三角形的內(nèi)角和教學設計(優(yōu)秀18篇)

字號:

    通過總結(jié),我們可以梳理出自己在學習和工作中的亮點和問題??偨Y(jié)應該包含個人對過去經(jīng)歷的感悟和改進方向的建議??偨Y(jié)是一個工作或?qū)W習過程中必不可少的環(huán)節(jié)。在寫總結(jié)前,我們要先進行思想準備,明確總結(jié)的范圍和重點。以下是小編為大家整理的一些總結(jié)范文,希望能夠給大家一些靈感和參考。
    三角形的內(nèi)角和教學設計篇一
    《三角形內(nèi)角和》是北師大版《數(shù)學》四年級下冊的內(nèi)容。是在學生學習了三角形的概念及特征之后進行的,它是掌握多邊形內(nèi)角和及其他實際問題的基礎,因此,掌握三角形的內(nèi)角和是180度這一規(guī)律具有重要意義。教材首先出示了兩個三角形比內(nèi)角和這一情境,讓學生通過測量、折疊、拼湊等方法,發(fā)現(xiàn)三角形的內(nèi)角和是180度。教材還安排了試一試,練一練的內(nèi)容。已知三角形兩個內(nèi)角的度數(shù),求出第三個角的度數(shù)。
    【學生分析】
    經(jīng)過近四年的課改實驗,孩子們已經(jīng)有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發(fā)表自己的見解,對數(shù)學產(chǎn)生了濃厚的興趣。1.知識方面:學生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、平角這些角的知識。2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進行簡單的微機操作。
    【學習目標】
    知識目標:掌握三角形內(nèi)角和是180度這一規(guī)律,并能實際應用。
    能力目標:培養(yǎng)學生主動探索、動手操作的能力。培養(yǎng)學生收集、整理、歸納信息的能力。使學生養(yǎng)成良好的合作習慣。
    情感目標:讓學生體會幾何圖形內(nèi)在的結(jié)構(gòu)美。
    【教學過程】
    一、情景激趣,質(zhì)疑猜想。
    播放動畫片:在圖形王國中,有一天三角形大家庭里為三角形內(nèi)角和的大小爆發(fā)了一場激烈的'爭吵。
    鈍角三角形大聲叫著:我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大。銳角三角形也不示弱:我的銳角雖然比鈍角小,但我的內(nèi)角和并不比你小。直角三角形說:別爭了,三角形的內(nèi)角和都是180。我們的內(nèi)角和是一樣大的。
    師:想一想,什么是三角形的三個內(nèi)角的和。
    生:三角形的三個內(nèi)角的度數(shù)和。
    師:同學們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的對?
    學生進行猜想,自由發(fā)言。
    (設計意圖:教師借助多媒體技術創(chuàng)設問題情境,架起數(shù)學學習與現(xiàn)實生活,抽象數(shù)學與具體問題之間的橋梁,激發(fā)了學生的學習興趣。鼓勵學生主動質(zhì)疑猜想是培養(yǎng)學生學會學習的重要途徑。)
    二、自主探究,驗證猜想
    生1:能。我量出三角形的三個內(nèi)角和度數(shù),加起來是否接近180(量的時候可能會有些誤差)。
    生2:我把三角形的三個角剪下來拼一拼是否能拼成一個平角。
    生3:我把三角形的三個角撕下來,拼一拼是否180。
    生4:我把三角形的三個角往里折,看一看這三個角是否折成一個平角。
    師:上面你們說了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動手驗證自己的猜想吧?。▽W生把三角形的三個內(nèi)角分別標上1、2、3,以免在剪拼時把內(nèi)角搞混了。)
    學生邊實驗邊整理信息,完成實驗報告單后,學習小組內(nèi)進行交流討論。
    (設計意圖:驗證猜想為學生提供了做數(shù)學的機會,讓每個學生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學生在操作中自主探究數(shù)學知識的產(chǎn)生發(fā)展過程。驗證自己的猜想,鼓勵學生用不同的方法進行驗證,促進學生創(chuàng)新能力的發(fā)展。)
    三、交流評價,歸納結(jié)論。
    學生操作驗證,完成實驗報告單后,利用投影儀展示學生填寫的實驗報告單。
    實驗報告單
    實驗名稱
    三角形內(nèi)角和
    實驗目的
    探究三角形內(nèi)角和是多少度。
    實驗材料
    尺子
    剪刀
    量角器
    銳角三角形紙片
    直角三角形紙片
    鈍角三角形紙片
    我的方法
    我的發(fā)現(xiàn)
    我的表現(xiàn)
    自評
    互評
    學生在展示過程中,充分交流和討論實驗中各自使用的方法和發(fā)現(xiàn),教師要對學生的閃光點及時進行表揚和鼓勵。
    師生共同歸納,得出結(jié)論:
    三角形的內(nèi)角和教學設計篇二
    教材第67頁例6、“做一做”及教材第69頁練習十六第1~3題。
    3、培養(yǎng)學生動手動腦及分析推理能力。
    一、復習。
    1、什么是平角?平角是多少度?
