信息加工和處理的工具,從這個(gè)意義上講,主體與客體之間沒(méi)有本質(zhì)的區(qū)別。主體與客體不能截然二分,之所以對(duì)主體和客體進(jìn)行區(qū)分,表明人類對(duì)于自身的認(rèn)知規(guī)律和智能結(jié)構(gòu)沒(méi)有真正揭示。
    人工智能的聯(lián)結(jié)主義進(jìn)路,又稱為仿生學(xué)派或生理學(xué)派,認(rèn)為人工智能源于仿生學(xué),特別是對(duì)人腦模型的研究,其主要原理為神經(jīng)網(wǎng)絡(luò)及神經(jīng)網(wǎng)絡(luò)間的連接機(jī)制與學(xué)習(xí)算法。聯(lián)結(jié)主義起初是用軟件模擬神經(jīng)網(wǎng)絡(luò),后來(lái)發(fā)展到用硬件模擬神經(jīng)網(wǎng)絡(luò)。其理論假設(shè)是人與機(jī)器如果具有同樣的結(jié)構(gòu)應(yīng)該具有同樣的功能,可以通過(guò)研究人腦的物理結(jié)構(gòu)從而制造出類似人腦的機(jī)器。在聯(lián)結(jié)主義看來(lái),人與機(jī)器結(jié)構(gòu)相同,人腦與計(jì)算機(jī)程序運(yùn)行模式相同,則功能相同。紐維爾(allennewell)認(rèn)為,智能的計(jì)算機(jī)程序可以被用來(lái)模擬人類的思維過(guò)程。聯(lián)結(jié)主義失敗的原因是人腦的結(jié)構(gòu)并不像人工智能研究者們?cè)陔娔X上模擬一樣,人類的大腦是將物理事實(shí)與知覺(jué)過(guò)程所連接的客觀事實(shí),而不只是對(duì)信息進(jìn)行加工的一臺(tái)機(jī)器。人與機(jī)器不同,機(jī)器不具有人類的精神狀態(tài)和意識(shí)。人類的精神狀態(tài)和意識(shí)是否由人腦結(jié)構(gòu)決定呢?人類精神狀態(tài)和意識(shí)是先驗(yàn)存在還是后天習(xí)得仍然是認(rèn)知科學(xué)研究的難題。因此,通過(guò)神經(jīng)網(wǎng)絡(luò)讓機(jī)器模擬人類智能行不通。通過(guò)對(duì)人工智能的符號(hào)主義和聯(lián)結(jié)主義的分析我們發(fā)現(xiàn),主體與客體區(qū)別的必要性得以彰顯,人的主體性地位不能動(dòng)搖。
    人工智能的行為主義進(jìn)路,又稱為人工智能的進(jìn)化主義或控制論學(xué)派,其原理為維納和麥克洛克等學(xué)者的控制論思想及感知-動(dòng)作型控制系統(tǒng)。研究重點(diǎn)是模擬人在控制過(guò)程中的智能行為和作用,如對(duì)自適應(yīng)、自組織和自學(xué)習(xí)等的研究。人工智能行為主義學(xué)派的代表布魯克斯(rodneybrooks)研制的“六足機(jī)器人”實(shí)質(zhì)上是一個(gè)基于感知-動(dòng)作模式模擬昆蟲行為的控制系統(tǒng),能夠適應(yīng)外界的環(huán)境,但這樣的機(jī)器人也不具有人類的感知與認(rèn)知能力,主體與客體之間還是可以嚴(yán)格區(qū)分。人工智能的目標(biāo)從技術(shù)層面來(lái)講是制造出對(duì)人類有益的智能機(jī)器,從哲學(xué)層面來(lái)講,就是利用人工智能概念和模型,通過(guò)機(jī)器模擬人類智能來(lái)推動(dòng)哲學(xué)核心思想主客二分問(wèn)題的研究,借此解決哲學(xué)上的身心問(wèn)題、意識(shí)難題等問(wèn)題。哲學(xué)的核心問(wèn)題與人工智能的研究是相互促進(jìn)的。
    綜上所述,人工智能技術(shù)的發(fā)展有其哲學(xué)根源,根源于數(shù)是萬(wàn)物本源思想、萬(wàn)物皆數(shù)思想以及數(shù)的簡(jiǎn)單、和諧思想,還根源于亞里士多德的邏輯思想以及分析哲學(xué)的邏輯分析研究方法。在眾多哲學(xué)思想中,簡(jiǎn)單性原則是人工智能的哲學(xué)思想源泉。人工智能就是計(jì)算機(jī)用邏輯方法把思維還原為簡(jiǎn)單數(shù)字來(lái)模擬人腦的過(guò)程。人工智能發(fā)展是思維的革命,人工智能涉及信息與計(jì)算的本體地位和方法論問(wèn)題,人工智能的發(fā)展迫使哲學(xué)家們對(duì)思維的存在形式進(jìn)行深入研究,從而把形而上的論證變成可操作的過(guò)程。人工智能的目標(biāo)是通過(guò)計(jì)算機(jī)實(shí)現(xiàn)機(jī)器模仿人類智能,人工智能的發(fā)展直接指向哲學(xué)的中心問(wèn)題。例如,意向性問(wèn)題、形式化問(wèn)題、身心問(wèn)題等。對(duì)于人工智能的哲學(xué)基礎(chǔ)溯源有利于推動(dòng)哲學(xué)的進(jìn)步與發(fā)展,也可以拓展對(duì)于傳統(tǒng)哲學(xué)問(wèn)題的研究。只有對(duì)人工智能的哲學(xué)思想基礎(chǔ)進(jìn)行追溯與探源,才能為人工智能工作者提供思想源泉,從而更好地理解與把握人工智能的理論基礎(chǔ)、發(fā)現(xiàn)人工智能的發(fā)展規(guī)律以及預(yù)測(cè)人工智能的發(fā)展趨勢(shì)、把握人工智能的發(fā)展方向。
    參考文獻(xiàn):
    〔1〕瑪格麗特·博登.人工智能哲學(xué)〔m〕.劉西瑞,王漢琦,譯.上海:上海譯文出版社,2001.
    〔2〕汪子嵩,等.希臘哲學(xué)史〔m〕.北京:人民出版社,2004.
    〔3〕亞里士多德.形而上學(xué)〔m〕.李真,譯.上海:上海人民出版社,1995.〔4〕安東尼·梅耶斯.愛(ài)思唯爾科學(xué)哲學(xué)手冊(cè)〔m〕.張培富,等譯.北京:北京師范大學(xué)出版社,2015.
    〔5〕〔m〕.northholland,amsterdam:macmillanmagazinesltd,1992.
    〔6〕davis,soflogic:mathematiciansandtheoriginofthecomputer〔m〕.newyork:&,2001.
    人工智能的論文結(jié)語(yǔ)篇十二
    摘要:
    隨著科學(xué)技術(shù)的不斷創(chuàng)新與完善,人工智能化發(fā)展得到了質(zhì)的飛躍。人工智能技術(shù)應(yīng)用作為電氣工程自動(dòng)化過(guò)程的重中之重,是一個(gè)不可或缺的關(guān)鍵部分,直接關(guān)系到電氣工自動(dòng)化的穩(wěn)定持續(xù)發(fā)展。人工智能領(lǐng)域涵蓋的內(nèi)容主要包括了圖像識(shí)別、機(jī)器學(xué)習(xí)、智能搜索、語(yǔ)言識(shí)別以及專家系統(tǒng)等。為了推動(dòng)我國(guó)電氣自動(dòng)化控制的創(chuàng)新發(fā)展,相關(guān)企業(yè)要加強(qiáng)對(duì)人工智能的研究開(kāi)發(fā)工作,為社會(huì)創(chuàng)造出更多的價(jià)值效益。本文將進(jìn)一步對(duì)人工智能在電氣工程自動(dòng)化中的應(yīng)用展開(kāi)分析與探討。
    關(guān)鍵詞:
    人工智能;電氣工程;自動(dòng)化控制;應(yīng)用
    當(dāng)前是一個(gè)科學(xué)技術(shù)時(shí)代,電氣工程發(fā)展要與時(shí)俱進(jìn),跟上時(shí)代前進(jìn)的腳步。電氣工程行業(yè)要想有效實(shí)現(xiàn)電氣自動(dòng)化控制和管理,就必須充分發(fā)揮出人工智能技術(shù)的作用。人工智能的研究范圍不僅涵蓋了圖像語(yǔ)言識(shí)別和自動(dòng)化控制,還包括了專家系統(tǒng)和人工神經(jīng)網(wǎng)絡(luò)等內(nèi)容。因此,電力企業(yè)必須通過(guò)合理利用人工智能技術(shù),才能有效實(shí)現(xiàn)對(duì)各項(xiàng)機(jī)械設(shè)備的自動(dòng)化控制,從而大大降低企業(yè)的人工成本,保障企業(yè)創(chuàng)造出更多的經(jīng)濟(jì)效益和社會(huì)效益。
    一、人工智能簡(jiǎn)述
    二、電氣工程自動(dòng)化過(guò)程應(yīng)用人工智能的主要優(yōu)勢(shì)
    (一)利于參數(shù)的優(yōu)化調(diào)節(jié)。
    相比較傳統(tǒng)的控制器,通過(guò)利用人工智能技術(shù)控制有利于各項(xiàng)參數(shù)的科學(xué)優(yōu)化調(diào)節(jié),同時(shí)還較為簡(jiǎn)單易學(xué),具備了良好的適應(yīng)能力。合理調(diào)整人工智能的相關(guān)參數(shù),能夠最大限度提升智能函數(shù)的各項(xiàng)性能。此外,人工智能控制器無(wú)需專家的現(xiàn)場(chǎng)指導(dǎo)幫助,其能夠根據(jù)計(jì)算機(jī)事先設(shè)置好的合理數(shù)據(jù),正確運(yùn)用反饋的信息與語(yǔ)言進(jìn)行設(shè)定,此外設(shè)置好的參數(shù)能夠進(jìn)一步完成修改和擴(kuò)展作業(yè),具有快捷方便的特征。
    (二)受相關(guān)因素影響較小。
    電力企業(yè)在傳統(tǒng)電氣工程建設(shè)中所應(yīng)用的人工控制器會(huì)受到各種不確定因素的影響,導(dǎo)致在工作過(guò)程中出現(xiàn)各種問(wèn)題,不利于企業(yè)安全穩(wěn)定的持續(xù)發(fā)展。而通過(guò)在電氣工程自動(dòng)化中應(yīng)用人工智能技術(shù),能夠有效省去獲取精確動(dòng)態(tài)模型的步驟,適應(yīng)能力較強(qiáng),無(wú)需為其提供固定不變的工作環(huán)境和參數(shù)設(shè)置,總體來(lái)說(shuō)受到外界的因素影響較小,能夠保障各項(xiàng)機(jī)械設(shè)備安全可靠的運(yùn)行生產(chǎn)。
    (三)自動(dòng)化控制過(guò)程中產(chǎn)生誤差小。
    由于在電氣工程自動(dòng)化中有效融合了人工智能技術(shù),該項(xiàng)技術(shù)的運(yùn)行不會(huì)過(guò)多受到外界因素的干擾,造成嚴(yán)重的運(yùn)行故障問(wèn)題,從而確保機(jī)器事先設(shè)置好的參數(shù)在實(shí)際操作過(guò)程中不會(huì)發(fā)生任何變動(dòng),從而有效避免了實(shí)際值與理論值出現(xiàn)很大偏差的問(wèn)題,充分保障了電氣工程自動(dòng)化的高效控制管理。
    (四)具備良好的一致性。
    (五)降低企業(yè)人力物力。
    成本通過(guò)在電氣工程自動(dòng)化控制中應(yīng)用人工智能技術(shù),能夠有效減少各項(xiàng)電力機(jī)器設(shè)備對(duì)變壓器與線路的需求,企業(yè)也無(wú)需再專門調(diào)度安排更多的工作人員對(duì)設(shè)備進(jìn)行管理維護(hù),從而最大限度降低了企業(yè)在人力和物力上的投資成本,有利于企業(yè)更好地發(fā)展。
    三、人工智能在電氣工程自動(dòng)化中的實(shí)踐應(yīng)用
    (一)完善電氣自動(dòng)化性能,提高產(chǎn)品質(zhì)量。
    眾所周知,人工智能技術(shù)最為顯著的特征就是模擬人類大腦思維,設(shè)計(jì)人員通過(guò)將人工智能技術(shù)中的遺傳算法有效融入到各項(xiàng)電器設(shè)備中,不僅僅能夠完善優(yōu)化各項(xiàng)產(chǎn)品的具體性能,還能夠最大限度提升電子自動(dòng)化性能,從而有效提高各項(xiàng)電氣設(shè)備的工作質(zhì)量和效率,充分保障了電氣工程自動(dòng)化控制過(guò)程的科學(xué)準(zhǔn)確性。此外,人工智能技術(shù)在電氣工程自動(dòng)化領(lǐng)域的應(yīng)用,能夠降低企業(yè)人力成本的支出,推動(dòng)我國(guó)電氣工程高速穩(wěn)定地發(fā)展進(jìn)步。電力企業(yè)基于人工智能技術(shù)的輔助下,187頁(yè))能夠?qū)ad應(yīng)用到任何電器產(chǎn)品設(shè)計(jì)工作中,從而大大縮減了各種電力產(chǎn)品的開(kāi)發(fā)設(shè)計(jì)周期,并且拓寬了cad技術(shù)的研究應(yīng)用程度,降低了設(shè)計(jì)人員的工作難度和任務(wù)量,在保障電器產(chǎn)品高質(zhì)量的前提下,創(chuàng)造出更大的經(jīng)濟(jì)效益。
    (二)實(shí)現(xiàn)智能化控制,提高工作效率。
    人工智能技術(shù)所使用的智能化控制器,通過(guò)將人工智能與電氣工程自動(dòng)化控制有效結(jié)合在一起,能夠最大化發(fā)揮出智能化控制器的作用。例如,智能化控制器能夠科學(xué)根據(jù)下降和響應(yīng)的具體時(shí)間完成對(duì)調(diào)節(jié)控制程度的合理控制,基于這種情況下,人工智能能夠大大改善電氣自動(dòng)化控制管理的相關(guān)性能[3],為電氣工程自動(dòng)化建設(shè)工作打下扎實(shí)的基礎(chǔ)。與此同時(shí),電力企業(yè)通過(guò)引進(jìn)應(yīng)用先進(jìn)的智能化控制器,能夠?qū)崿F(xiàn)電氣工程自動(dòng)化控制相關(guān)數(shù)據(jù)的實(shí)時(shí)分析調(diào)節(jié),無(wú)需專門安排專家技術(shù)人員在現(xiàn)場(chǎng)進(jìn)行指導(dǎo)和監(jiān)督,相關(guān)工作人員在控制室通過(guò)計(jì)算機(jī)就能夠?qū)崿F(xiàn)遠(yuǎn)程控制操作,從而有效提高自動(dòng)化控制管理的工作效率。
    (三)改善故障診斷技術(shù),提高診斷水平。
    電力企業(yè)在電力工程自動(dòng)化控制過(guò)程中,會(huì)遇到各種運(yùn)行故障問(wèn)題。例如,常見(jiàn)的發(fā)電機(jī)斷電、變壓器過(guò)熱等事故,對(duì)于這些運(yùn)行故障,傳統(tǒng)的診斷方法是通過(guò)收集相關(guān)氣體樣本,并對(duì)其進(jìn)行科學(xué)分析判斷,最終得出發(fā)生該故障的具體結(jié)論,有針對(duì)性地采取解決措施。傳統(tǒng)故障診斷方法除了需要維護(hù)檢修人員花費(fèi)較多的時(shí)間與精力,電力企業(yè)還必須安排管理人員對(duì)各項(xiàng)設(shè)備進(jìn)行實(shí)時(shí)監(jiān)控,這無(wú)疑加大了企業(yè)的人力支出成本。而通過(guò)利用人工智能診斷技術(shù),在故障診斷過(guò)程中有效融入模糊理論、專家技術(shù)以及神經(jīng)網(wǎng)絡(luò),能夠大大提高電氣設(shè)備故障的診斷效率,在第一時(shí)間發(fā)現(xiàn)問(wèn)題并解決問(wèn)題,從而降低了企業(yè)在人力成本上的支出,保障企業(yè)各項(xiàng)電力設(shè)備安全可靠地持續(xù)運(yùn)行,滿足社會(huì)對(duì)于高質(zhì)量電力的需求。
    四、結(jié)語(yǔ)
    綜上所述,為了推動(dòng)我國(guó)電氣工程自動(dòng)化的穩(wěn)定持續(xù)發(fā)展,政府相關(guān)部門要加強(qiáng)與社會(huì)企業(yè)的聯(lián)系與合作,共同大力推廣應(yīng)用人工智能技術(shù),不斷提高電氣工程自動(dòng)化技術(shù)水平。通過(guò)在各項(xiàng)機(jī)器設(shè)備中加入智能化控制器,從而有效實(shí)現(xiàn)各個(gè)控制環(huán)節(jié)的自動(dòng)化,方便企業(yè)內(nèi)部人員的管理和維護(hù),充分保障產(chǎn)品生產(chǎn)的高質(zhì)量,滿足社會(huì)用戶的各項(xiàng)需求,為國(guó)民經(jīng)濟(jì)發(fā)展貢獻(xiàn)最大的力量。
    參考文獻(xiàn):
    人工智能的論文結(jié)語(yǔ)篇十三
    人工智能和數(shù)字地球是計(jì)算機(jī)科學(xué)及信息科學(xué)發(fā)展中的重要領(lǐng)域。本文簡(jiǎn)述了人工智能的概念及其在計(jì)算機(jī)上的實(shí)現(xiàn)方式,并提出了人工智能技術(shù)在數(shù)字地球發(fā)展中幾個(gè)方面的應(yīng)用,最后總結(jié)了人工智能技術(shù)為數(shù)字地球的發(fā)展帶來(lái)的好處。
    1前言
    ,美國(guó)副總統(tǒng)阿爾.戈?duì)栐诩永D醽喛茖W(xué)中心作的演講中提出了“數(shù)字地球”這一新概念,并對(duì)其作了比較全面和通俗的說(shuō)明[1]。演講中戈?duì)柨偨y(tǒng)給出數(shù)字地球可能的無(wú)比廣闊的應(yīng)用前景,人們可以通過(guò)數(shù)字地球技術(shù)指導(dǎo)仿真外交,打擊和監(jiān)測(cè)犯罪,保護(hù)生態(tài)多樣性,預(yù)測(cè)氣候變化,增加作物產(chǎn)量等。
    在數(shù)字地球中非常重要的一點(diǎn)是如何使海量的地理空間數(shù)據(jù)變得有意義,即讓它們能過(guò)被人們所理解。但是,在面對(duì)這些海量的數(shù)據(jù)時(shí),我們處理的手段卻是有限的。而且這些數(shù)據(jù)都是由計(jì)算機(jī)來(lái)處理的,在面對(duì)大量數(shù)據(jù)中的無(wú)用數(shù)據(jù)時(shí),計(jì)算機(jī)是很難將其識(shí)別出來(lái)的。所以我們需要讓計(jì)算機(jī)具有人類一樣的智慧,將這些數(shù)據(jù)進(jìn)行有效的處理。如今,人工智能技術(shù)在數(shù)字地球中有著廣泛的應(yīng)用。通過(guò)這一技術(shù),人們可以高效的處理和分析這些海量數(shù)據(jù)。
    2人工智能的實(shí)現(xiàn)方式
    人工智能在計(jì)算機(jī)上有兩種不同的實(shí)現(xiàn)方式。一種是采用傳統(tǒng)的編碼技術(shù),使系統(tǒng)呈現(xiàn)智能的效果,而不考慮所用的方法是否與人或動(dòng)物機(jī)體所用的方法相同。另一種是模擬法(modelingapproach),它要求實(shí)現(xiàn)方法也和人或動(dòng)物機(jī)體所用的方法相同或相似。模擬法有兩種實(shí)現(xiàn)的算法:遺傳算法和神經(jīng)網(wǎng)絡(luò)算法。
    遺傳算法借鑒生物進(jìn)化論,將要解決的問(wèn)題模擬成一個(gè)生物體,通過(guò)復(fù)制、交叉、突變等操作產(chǎn)生下一代解空間[3],并通過(guò)適應(yīng)函數(shù)度來(lái)淘汰那些不良的個(gè)體,這樣迭代進(jìn)化幾代之后就很有可能得到適應(yīng)度函數(shù)值較高的個(gè)體。遺傳算法通常用在求解問(wèn)題最優(yōu)解的情況下,如函數(shù)優(yōu)化、組合優(yōu)化等。
    神經(jīng)網(wǎng)絡(luò)算法通過(guò)模擬人或動(dòng)物的神經(jīng)網(wǎng)絡(luò)傳遞和處理信息的行為特征,進(jìn)行分布式并行信息處理的算法數(shù)學(xué)模型[4]。使用神經(jīng)網(wǎng)絡(luò)算法使系統(tǒng)具有像人一樣學(xué)習(xí)的特征。初始時(shí),系統(tǒng)模塊跟初生嬰兒一樣什么也不懂,而且會(huì)經(jīng)常犯錯(cuò),但是它可用通過(guò)學(xué)習(xí),從錯(cuò)誤中吸取教訓(xùn),下一次運(yùn)行時(shí)就可能改正。
    3人工智能技術(shù)在數(shù)字地球中的應(yīng)用
    人工智能能夠使我們的計(jì)算機(jī)具有人能解決問(wèn)題的能力,使得計(jì)算機(jī)工作起來(lái)更加的高效。而且通過(guò)人工智能的學(xué)習(xí)機(jī)制,降低其出錯(cuò)的幾率。人工智能在數(shù)字地球中可以有以下幾個(gè)方面的應(yīng)用:
    3.1智能導(dǎo)航
    當(dāng)前我們主要使用gps技術(shù)來(lái)做定位和導(dǎo)航的。但是gps只能在室外及衛(wèi)星信號(hào)不被遮擋或反射的地方才能使用。因此,在室內(nèi)、茂密的樹木覆蓋處和高層建筑地下gps就很難使用了[5]。
    使用人工智能技術(shù)進(jìn)行智能導(dǎo)航,當(dāng)不能獲得gps衛(wèi)星信號(hào)時(shí),系統(tǒng)會(huì)智能的使用基于通信基站定位、互聯(lián)網(wǎng)定位等來(lái)提供導(dǎo)航。同時(shí),人工智能系統(tǒng)還可以實(shí)現(xiàn)最優(yōu)路徑規(guī)劃,周邊信息搜索等功能。
    3.2智能的人機(jī)交互
    數(shù)字地球的建設(shè)依賴于互聯(lián)網(wǎng)、虛擬現(xiàn)實(shí)等技術(shù),但是現(xiàn)在我們能做的僅僅是通過(guò)這些技術(shù)將我們所獲得的海量數(shù)據(jù)展現(xiàn)在人們面前。而顯示信息的形式主要是以瀏覽器、虛擬頭盔等,這些工具存在著不能與人友好交互的問(wèn)題。我們通常是通過(guò)人肢體來(lái)交互,而不能像現(xiàn)實(shí)生活中人們通過(guò)對(duì)話的形式交互。
    3.3專家系統(tǒng)
    計(jì)算機(jī)較人強(qiáng)的地方在于它的計(jì)算速度快,將計(jì)算機(jī)的高運(yùn)算速度和人的智慧集成起來(lái)構(gòu)成專家系統(tǒng)。專家系統(tǒng)使用人類專家推理的模型來(lái)處理現(xiàn)實(shí)世界中需要專家作出解釋的復(fù)雜問(wèn)題,并得出與專家相同的結(jié)論[6]。
    在氣象預(yù)測(cè)中,我們要處理大量的氣象數(shù)據(jù)。使用傳統(tǒng)的計(jì)算機(jī)處理方式,我們還要對(duì)計(jì)算機(jī)的處理結(jié)果做大量的分析。但是通過(guò)專家系統(tǒng),不僅給出處理的數(shù)據(jù)結(jié)果,還可以給出分析的結(jié)果,以便研究人員輔助研究使用。這樣可以減少大量的人力耗費(fèi)。
    總結(jié)
    戈?duì)柨偨y(tǒng)所提出的數(shù)字地球,不僅僅是數(shù)字化的地球,其未來(lái)的發(fā)展跟應(yīng)該是在數(shù)字化的基礎(chǔ)之上的智慧地球,正如20xx年ibm所提出的“智慧地球”。未來(lái),電子設(shè)備將會(huì)更加智能化,人機(jī)交互將會(huì)更友好化。
    同時(shí)在面對(duì)海量的地理空間數(shù)據(jù)時(shí),使用人工智能技術(shù)可以拓寬我們隊(duì)這些數(shù)據(jù)的處理能力。加快數(shù)據(jù)的處理速度、精確性等。通過(guò)智能搜索,可以快速精準(zhǔn)的找到我們所需要的信息。就像google公司所做的智能周邊搜索一樣,當(dāng)人們走在城市街道上的時(shí)候,系統(tǒng)可以搜索并顯示周邊我們感興趣的一些商店、景觀、飯店等信息。并且人工智能技術(shù)還能提供智能導(dǎo)航、人機(jī)自然語(yǔ)言交互、專家系統(tǒng)等。未來(lái)人工智能技術(shù)將在數(shù)字地球的發(fā)展中起到更大的作用。
    人工智能的論文結(jié)語(yǔ)篇十四
    人工智能、基因工程、納米科學(xué)被認(rèn)定是21世紀(jì)的三大頂端高科技,其中人工智能在近些年來(lái)其研究領(lǐng)域不斷擴(kuò)大,涉及到哲學(xué)、神經(jīng)生理學(xué)、心理學(xué)、計(jì)算機(jī)科學(xué)以及仿生學(xué)等多個(gè)科學(xué)領(lǐng)域的研究,其科技成果也層出不群,被廣泛應(yīng)用于科學(xué)研究以及工業(yè)生產(chǎn)中[1].工業(yè)生產(chǎn)過(guò)程中采用電氣自動(dòng)化生產(chǎn)模式,能夠大大降低勞動(dòng)成本,提高生產(chǎn)效率的同時(shí)還能保證產(chǎn)品質(zhì)量,因此被眾多企業(yè)用于生產(chǎn)實(shí)踐中,而在電氣自動(dòng)化控制系統(tǒng)中應(yīng)用人工智能技術(shù),可謂是如虎添翼,保障了生產(chǎn)環(huán)節(jié)控制的高效性和科學(xué)性。
    1人工智能在電氣自動(dòng)化控制中的應(yīng)用優(yōu)勢(shì)
    1.1受干擾程度低
    以往工業(yè)生產(chǎn)中的電氣自動(dòng)化控制都是依靠既定的程序和管理器來(lái)實(shí)現(xiàn)的,管控系統(tǒng)根據(jù)各個(gè)生產(chǎn)環(huán)節(jié)儀器儀表中傳遞的數(shù)據(jù)進(jìn)行分析,套入固定的問(wèn)題處理軟件上,選擇指令發(fā)布,不具備具體問(wèn)題具體分析的能力,會(huì)受到多個(gè)生產(chǎn)因素的干擾。人工智能技術(shù)其神奇之處就在于智能,不需要精確的動(dòng)態(tài)模型和具體參數(shù)的設(shè)置,就能夠有效處理生產(chǎn)信息,調(diào)控電氣化生產(chǎn)設(shè)備。除此之外,人工智能技術(shù)能夠?qū)崿F(xiàn)調(diào)控的一致性,掌控全局進(jìn)行智能調(diào)控,根據(jù)生產(chǎn)信息作出有效應(yīng)答,而不會(huì)局限于某一固定生產(chǎn)指令,只調(diào)控某一環(huán)節(jié)的生產(chǎn)設(shè)備。
    1.2操作誤差小
    人工智能本身的運(yùn)行條件沒(méi)有太多的限制,與因此與傳統(tǒng)的控制器相比,本身的操作誤差更小,基本上不會(huì)受到外界因素的干擾[2].一般來(lái)說(shuō),人工智能技術(shù)在電氣自動(dòng)化控制體系中應(yīng)用,會(huì)現(xiàn)根據(jù)實(shí)際生產(chǎn)需求設(shè)置參數(shù),隨后又人工智能系統(tǒng)進(jìn)行統(tǒng)一的調(diào)控,而在實(shí)際應(yīng)用過(guò)程中,這些參數(shù)是基本上不會(huì)因?yàn)橥饨绺蓴_而改變的,這也就保證了人工之能夠系統(tǒng)的管控質(zhì)量,不會(huì)因?yàn)楸旧淼墓收隙饹Q策的失誤,大大降低了操作誤差,使得各個(gè)生產(chǎn)環(huán)節(jié)能夠按照預(yù)先設(shè)想的方案有序進(jìn)行。操作誤差小,是人工調(diào)控與傳統(tǒng)控制都不具備的特點(diǎn),完全符合機(jī)械化自動(dòng)生產(chǎn)的理念。
    1.3調(diào)節(jié)效率高
    人工智能其數(shù)據(jù)處理分析能力更為強(qiáng)大,因此在實(shí)際應(yīng)用過(guò)程中,即使生產(chǎn)環(huán)節(jié)發(fā)生了變化,需要調(diào)整人工智能控制系統(tǒng)的一些參數(shù),其難度也是相對(duì)更低的,不需要專門的技術(shù)專家來(lái)進(jìn)行指導(dǎo),只要調(diào)整部分參數(shù),人工智能體系就能捕捉到生產(chǎn)環(huán)節(jié)的變化,執(zhí)行調(diào)整管控模式。例如,在生產(chǎn)環(huán)節(jié)中,產(chǎn)品種類發(fā)生了變化,如果是傳統(tǒng)的電氣自動(dòng)化控制體系,就可能要重新輸入控制參數(shù),調(diào)整控制程序,而人工智能系統(tǒng)能夠根據(jù)收集到的生產(chǎn)信息,進(jìn)行合理的自我調(diào)整,操作簡(jiǎn)便快捷[3].
    1.4降低生產(chǎn)成本
    在電氣自動(dòng)化控制系統(tǒng)中還沒(méi)有應(yīng)用人工智能技術(shù)之前,生產(chǎn)雖然已經(jīng)不要使用人力,但是在其他環(huán)節(jié)比如設(shè)備故障檢查以及設(shè)備整理仍然需要人工來(lái)完成,這樣不僅耗費(fèi)時(shí)間,而且產(chǎn)生了一定的人工費(fèi)用,一直是限制電氣自動(dòng)化生產(chǎn)的一個(gè)問(wèn)題。人工智能能夠?qū)崿F(xiàn)器械故障的自動(dòng)檢測(cè),實(shí)現(xiàn)工業(yè)生產(chǎn)的全方位管理,確保所有的電氣設(shè)備都按照設(shè)定好的方案進(jìn)行工作,消除了生產(chǎn)過(guò)程中一些常見(jiàn)的生產(chǎn)問(wèn)題。
    2人工智能在電氣自動(dòng)化控制中的實(shí)際應(yīng)用
    人工智能技術(shù)的實(shí)際應(yīng)用主要有專家系統(tǒng)、人工神經(jīng)網(wǎng)絡(luò)、啟發(fā)式搜索以及模糊集理論,這些運(yùn)作體系是其應(yīng)用于生產(chǎn)實(shí)踐的基礎(chǔ)。一直以來(lái),人工智能技術(shù)的目標(biāo)就是為了讓機(jī)器能夠擁有與人相同的智力,具備接受信息處理事情的能力[4].計(jì)算機(jī)技術(shù)的發(fā)展,使得工業(yè)生產(chǎn)實(shí)現(xiàn)了初步實(shí)現(xiàn)了電氣自動(dòng)化生產(chǎn)的目標(biāo),但是要想這一管控體系進(jìn)一步發(fā)展,還需要更為先進(jìn)的機(jī)器調(diào)控技術(shù),人工智能正好符合這一發(fā)展要求,為電氣自動(dòng)化生產(chǎn)的進(jìn)一步發(fā)展提供了無(wú)限的可能。
    2.1電氣產(chǎn)品的優(yōu)化設(shè)計(jì)
    一直以來(lái),電氣產(chǎn)品的優(yōu)化設(shè)計(jì)是一項(xiàng)巨大的工程,受限你要掌握市場(chǎng)行情,融合更為先進(jìn)的科學(xué)技術(shù),根據(jù)以往的產(chǎn)品設(shè)計(jì)經(jīng)驗(yàn),進(jìn)一步優(yōu)化產(chǎn)品的性能,才能確保產(chǎn)品的銷售額度,保證企業(yè)的市場(chǎng)占有率。這一研發(fā)環(huán)節(jié),不能過(guò)長(zhǎng),因?yàn)槿缃竦氖袌?chǎng)雪球變化極快,而且市場(chǎng)競(jìng)爭(zhēng)較大,必須搶占先機(jī),但是又不能以為追求研發(fā)速度而忽視質(zhì)量。隨著人工智能技術(shù)的應(yīng)用,目前產(chǎn)品的優(yōu)化設(shè)計(jì)模式已經(jīng)有純?nèi)斯げ僮鬓D(zhuǎn)變?yōu)槿斯ぶ悄茌o助設(shè)計(jì),大大縮短了產(chǎn)品的研發(fā)周期,并且在人工智能的幫助下,產(chǎn)品參數(shù)的設(shè)置更為合理,數(shù)據(jù)精確度大大提升。
    2.2電氣設(shè)備的故障診斷
    在工業(yè)生產(chǎn)過(guò)程中,往往是多個(gè)生產(chǎn)環(huán)節(jié)數(shù)千臺(tái)機(jī)器一同運(yùn)轉(zhuǎn),單靠人工或者是笨拙的控制器,是無(wú)法找出具體故障設(shè)備的,需要花費(fèi)大量的時(shí)間,而為了保證生產(chǎn)安全,就必須停下可疑范圍內(nèi)的所有電器設(shè)備,對(duì)于電器自動(dòng)化生產(chǎn)來(lái)說(shuō),時(shí)間就是金錢,這樣會(huì)嚴(yán)重耽誤產(chǎn)品的生產(chǎn),給公司造成巨大的經(jīng)濟(jì)損失[5].人工智能技術(shù)在電氣自動(dòng)化控制體系中的應(yīng)用,很好地解決了這一難題,通過(guò)專家系統(tǒng)和模糊理論的結(jié)合,分析各個(gè)生產(chǎn)環(huán)節(jié)中儀器儀表的數(shù)據(jù)信息,系統(tǒng)能有效掌握全部的生產(chǎn)信息,實(shí)現(xiàn)電氣自動(dòng)化生產(chǎn)的智能控制,及時(shí)發(fā)現(xiàn)設(shè)備故障問(wèn)題,停止故障設(shè)備,將生產(chǎn)損失降低到最小,切實(shí)保障企業(yè)的生產(chǎn)效益。
    2.3運(yùn)行過(guò)程的智能控制
    社會(huì)在不斷發(fā)展,數(shù)年前機(jī)械化生產(chǎn)代替了人工生產(chǎn),而隨著社會(huì)需求的不斷擴(kuò)大,企業(yè)生產(chǎn)效率也必須不斷提高,才能在激烈的市場(chǎng)競(jìng)爭(zhēng)中站穩(wěn)腳跟。人工智能技術(shù)的發(fā)展,為實(shí)現(xiàn)電氣自動(dòng)化的智能控制帶來(lái)了希望的曙光。在大數(shù)據(jù)時(shí)代背景下,工業(yè)生產(chǎn)中設(shè)計(jì)到的生產(chǎn)信息量是極為龐大的,人工無(wú)法快速處理這些信息作出有效決策,智能依靠計(jì)算機(jī)技術(shù)的使用,而計(jì)算機(jī)信息技術(shù)都是依靠固定的程序來(lái)處理信息,只有將二者結(jié)合,才能實(shí)現(xiàn)電氣自動(dòng)化生產(chǎn)的有效管控。人工智能系統(tǒng)是初步具備了人類智力的機(jī)械系統(tǒng),具有計(jì)算速度快的優(yōu)點(diǎn),能夠在短時(shí)間內(nèi)處理大量信息,得出正確的結(jié)果,及時(shí)作出生產(chǎn)決策。
    3結(jié)語(yǔ)
    機(jī)械技術(shù)與計(jì)算機(jī)信息技術(shù)的結(jié)合,實(shí)現(xiàn)了工業(yè)生產(chǎn)的電氣自動(dòng)化控制,大部分的生產(chǎn)過(guò)程都是有機(jī)械完成的,然而在生產(chǎn)實(shí)踐中,還是需要人工進(jìn)行調(diào)控,及時(shí)調(diào)整機(jī)器的運(yùn)行狀態(tài),定期檢修器械,以免發(fā)生故障影響生產(chǎn)效率[6].人工智能技術(shù)的出現(xiàn),實(shí)現(xiàn)了電氣自動(dòng)化的智能控制,與傳統(tǒng)人工控制相比,其調(diào)控效率更高,能夠直接處理各個(gè)生產(chǎn)環(huán)節(jié)中出現(xiàn)的一些問(wèn)題,而且基本上不會(huì)受到外界因素的干擾,決策科學(xué),管理高效,絕對(duì)是一項(xiàng)值得信賴的尖端技術(shù)。人工智能的應(yīng)用,能夠保證生產(chǎn)質(zhì)量的統(tǒng)一性,優(yōu)化產(chǎn)品設(shè)計(jì),在生產(chǎn)過(guò)程中,及時(shí)發(fā)現(xiàn)電氣設(shè)備運(yùn)行故障的問(wèn)題并進(jìn)行有效處理,實(shí)現(xiàn)了電氣化生產(chǎn)的實(shí)時(shí)動(dòng)態(tài)管控。
    參考文獻(xiàn):
    [5]陳坤,史策,季永春.人工智能技術(shù)在電氣自動(dòng)化控制中的應(yīng)用思考[j].藝術(shù)科技,20xx(08):76.
    [6]姜關(guān)勝.人工智能技術(shù)在電氣自動(dòng)化控制中的應(yīng)用問(wèn)題探討[j].電子技術(shù)與軟件工程,20xx(20):150.
    人工智能的論文結(jié)語(yǔ)篇十五
    人工智能(artificialintelligence),英文縮寫為ai,也稱機(jī)器智能?!叭斯ぶ悄堋币辉~最初是在1956年的dartmouth學(xué)會(huì)上提出的。它是計(jì)算機(jī)科學(xué)、控制論、信息論、神經(jīng)生理學(xué)、心理學(xué)、語(yǔ)言學(xué)等多種學(xué)科互相滲透而發(fā)展起來(lái)的一門綜合性學(xué)科。從計(jì)算機(jī)應(yīng)用系統(tǒng)的角度出發(fā),人工智能是研究如何制造智能機(jī)器或智能系統(tǒng)來(lái)模擬人類智能活動(dòng)的能力,以延伸人們智能的科學(xué)。
    人工智能是計(jì)算機(jī)科學(xué)的一個(gè)分支,它企圖了解智能的實(shí)質(zhì),并生產(chǎn)出一種新的能與人類智能相似的方式做出反應(yīng)的智能機(jī)器。人工智能的發(fā)展史是和計(jì)算機(jī)科學(xué)與技術(shù)的發(fā)展史聯(lián)系在一起的,目前能夠用來(lái)研究人工智能的主要物質(zhì)手段以及能夠?qū)崿F(xiàn)人工智能技術(shù)的機(jī)器就是計(jì)算機(jī),人工智能在21世紀(jì)必將為發(fā)展國(guó)民經(jīng)濟(jì)和改善人類生活做出更大的貢獻(xiàn)。
    事物的發(fā)展都是曲折的,人工智能的發(fā)展也是如此。人工智能的發(fā)展歷程大致可以劃分為以下五個(gè)階段:
    第一階段:20世紀(jì)50年代,人工智能的興起和冷落。人工智能概念在1956年首次提出后,相繼出現(xiàn)了一批顯著的成果,如機(jī)器定理證明、跳棋程序、通用問(wèn)題s求解程序、lisp表處理語(yǔ)言等。但是由于消解法推理能力有限以及機(jī)器翻譯等的失敗,使人工智能走入了低谷。這一階段的特點(diǎn)是重視問(wèn)題求解的方法,而忽視了知識(shí)的重要性。
    第二階段:60年代末到70年代,專家系統(tǒng)出現(xiàn),使人工智能研究出現(xiàn)新高潮。dendral化學(xué)質(zhì)譜分析系統(tǒng)、mycin疾病診斷和治療系統(tǒng)、prospectior探礦系統(tǒng)、hearsay—ii語(yǔ)音理解系統(tǒng)等專家系統(tǒng)的研究和開(kāi)發(fā),將人工智能引向了實(shí)用化。并且,1969年成立了國(guó)際人工智能聯(lián)合會(huì)議(internationaljointconferencesonartificialintelligence即ijcai)。
    第三階段:80年代,隨著第五代計(jì)算機(jī)的研制,人工智能得到了飛速的發(fā)展。日本在1982年開(kāi)始了“第五代計(jì)算機(jī)研制計(jì)劃”,即“知識(shí)信息處理計(jì)算機(jī)系統(tǒng)kips”,其目的是使邏輯推理達(dá)到數(shù)值運(yùn)算那么快。雖然此計(jì)劃最終失敗,但它的開(kāi)展形成了一股研究人工智能的熱潮。
    第四階段:80年代末,神經(jīng)網(wǎng)絡(luò)飛速發(fā)展,。1987年,美國(guó)召開(kāi)第一次神經(jīng)網(wǎng)絡(luò)國(guó)際會(huì)議,宣告了這一新學(xué)科的誕生。此后,各國(guó)在神經(jīng)網(wǎng)絡(luò)方面的投資逐漸增加,神經(jīng)網(wǎng)絡(luò)迅速發(fā)展起來(lái)。
    第五階段:90年代,人工智能出現(xiàn)新的研究高潮。由于網(wǎng)絡(luò)技術(shù)特別是國(guó)際互連網(wǎng)技術(shù)的發(fā)展,人工智能開(kāi)始由單個(gè)智能主體研究轉(zhuǎn)向基于網(wǎng)絡(luò)環(huán)境下的分布式人工智能研究。不僅研究基于同一目標(biāo)的分布式問(wèn)題求解,而且研究多個(gè)智能主體的多目標(biāo)問(wèn)題求解,將人工智能更面向?qū)嵱?。另外,由于hopfield多層神經(jīng)網(wǎng)絡(luò)模型的提出,使人工神經(jīng)網(wǎng)絡(luò)研究與應(yīng)用出現(xiàn)了欣欣向榮的景象。
    1、人工智能在管理系統(tǒng)中的應(yīng)用
    人工智能應(yīng)用于企業(yè)管理的意義主要不在于提高效率,而是用計(jì)算機(jī)實(shí)現(xiàn)人們非常需要做,但工業(yè)工程信息技術(shù)是靠人工卻做不了或是很難做到的事情。把人工智能應(yīng)用于企業(yè)管理中,以數(shù)據(jù)管理和處理為中心,圍繞企業(yè)的核心業(yè)務(wù)和主導(dǎo)流程建立若干個(gè)主題數(shù)據(jù)庫(kù),而所有的應(yīng)用系統(tǒng)應(yīng)該圍繞主題數(shù)據(jù)庫(kù)來(lái)建立和運(yùn)行。也就是說(shuō),將企業(yè)各部門的數(shù)據(jù)進(jìn)行統(tǒng)一集成管理,搭建人工智能的應(yīng)用平臺(tái),使之成為企業(yè)管理與決策中的關(guān)鍵因子,這些正體現(xiàn)了人工智能在企業(yè)管理中的巨大價(jià)值。
    2、人工智能在工程領(lǐng)域中的應(yīng)用
    人工智能在地質(zhì)勘探、石油化工等工程領(lǐng)域也發(fā)揮著非常重要的作用。早在1978年,美國(guó)斯坦福國(guó)際研究所就研發(fā)制成礦藏勘探和評(píng)價(jià)專家系統(tǒng)“prospector”,該系統(tǒng)用于勘探評(píng)價(jià)、區(qū)域資源估值和鉆井井位選擇等,是工程領(lǐng)域的首個(gè)人工智能專家系統(tǒng),其發(fā)現(xiàn)了一個(gè)鉬礦沉積,價(jià)值超過(guò)1億美元。
    3、人工智能在技術(shù)研究中的應(yīng)用
    人工智能在電子技術(shù)領(lǐng)域的應(yīng)用可謂由來(lái)已久。隨著網(wǎng)絡(luò)的迅速發(fā)展,網(wǎng)絡(luò)技術(shù)的安全已經(jīng)成了人們關(guān)心的重點(diǎn),因此必須在傳統(tǒng)技術(shù)的基礎(chǔ)上進(jìn)行網(wǎng)絡(luò)安全技術(shù)的`改進(jìn)和變更,大力發(fā)展數(shù)據(jù)挖掘技術(shù)、人工免疫技術(shù)等高效的ai技術(shù),開(kāi)發(fā)更高級(jí)的ai通用與專用語(yǔ)言和應(yīng)用環(huán)境以及開(kāi)發(fā)專用機(jī)器,而人工智能技術(shù)則為其提供了一定的可能。
    人工智能的近期研究目標(biāo)在于建造智能計(jì)算機(jī),用以代替人類去從事各種復(fù)雜的腦力勞動(dòng)。正是根據(jù)這一近期研究目標(biāo),人們才把人工智能理解為計(jì)算機(jī)科學(xué)的一個(gè)分支。當(dāng)然,人工智能還有它的遠(yuǎn)期研究目標(biāo),即探究人類智能和機(jī)器智能的基本原理,研究用自動(dòng)機(jī)(automata)模擬人類的思維過(guò)程和智能行為。這個(gè)長(zhǎng)期目標(biāo)遠(yuǎn)遠(yuǎn)超出計(jì)算機(jī)科學(xué)的范疇,幾乎涉及自然科學(xué)和社會(huì)科學(xué)的所有學(xué)科。如今,人工智能已經(jīng)進(jìn)入了21世紀(jì),其必將為發(fā)展國(guó)民經(jīng)濟(jì)和改善人類生活做出更大的貢獻(xiàn)。但是,從人工智能目前的發(fā)展現(xiàn)狀來(lái)看,其研究也存在一定的問(wèn)題,這些主要表現(xiàn)在以下三個(gè)方面:
    1、宏觀與微觀隔離
    一方面是哲學(xué)、認(rèn)知科學(xué)、思維科學(xué)和心理學(xué)等學(xué)科所研究的智能層次太高、太抽象;另一方面是人工智能邏輯符號(hào)、神經(jīng)網(wǎng)絡(luò)和行為主義所研究的智能層次太低。這兩方面之間相距太遠(yuǎn),中間還有許多層次尚待研究,目前還無(wú)法把宏觀與微觀有機(jī)地結(jié)合起來(lái)和相互滲透。
    2、全局與局部割裂
    人工智能是腦系統(tǒng)的整體效應(yīng),有著豐富的層次和多個(gè)側(cè)面。但是,符號(hào)主義只抓住人腦的抽象思維特性;連接主義只模仿人的形象思維特性;行為主義則著眼于人類智能行為特性及其進(jìn)化過(guò)程。這就導(dǎo)致了三者之間存在著明顯的局限性。因此,必須從多層次、多因素、多維和全局觀點(diǎn)來(lái)研究人工智能,才能克服上述局限。
    3、理論與實(shí)際脫節(jié)
    大腦的實(shí)際工作,在宏觀上已知道不少;但是智能的千姿百態(tài),變幻莫測(cè),復(fù)雜的難以理出頭緒。在微觀上,我們對(duì)大腦的工作機(jī)制知之甚少,似是而非,這也使我們難以找出規(guī)律。在這種背景下提出的各種人工智能理論,只是部分人的主觀猜想,能在某些方面表現(xiàn)出“智能”就已經(jīng)算是相當(dāng)?shù)某晒Α?BR>    人工智能一直處于計(jì)算機(jī)技術(shù)的前沿,其研究的理論和發(fā)現(xiàn)在很大程度上將決定計(jì)算機(jī)技術(shù)的發(fā)展方向。人工智能研究與應(yīng)用雖取得了不少成果,但離全面推廣應(yīng)用還有很大的距離,還有許多問(wèn)題有待解決,且需要多學(xué)科的研究專家共同合作。因此,要想從根本上了解人腦的結(jié)構(gòu)和功能,完成人工智能的研究任務(wù),就必須去尋找和建立更新的人工智能框架和理論體系,進(jìn)而為人工智能的進(jìn)一步發(fā)展奠定堅(jiān)實(shí)的理論基礎(chǔ)。我們堅(jiān)信在不久的將來(lái),人工智能技術(shù)的應(yīng)用與發(fā)展必將會(huì)給人們的生活、工作和教育等帶來(lái)更大的影響。
    人工智能的論文結(jié)語(yǔ)篇十六
    【摘要】目的:通過(guò)調(diào)查研究超聲醫(yī)學(xué)在臨床急診中的檢查價(jià)值。方法:采用隨機(jī)數(shù)字表法將對(duì)我院門診收治的100例急診患者,分成50例的觀察組和50例的對(duì)照組。且給予兩組正常病癥檢查方法,觀察組在常規(guī)檢查的基礎(chǔ)上使用超聲醫(yī)學(xué),并對(duì)檢查的結(jié)果進(jìn)行回顧性的分析與比較。結(jié)果:超聲診斷與常規(guī)診斷的符合率和未診斷率為96%,4%和68%,32%。兩者之間的對(duì)比具有顯著的差異性(p0.05)。結(jié)論:超聲醫(yī)學(xué)在急診的檢查中具有比較高的正確率,不僅幫助醫(yī)生減少了確診時(shí)間,還為患者贏得了就診時(shí)間,提高了患者的搶救成功率。
    【關(guān)鍵詞】超聲醫(yī)學(xué);急診;價(jià)值
    隨著超聲診斷技術(shù)在臨床中廣泛應(yīng)用以及不斷的發(fā)展和日益完善中,超聲學(xué)對(duì)患者的病情及時(shí)快速的檢測(cè)方面做出了重大的作用。使得很多腹部疾病以及意外創(chuàng)傷的患者得到了迅速、及時(shí)且有效的治療方案,減輕了患者的痛苦,給患者提供了醫(yī)治空間,提高了患者的致殘率以及死亡率。本文主要將我院20xx年6月至20xx年10月收治的50例急診患者分別采用常規(guī)診斷和超聲醫(yī)學(xué)進(jìn)行診斷,且分析比較,現(xiàn)將調(diào)查結(jié)果報(bào)告如下:
    1資料與方法
    1.1一般資料
    采用隨機(jī)數(shù)字表法將我院在20xx年6月至20xx年10月收治的50例急診患者,均分為超聲醫(yī)學(xué)診斷的觀察組和常規(guī)診斷的對(duì)照組,且都符合急診診斷的標(biāo)準(zhǔn)[1]。其中治療組男性患者14例,女性患者11例,年齡31-64歲,平均年齡為(43±21),黃體破裂出血5例,急性闌尾炎15例,胃十二指腸穿孔2例,急性膽囊炎3例;對(duì)照組男性患者18例,女性患者7例,年齡28-66歲,平均年齡為(38±25),病程1-8年,黃體破裂出血8例,急性闌尾炎12例,胃十二指腸穿孔3例,急性膽囊炎2例;兩組患者性別、年齡、原發(fā)疾病等一般資料組間比較,差異無(wú)統(tǒng)計(jì)學(xué)意義(p0.05)。
    1.2治療方法
    主要采用多種超聲診斷儀器,如logiq400、logiq5、邁瑞ma77―0786等診斷儀器,探頭的頻率使用3.5―8.0mhz.在診斷過(guò)程中要求患者不能空腹,對(duì)于盆腔檢查的患者需要憋尿或或者使用生理鹽水對(duì)膀胱進(jìn)行充盈,患者檢測(cè)時(shí)采取仰臥或者側(cè)臥的姿勢(shì),對(duì)進(jìn)行全腹部多切面檢查的患者,需要采取坐位進(jìn)行胸膜腔的探查。
    1.3療效評(píng)價(jià)標(biāo)準(zhǔn)
    當(dāng)超聲診斷的結(jié)果和臨床診斷一致時(shí),便為符合標(biāo)準(zhǔn);當(dāng)超聲診斷的結(jié)果僅僅顯示了患者腹腔的積血、積液或者病灶區(qū)的血供量逐漸減少,便為基本符合標(biāo)準(zhǔn);當(dāng)超聲診斷的結(jié)果和臨床診斷不一致時(shí),則為誤診或漏診,稱為未診斷。
    1.4統(tǒng)計(jì)學(xué)方法
    采用spssl5.0軟件進(jìn)行統(tǒng)計(jì)分析,計(jì)量數(shù)據(jù)將采用采用x2檢驗(yàn);當(dāng)p0.05,差異是具有統(tǒng)計(jì)學(xué)的意義。
    2結(jié)果
    2.1兩組數(shù)據(jù)比較
    通過(guò)對(duì)比分析兩組分別使用超聲醫(yī)學(xué)進(jìn)行診斷以及常規(guī)診斷的結(jié)果,見(jiàn)表1
    3討論
    急診患者一般病情都比較的緊急,且癥狀比較的嚴(yán)重。有時(shí)病人會(huì)處在休克期或者休克的前期,病情相對(duì)比較的復(fù)雜,嬰幼兒的患者一般不能完全的表達(dá)病情。是否能夠?qū)颊呒皶r(shí)明確的進(jìn)行診斷,可以有效的減少并發(fā)癥以及死亡率,成為臨床搶救措施的關(guān)鍵因素。臨床的醫(yī)生可以根據(jù)患者病情的癥狀、體征以及其他檢查作出一些鑒別性的診斷,但在大多數(shù)的情況下還是難以進(jìn)行確診。然而具有操作方便、使用快捷的超聲檢查,發(fā)揮其特點(diǎn),用獨(dú)特的聲像圖片為臨床提供有利的證據(jù)。超聲醫(yī)學(xué)的檢查可以有效的縮短醫(yī)生的確診時(shí)間,減輕了急診患者的病痛,給患者提供了足夠的治療空間。超聲診斷在婦產(chǎn)科疾病、腸胃疾病以及膽囊等各類疾病中的表現(xiàn)具有差異性,以下將對(duì)各種病情做出分析[3]。婦產(chǎn)科疾?。撼曖t(yī)學(xué)在婦科的作用是無(wú)法代替的,異位妊娠的聲圖像是子宮內(nèi)膜中出現(xiàn)不同程度增厚現(xiàn)象的表示,在患者的子宮一側(cè)會(huì)出現(xiàn)混合型的團(tuán)塊,但在聲像圖中并沒(méi)有非常明顯特征的表示。盆腔炎患者病情嚴(yán)重時(shí),超聲圖像則會(huì)變現(xiàn)為子宮增大和輸卵管的逐漸變粗?;颊叱霈F(xiàn)黃體破裂出血時(shí)在超聲圖中的顯示和異位妊娠表現(xiàn)形式具有細(xì)微的變化,在檢查過(guò)程中需要仔細(xì)。當(dāng)隨著患者的發(fā)病時(shí)間以及血塊的多少變化時(shí),胎膜下積血聲像學(xué)則會(huì)表現(xiàn)胎盤和子宮壁間的邊緣部分具有粗糙且規(guī)則不一的液體狀的暗區(qū),有許多斑點(diǎn)狀呈現(xiàn)高回聲、雜亂的回聲或者不均質(zhì)的低回聲。胃腸道系統(tǒng)疾病超聲檢查:當(dāng)患者的胃十二指腸穿孔時(shí)一般會(huì)出現(xiàn)誤診或者漏診的情況,此時(shí)在檢查過(guò)程中還要結(jié)合其他的手段進(jìn)行輔助性的檢查,如x光線等。當(dāng)患者出現(xiàn)急性闌尾炎時(shí),超聲圖像一般表現(xiàn)為闌尾體型會(huì)有顯著性的增大,呈現(xiàn)出模糊的周圍結(jié)構(gòu)且具有高、低、高的回聲。急性闌尾炎的圖像特點(diǎn)為:一般的闌尾炎,闌尾腫大,其直徑一般9mm,具有比較清晰的闌尾管的壁層,且從外到內(nèi)逐漸呈現(xiàn)出高回聲、低回聲、高回聲;急性化膿性的闌尾炎,闌尾具有明顯的粗大狀態(tài),可以通過(guò)肉眼辨別出來(lái),具有較厚的闌尾壁,腔內(nèi)具有較多的積液,且有代表性的少量的斑片狀的高強(qiáng)回聲。闌尾的橫切面呈現(xiàn)出強(qiáng)弱相間的環(huán)形回聲以及靶環(huán)征;急性闌尾炎合并周圍膿腫,其患者的闌尾狀態(tài)是無(wú)法進(jìn)行辨認(rèn)的,但在右下腹可以看到類似于圓形團(tuán)狀的回聲,且在內(nèi)部會(huì)呈現(xiàn)出不均勻的雜亂的低回聲。膽管系統(tǒng)疾?。寒?dāng)患者出現(xiàn)膽總管結(jié)石時(shí),進(jìn)行超聲檢查,管內(nèi)具有強(qiáng)回聲且伴隨位于后方的圖像影射[3]。當(dāng)患者膽管內(nèi)具有膽汁淤積時(shí),膽管就會(huì)出現(xiàn)不同程度的擴(kuò)張現(xiàn)象?;颊吣懩野l(fā)炎時(shí),超聲圖像中的膽囊具有顯著性的擴(kuò)充,具有較厚的膽囊壁,較強(qiáng)的張力,強(qiáng)回聲光團(tuán)會(huì)出現(xiàn)在膽囊頸部。
    綜上所述,超聲醫(yī)學(xué)的診斷具有操作簡(jiǎn)單、經(jīng)濟(jì)適用、準(zhǔn)確診斷的特征,且還可以在定位的同時(shí),了解患者是否存在并發(fā)癥,因此在臨床中的應(yīng)用越加廣泛,為臨床的醫(yī)生提供了具有重要價(jià)值的參考以及治療方案。特別是在胸腹部創(chuàng)傷以及急性腹部的疾病急診體系中起到了重要的作用,且不同程度上促進(jìn)了醫(yī)療急救體系的發(fā)展。
    參考文獻(xiàn):
    人工智能的論文結(jié)語(yǔ)篇十七
    摘要:社會(huì)在發(fā)展、時(shí)代在進(jìn)步,信息技術(shù)水平也在不斷的提高,在此時(shí)代背景下,越來(lái)越多的技術(shù)手段開(kāi)始在各個(gè)領(lǐng)域滲透和融入,而科技的進(jìn)步,使得各類的先進(jìn)技術(shù)衍生出來(lái),其中的人工智能技術(shù)可謂是典型代表,許多的技術(shù)人員意識(shí)到人工智能技在計(jì)算機(jī)中的發(fā)展和應(yīng)用,所以對(duì)人工智能技術(shù)在計(jì)算機(jī)中的應(yīng)用和發(fā)展這一課題進(jìn)行分析具有一定的必然性,以下內(nèi)容是個(gè)人的見(jiàn)解。
    關(guān)鍵詞:人工智能技術(shù);計(jì)算機(jī);發(fā)展;應(yīng)用;
    受科學(xué)技術(shù)手段的推動(dòng)性影響,人類文明的發(fā)展步伐日漸加快,現(xiàn)階段,已經(jīng)基本步入到了信息化的時(shí)代背景下,計(jì)算機(jī)在當(dāng)下已經(jīng)是各行各業(yè)中常見(jiàn)的輔助工具,甚至許多行業(yè)的發(fā)展已經(jīng)視計(jì)算機(jī)技術(shù)為基本的動(dòng)力支撐,同時(shí)增加了技術(shù)應(yīng)用的要求,在此社會(huì)不斷發(fā)展的趨勢(shì)下,只有使得計(jì)算機(jī)技術(shù)逐步朝向著個(gè)性化以及智能化的方向發(fā)展,方可體現(xiàn)人工智能技術(shù)手段的作用,并為計(jì)算機(jī)技術(shù)手段的長(zhǎng)遠(yuǎn)化發(fā)展提供相應(yīng)的保障。
    人工智能一般指的是借助計(jì)算機(jī)技術(shù)手段,將其作為有效的基礎(chǔ),對(duì)人類的行為以及思想進(jìn)行模擬的綜合學(xué)科,它所涉及的行業(yè)較多,比如,心理學(xué)以及哲學(xué)等等均為典型,而后實(shí)現(xiàn)對(duì)人體觸覺(jué)或是感知方面的模擬,通常會(huì)將其安裝到機(jī)械設(shè)備之上,并使得機(jī)器更具智能化特色,借助智能化處理方式或是智能化編程等方法,逐步實(shí)現(xiàn)自動(dòng)化操作、智能化運(yùn)行,對(duì)人類難以完成的、高難度的、威脅較大的工作進(jìn)行有效處理,極大的提高工作效率,進(jìn)而保證人們的人身財(cái)產(chǎn)安全。
    現(xiàn)階段,人工智能技術(shù)已經(jīng)初步取得了一定的成就,相關(guān)的專家學(xué)者在研究和探討以后,也發(fā)現(xiàn)了人工神經(jīng)網(wǎng)絡(luò)體系構(gòu)建的發(fā)展方向,希望借此完成工程項(xiàng)目設(shè)計(jì)工作,實(shí)現(xiàn)軟件系統(tǒng)和智能化模塊的有機(jī)結(jié)合,對(duì)軟件的性能進(jìn)行改良,進(jìn)而符合用戶的實(shí)際需求,在基本達(dá)到了人工智能的目標(biāo)以后,還需要對(duì)用戶界面進(jìn)行優(yōu)化和改良,最終為人工智能技術(shù)的發(fā)展和更新提供更多的保障。
    (一)網(wǎng)絡(luò)安全方面的應(yīng)用。
    最近幾年來(lái),人工智能技術(shù)的運(yùn)用已經(jīng)成為未來(lái)幾年來(lái)許多領(lǐng)域的發(fā)展趨向,它的利用將計(jì)算機(jī)網(wǎng)絡(luò)的優(yōu)勢(shì)全方位的體現(xiàn),值得一提的是,它在計(jì)算機(jī)網(wǎng)絡(luò)安全方面所占據(jù)的地位在日漸提高,同時(shí)其應(yīng)用價(jià)值也不斷凸顯。
    而后,入侵檢測(cè)也是計(jì)算網(wǎng)絡(luò)安全工作落實(shí)的主要工作,這一過(guò)程中,防火墻可發(fā)揮自身的作用,這一過(guò)程中它的運(yùn)行效果,將會(huì)給整體的系統(tǒng)運(yùn)作安全性帶來(lái)極大的影響,可通過(guò)數(shù)據(jù)整合、搜集的方式,將有價(jià)值的參數(shù)呈現(xiàn)給用戶,通過(guò)郵件的形式發(fā)送給用戶,隨著時(shí)間的推移,郵件數(shù)量也會(huì)不斷的增加。經(jīng)過(guò)筆者的分析和探討,建議將智能型垃圾郵件系統(tǒng)安裝到用戶的系統(tǒng)之中,而后再實(shí)施風(fēng)險(xiǎn)檢測(cè),及時(shí)告知用戶相關(guān)的風(fēng)險(xiǎn)信息,并給予一定的提示,引導(dǎo)用戶妥善處理垃圾信息。
    (二)企業(yè)管理方面的應(yīng)用。
    現(xiàn)階段,人工智能技術(shù)手段已經(jīng)被越來(lái)越多的企業(yè)管理者所認(rèn)知,比如,自動(dòng)報(bào)警系統(tǒng)和監(jiān)控系統(tǒng)的應(yīng)用就為典型代表,它們的運(yùn)用,利于企業(yè)實(shí)現(xiàn)智能化的管理目標(biāo),為企業(yè)的內(nèi)部運(yùn)作營(yíng)造安全的氛圍和環(huán)境,此外,還可以一定程度的減少企業(yè)的運(yùn)作成本,逐步達(dá)到資源配置和優(yōu)化的效果,將企業(yè)的運(yùn)營(yíng)和發(fā)展目標(biāo)落實(shí)到實(shí)處,體現(xiàn)出企業(yè)管理的智能化和現(xiàn)代化特色。
    (三)教學(xué)領(lǐng)域的應(yīng)用。
    隨著新課程改革的推進(jìn),使得標(biāo)準(zhǔn)化教學(xué)體制也在日趨深化,逐步實(shí)現(xiàn)了計(jì)算機(jī)技術(shù)和教學(xué)工作的有機(jī)融合,人工智能計(jì)算機(jī)輔助教學(xué)系統(tǒng)的運(yùn)用體現(xiàn)了極大的應(yīng)用優(yōu)勢(shì),為傳統(tǒng)教學(xué)模式的優(yōu)化和改革注入了新的活力,可借此方法,完成教學(xué)方法和教學(xué)內(nèi)容的表達(dá),進(jìn)而相應(yīng)的的提高教學(xué)效率,確保教學(xué)質(zhì)量。
    此外,引入人工智能技術(shù)的過(guò)程中,也需要重視知識(shí)庫(kù)的運(yùn)用,將其作為教學(xué)中有效的輔助工具,而后把教學(xué)中的要點(diǎn)以及相關(guān)定義等融入到知識(shí)庫(kù)職之中,教師的在落實(shí)教學(xué)工作之時(shí),可對(duì)知識(shí)庫(kù)之內(nèi)的理論知識(shí)加進(jìn)行準(zhǔn)確推理,為學(xué)生呈現(xiàn)更加直觀的推理過(guò)程和運(yùn)算過(guò)程,得出推理后的結(jié)果。從教學(xué)領(lǐng)域日后的發(fā)展角度來(lái)講,人工智能技術(shù)理念的引入,可謂是以此教學(xué)模式的革新,也是突破傳統(tǒng)教學(xué)模式桎梏的有效途徑。
    (四)家居行業(yè)的應(yīng)用。
    當(dāng)前,人們的生活質(zhì)量和生活水平日漸提高,從而自然而然的增加了對(duì)于住房家居的應(yīng)用需要,在此社會(huì)發(fā)展形勢(shì)之下,可將人工智能技術(shù)手段應(yīng)用到家居生活中,盡可能滿人們的日常生活需要,比如,運(yùn)用人工智能技術(shù),對(duì)門窗的閉合進(jìn)行有效控制,或是對(duì)家居環(huán)境進(jìn)行調(diào)整,營(yíng)造良好的生活氛圍。
    三、結(jié)語(yǔ)。
    綜上所述,在此信息技術(shù)發(fā)展如此迅猛的時(shí)代背景下,人工智能技術(shù)手段的運(yùn)用被許多行業(yè)所認(rèn)識(shí)和關(guān)注,此項(xiàng)技術(shù)是一項(xiàng)典型的新型技術(shù)手段,它的應(yīng)用體現(xiàn)了極大的優(yōu)勢(shì),與域外發(fā)達(dá)國(guó)家相比較,我國(guó)的人工智能技術(shù)水平仍舊不足,但是,其發(fā)展速度卻相對(duì)較快,在我國(guó)的諸多行業(yè)中得到了廣泛運(yùn)用,它的未來(lái)發(fā)展前景相對(duì)較佳,值得大力推廣。
    參考文獻(xiàn)。
    [2]黃鑫。分析計(jì)算機(jī)人工智能識(shí)別技術(shù)的應(yīng)用瓶頸[j].數(shù)字技術(shù)與應(yīng)用,20xx,26(7):244.
    人工智能的論文結(jié)語(yǔ)篇十八
    圖像識(shí)別技術(shù)是信息時(shí)代的一門重要的技術(shù),其產(chǎn)生目的是為了讓計(jì)算機(jī)代替人類去處理大量的物理信息。隨著計(jì)算機(jī)技術(shù)的發(fā)展,人類對(duì)圖像識(shí)別技術(shù)的認(rèn)識(shí)越來(lái)越深刻。圖像識(shí)別技術(shù)的過(guò)程分為信息的獲取、預(yù)處理、特征抽取和選擇、分類器設(shè)計(jì)和分類決策。文章簡(jiǎn)單分析了圖像識(shí)別技術(shù)的引入、其技術(shù)原理以及模式識(shí)別等,之后介紹了神經(jīng)網(wǎng)絡(luò)的圖像識(shí)別技術(shù)和非線性降維的圖像識(shí)別技術(shù)及圖像識(shí)別技術(shù)的應(yīng)用。從中可以總結(jié)出圖像處理技術(shù)的應(yīng)用廣泛,人類的生活將無(wú)法離開(kāi)圖像識(shí)別技術(shù),研究圖像識(shí)別技術(shù)具有重大意義。
    1圖像識(shí)別技術(shù)的引入
    圖像識(shí)別是人工智能科技的一個(gè)重要領(lǐng)域。圖像識(shí)別的發(fā)展經(jīng)歷了三個(gè)階段:文字識(shí)別、數(shù)字圖像處理與識(shí)別、物體識(shí)別。圖像識(shí)別,顧名思義,就是對(duì)圖像做出各種處理、分析,最終識(shí)別我們所要研究的目標(biāo)。今天所指的圖像識(shí)別并不僅僅是用人類的肉眼,而是借助計(jì)算機(jī)技術(shù)進(jìn)行識(shí)別。雖然人類的識(shí)別能力很強(qiáng)大,但是對(duì)于高速發(fā)展的社會(huì),人類自身識(shí)別能力已經(jīng)滿足不了我們的需求,于是就產(chǎn)生了基于計(jì)算機(jī)的圖像識(shí)別技術(shù)。這就像人類研究生物細(xì)胞,完全靠肉眼觀察細(xì)胞是不現(xiàn)實(shí)的,這樣自然就產(chǎn)生了顯微鏡等用于精確觀測(cè)的儀器。通常一個(gè)領(lǐng)域有固有技術(shù)無(wú)法解決的需求時(shí),就會(huì)產(chǎn)生相應(yīng)的新技術(shù)。圖像識(shí)別技術(shù)也是如此,此技術(shù)的產(chǎn)生就是為了讓計(jì)算機(jī)代替人類去處理大量的物理信息,解決人類無(wú)法識(shí)別或者識(shí)別率特別低的信息。
    1.1圖像識(shí)別技術(shù)原理
    其實(shí),圖像識(shí)別技術(shù)背后的原理并不是很難,只是其要處理的信息比較繁瑣。計(jì)算機(jī)的任何處理技術(shù)都不是憑空產(chǎn)生的,它都是學(xué)者們從生活實(shí)踐中得到啟發(fā)而利用程序?qū)⑵淠M實(shí)現(xiàn)的。計(jì)算機(jī)的圖像識(shí)別技術(shù)和人類的圖像識(shí)別在原理上并沒(méi)有本質(zhì)的區(qū)別,只是機(jī)器缺少人類在感覺(jué)與視覺(jué)差上的影響罷了。人類的圖像識(shí)別也不單單是憑借整個(gè)圖像存儲(chǔ)在腦海中的記憶來(lái)識(shí)別的,我們識(shí)別圖像都是依靠圖像所具有的本身特征而先將這些圖像分了類,然后通過(guò)各個(gè)類別所具有的特征將圖像識(shí)別出來(lái)的,只是很多時(shí)候我們沒(méi)有意識(shí)到這一點(diǎn)。當(dāng)看到一張圖片時(shí),我們的大腦會(huì)迅速感應(yīng)到是否見(jiàn)過(guò)此圖片或與其相似的圖片。其實(shí)在“看到”與“感應(yīng)到”的中間經(jīng)歷了一個(gè)迅速識(shí)別過(guò)程,這個(gè)識(shí)別的過(guò)程和搜索有些類似。在這個(gè)過(guò)程中,我們的大腦會(huì)根據(jù)存儲(chǔ)記憶中已經(jīng)分好的類別進(jìn)行識(shí)別,查看是否有與該圖像具有相同或類似特征的存儲(chǔ)記憶,從而識(shí)別出是否見(jiàn)過(guò)該圖像。機(jī)器的圖像識(shí)別技術(shù)也是如此,通過(guò)分類并提取重要特征而排除多余的信息來(lái)識(shí)別圖像。機(jī)器所提取出的這些特征有時(shí)會(huì)非常明顯,有時(shí)又是很普通,這在很大的程度上影響了機(jī)器識(shí)別的速率??傊谟?jì)算機(jī)的視覺(jué)識(shí)別中,圖像的內(nèi)容通常是用圖像特征進(jìn)行描述。
    1.2模式識(shí)別
    模式識(shí)別是人工智能和信息科學(xué)的重要組成部分。模式識(shí)別是指對(duì)表示事物或現(xiàn)象的不同形式的信息做分析和處理從而得到一個(gè)對(duì)事物或現(xiàn)象做出描述、辨認(rèn)和分類等的過(guò)程。
    計(jì)算機(jī)的圖像識(shí)別技術(shù)就是模擬人類的圖像識(shí)別過(guò)程。在圖像識(shí)別的過(guò)程中進(jìn)行模式識(shí)別是必不可少的。模式識(shí)別原本是人類的一項(xiàng)基本智能。但隨著計(jì)算機(jī)的發(fā)展和人工智能的興起,人類本身的模式識(shí)別已經(jīng)滿足不了生活的需要,于是人類就希望用計(jì)算機(jī)來(lái)代替或擴(kuò)展人類的部分腦力勞動(dòng)。這樣計(jì)算機(jī)的模式識(shí)別就產(chǎn)生了。簡(jiǎn)單地說(shuō),模式識(shí)別就是對(duì)數(shù)據(jù)進(jìn)行分類,它是一門與數(shù)學(xué)緊密結(jié)合的科學(xué),其中所用的思想大部分是概率與統(tǒng)計(jì)。模式識(shí)別主要分為三種:統(tǒng)計(jì)模式識(shí)別、句法模式識(shí)別、模糊模式識(shí)別。
    2圖像識(shí)別技術(shù)的過(guò)程
    既然計(jì)算機(jī)的圖像識(shí)別技術(shù)與人類的圖像識(shí)別原理相同,那它們的過(guò)程也是大同小異的。圖像識(shí)別技術(shù)的過(guò)程分以下幾步:信息的獲取、預(yù)處理、特征抽取和選擇、分類器設(shè)計(jì)和分類決策。
    信息的獲取是指通過(guò)傳感器,將光或聲音等信息轉(zhuǎn)化為電信息。也就是獲取研究對(duì)象的基本信息并通過(guò)某種方法將其轉(zhuǎn)變?yōu)闄C(jī)器能夠認(rèn)識(shí)的信息。
    預(yù)處理主要是指圖像處理中的去噪、平滑、變換等的操作,從而加強(qiáng)圖像的重要特征。
    特征抽取和選擇是指在模式識(shí)別中,需要進(jìn)行特征的抽取和選擇。簡(jiǎn)單的理解就是我們所研究的圖像是各式各樣的,如果要利用某種方法將它們區(qū)分開(kāi),就要通過(guò)這些圖像所具有的本身特征來(lái)識(shí)別,而獲取這些特征的過(guò)程就是特征抽取。在特征抽取中所得到的特征也許對(duì)此次識(shí)別并不都是有用的,這個(gè)時(shí)候就要提取有用的特征,這就是特征的選擇。特征抽取和選擇在圖像識(shí)別過(guò)程中是非常關(guān)鍵的技術(shù)之一,所以對(duì)這一步的理解是圖像識(shí)別的重點(diǎn)。
    分類器設(shè)計(jì)是指通過(guò)訓(xùn)練而得到一種識(shí)別規(guī)則,通過(guò)此識(shí)別規(guī)則可以得到一種特征分類,使圖像識(shí)別技術(shù)能夠得到高識(shí)別率。分類決策是指在特征空間中對(duì)被識(shí)別對(duì)象進(jìn)行分類,從而更好地識(shí)別所研究的對(duì)象具體屬于哪一類。
    3圖像識(shí)別技術(shù)的分析
    隨著計(jì)算機(jī)技術(shù)的迅速發(fā)展和科技的不斷進(jìn)步,圖像識(shí)別技術(shù)已經(jīng)在眾多領(lǐng)域中得到了應(yīng)用。20xx年2月15日新浪科技發(fā)布一條新聞:“微軟最近公布了一篇關(guān)于圖像識(shí)別的研究論文,在一項(xiàng)圖像識(shí)別的基準(zhǔn)測(cè)試中,電腦系統(tǒng)識(shí)別能力已經(jīng)超越了人類。人類在歸類數(shù)據(jù)庫(kù)imagenet中的圖像識(shí)別錯(cuò)誤率為5.1%,而微軟研究小組的這個(gè)深度學(xué)習(xí)系統(tǒng)可以達(dá)到4.94%的錯(cuò)誤率?!睆倪@則新聞中我們可以看出圖像識(shí)別技術(shù)在圖像識(shí)別方面已經(jīng)有要超越人類的圖像識(shí)別能力的趨勢(shì)。這也說(shuō)明未來(lái)圖像識(shí)別技術(shù)有更大的研究意義與潛力。而且,計(jì)算機(jī)在很多方面確實(shí)具有人類所無(wú)法超越的優(yōu)勢(shì),也正是因?yàn)檫@樣,圖像識(shí)別技術(shù)才能為人類社會(huì)帶來(lái)更多的應(yīng)用。
    3.1神經(jīng)網(wǎng)絡(luò)的圖像識(shí)別技術(shù)
    神經(jīng)網(wǎng)絡(luò)圖像識(shí)別技術(shù)是一種比較新型的圖像識(shí)別技術(shù),是在傳統(tǒng)的圖像識(shí)別方法和基礎(chǔ)上融合神經(jīng)網(wǎng)絡(luò)算法的一種圖像識(shí)別方法。這里的神經(jīng)網(wǎng)絡(luò)是指人工神經(jīng)網(wǎng)絡(luò),也就是說(shuō)這種神經(jīng)網(wǎng)絡(luò)并不是動(dòng)物本身所具有的真正的神經(jīng)網(wǎng)絡(luò),而是人類模仿動(dòng)物神經(jīng)網(wǎng)絡(luò)后人工生成的。在神經(jīng)網(wǎng)絡(luò)圖像識(shí)別技術(shù)中,遺傳算法與bp網(wǎng)絡(luò)相融合的神經(jīng)網(wǎng)絡(luò)圖像識(shí)別模型是非常經(jīng)典的,在很多領(lǐng)域都有它的應(yīng)用。在圖像識(shí)別系統(tǒng)中利用神經(jīng)網(wǎng)絡(luò)系統(tǒng),一般會(huì)先提取圖像的特征,再利用圖像所具有的特征映射到神經(jīng)網(wǎng)絡(luò)進(jìn)行圖像識(shí)別分類。以汽車拍照自動(dòng)識(shí)別技術(shù)為例,當(dāng)汽車通過(guò)的時(shí)候,汽車自身具有的檢測(cè)設(shè)備會(huì)有所感應(yīng)。此時(shí)檢測(cè)設(shè)備就會(huì)啟用圖像采集裝置來(lái)獲取汽車正反面的圖像。獲取了圖像后必須將圖像上傳到計(jì)算機(jī)進(jìn)行保存以便識(shí)別。最后車牌定位模塊就會(huì)提取車牌信息,對(duì)車牌上的字符進(jìn)行識(shí)別并顯示最終的結(jié)果。在對(duì)車牌上的字符進(jìn)行識(shí)別的過(guò)程中就用到了基于模板匹配算法和基于人工神經(jīng)網(wǎng)絡(luò)算法。
    3.2非線性降維的圖像識(shí)別技術(shù)
    計(jì)算機(jī)的圖像識(shí)別技術(shù)是一個(gè)異常高維的識(shí)別技術(shù)。不管圖像本身的分辨率如何,其產(chǎn)生的數(shù)據(jù)經(jīng)常是多維性的,這給計(jì)算機(jī)的識(shí)別帶來(lái)了非常大的困難。想讓計(jì)算機(jī)具有高效地識(shí)別能力,最直接有效的方法就是降維。降維分為線性降維和非線性降維。例如主成分分析(pca)和線性奇異分析(lda)等就是常見(jiàn)的線性降維方法,它們的特點(diǎn)是簡(jiǎn)單、易于理解。但是通過(guò)線性降維處理的是整體的數(shù)據(jù)集合,所求的是整個(gè)數(shù)據(jù)集合的最優(yōu)低維投影。經(jīng)過(guò)驗(yàn)證,這種線性的降維策略計(jì)算復(fù)雜度高而且占用相對(duì)較多的時(shí)間和空間,因此就產(chǎn)生了基于非線性降維的圖像識(shí)別技術(shù),它是一種極其有效的非線性特征提取方法。此技術(shù)可以發(fā)現(xiàn)圖像的非線性結(jié)構(gòu)而且可以在不破壞其本征結(jié)構(gòu)的基礎(chǔ)上對(duì)其進(jìn)行降維,使計(jì)算機(jī)的圖像識(shí)別在盡量低的維度上進(jìn)行,這樣就提高了識(shí)別速率。例如人臉圖像識(shí)別系統(tǒng)所需的維數(shù)通常很高,其復(fù)雜度之高對(duì)計(jì)算機(jī)來(lái)說(shuō)無(wú)疑是巨大的“災(zāi)難”。由于在高維度空間中人臉圖像的不均勻分布,使得人類可以通過(guò)非線性降維技術(shù)來(lái)得到分布緊湊的人臉圖像,從而提高人臉識(shí)別技術(shù)的高效性。
    3.3圖像識(shí)別技術(shù)的應(yīng)用及前景
    計(jì)算機(jī)的圖像識(shí)別技術(shù)在公共安全、生物、工業(yè)、農(nóng)業(yè)、交通、醫(yī)療等很多領(lǐng)域都有應(yīng)用。例如交通方面的車牌識(shí)別系統(tǒng);公共安全方面的人臉識(shí)別技術(shù)、指紋識(shí)別技術(shù);農(nóng)業(yè)方面的種子識(shí)別技術(shù)、食品品質(zhì)檢測(cè)技術(shù);醫(yī)學(xué)方面的心電圖識(shí)別技術(shù)等。隨著計(jì)算機(jī)技術(shù)的不斷發(fā)展,圖像識(shí)別技術(shù)也在不斷地優(yōu)化,其算法也在不斷地改進(jìn)。圖像是人類獲取和交換信息的主要來(lái)源,因此與圖像相關(guān)的圖像識(shí)別技術(shù)必定也是未來(lái)的研究重點(diǎn)。以后計(jì)算機(jī)的圖像識(shí)別技術(shù)很有可能在更多的領(lǐng)域嶄露頭角,它的應(yīng)用前景也是不可限量的,人類的生活也將更加離不開(kāi)圖像識(shí)別技術(shù)。
    4總結(jié)
    圖像識(shí)別技術(shù)雖然是剛興起的技術(shù),但其應(yīng)用已是相當(dāng)廣泛。并且,圖像識(shí)別技術(shù)也在不斷地成長(zhǎng),隨著科技的不斷進(jìn)步,人類對(duì)圖像識(shí)別技術(shù)的認(rèn)識(shí)也會(huì)更加深刻。未來(lái)圖像識(shí)別技術(shù)將會(huì)更加強(qiáng)大,更加智能地出現(xiàn)在我們的生活中,為人類社會(huì)的更多領(lǐng)域帶來(lái)重大的應(yīng)用。在21世紀(jì)這個(gè)信息化的時(shí)代,我們無(wú)法想象離開(kāi)了圖像識(shí)別技術(shù)以后我們的生活會(huì)變成什么樣。圖像識(shí)別技術(shù)是人類現(xiàn)在以及未來(lái)生活必不可少的一項(xiàng)技術(shù)。