    2、計算角的度數(shù)。
    3、回憶三角形的相關知識。(出示直角三角形、銳角三角形、鈍角三角形)。
    二、新知。
    (設計意圖:讓學生經(jīng)歷質(zhì)疑驗證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識,真正驗證了“實踐出真知”的道理,這樣的教學,將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學知識背景,滲透數(shù)學知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學生的綜合素養(yǎng))。
    1、讀學卡的學習目標、任務目標,做到心里有數(shù)。
    4、驗證:
    (2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
    (3)再證:請按學卡提示,拿出學具,選擇自己喜歡的方式驗證三角形的內(nèi)角和是180°(師巡視)。
    (4)匯報結(jié)論(清楚明白的給小組加優(yōu)秀10分)。
    5、結(jié)論:修改板書,把“?”去掉,寫“是”。
    6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說明三角形無論大小它的內(nèi)角和都是180°(課件演示)。
    7、看微課感知“偉大的發(fā)現(xiàn)”(設計意圖:讓學生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)。
    三、知識運用(課件出示練習題,生解答)。
    1、填空。
    (1)一個三角形,它的兩個內(nèi)角度數(shù)之和是110,第三個內(nèi)角是()、
    (2)一個直角三角形的一個銳角是50,則另一個銳角是()。
    (4)一個等腰三角形,它的一個底角是50,那么它的頂角是()。
    (5)一個等腰三角形的頂角是60,這個三角形也是()三角形。
    2、判斷。
    (1)一個三角形中最多有兩個直角。()。
    (3)有一個角是60的等腰三角形不一定是等邊三角形。()。
    (4)三角形任意兩個內(nèi)角的和都大于第三個內(nèi)角。()。
    (5)直角三角形中的兩個銳角的和等于90。()。
    四、拓展探究。
    根據(jù)所學的知識,你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?
    1、小組討論。
    2、匯報結(jié)果。
    3、課件提示幫助理解。
    五、自我評價根據(jù)學卡要求給自己評出“優(yōu)”“良好”“合格”。
    六、談談自己本節(jié)課的收獲。
    今天我講了《三角形內(nèi)角和》這部分內(nèi)容,學生其實通過不同途徑已經(jīng)知道三角形內(nèi)角和是180°,是不是說這節(jié)課的重難點就已經(jīng)突破了,只要學生能應用知識解決問題就算是達到這節(jié)課的教學目標了呢?我想應該好好思考教材背后要傳遞的東西。
    任何規(guī)律的發(fā)現(xiàn)都要經(jīng)過一個猜測、驗證的過程,不經(jīng)歷這個探究的過程,學生對于這一內(nèi)容的認識就不深刻,聰明的孩子還會懷疑三角形內(nèi)角和是180°嗎?。因此這個結(jié)論必須由實踐操作得出結(jié)論。所以最終我把本課定為一個實踐探究課。
    如何開篇點題,是我這次要解決的第一個問題。怎樣才能讓學生由已知順利轉(zhuǎn)向?qū)ξ粗奶角螅鯓又苯愚D(zhuǎn)向研究三個角的“和”的問題呢?因此我只設計了三個簡單的問題然學生快速進入主題。
    如何驗證內(nèi)角和是180°,是我一直比較糾結(jié)的環(huán)節(jié)。由于小學生的知識背景有限,無法利用證明給予嚴格的驗證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實驗”的特點,那么就都會有誤差,其實都無法嚴格的證明。但是這節(jié)課我們除了要尊重知識的嚴謹還應該尊重孩子的認知。如果通過剪拼、折疊、想象后,還有的孩子認為三角形內(nèi)角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴謹,同時對知識有一種尊重,對自己的操作結(jié)果充滿自信,否則拼個差不多也可以簡單的認同了內(nèi)角和是180°。
    本節(jié)課的練習的設置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內(nèi)角和體會三角形內(nèi)角和跟大小無關、跟形狀無關,到已知兩個角的度數(shù)求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內(nèi)角和是多少度,求被剪開的三角形,形成的新圖形的內(nèi)角和是多少度,這些都是對三角形內(nèi)角和的一次拓展。讓學生的認知發(fā)生沖突,提出挑戰(zhàn)。
    給學生一個平臺,她會給你一片精彩。通過動手操作來驗證內(nèi)角和是否是180°,學生最容易出現(xiàn)的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節(jié)課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因為我給了他們足夠的時間去思考。當有了空間,孩子才會施展他們的才華。這是我的一大收獲。
    前邊驗證時間過多,到練習時間就有些少,特別是求四邊形和六邊形內(nèi)角和時,給的時間過短,學生沒有充分思維。
    總而言之,這次的公開課,給了我一次學習和鍛煉的機會。在教案設計時,該怎么樣把每一個環(huán)節(jié)落實到位,怎么樣說好每一句話,預設好每一個環(huán)節(jié),在教研中聽取各位教師的點評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學團隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻自己的想法,讓我在教學中,能夠在一個輕松和諧的教學氛圍中與學生共同去探討,去發(fā)現(xiàn),去學習。
    三角形的內(nèi)角和教學設計篇三
    教學目標:
    1、通過測量、撕拼、折疊等探索活動,使學生發(fā)現(xiàn)三角形內(nèi)角和的度數(shù)是180?
    2、已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。
    3、培養(yǎng)學生動手實踐,動腦思考的習慣。
    教學重點:
    教學難點:
    教具學具準備:
    教材與學生。
    教材創(chuàng)設了一個有趣的問題情境,通過對大小兩個三角形內(nèi)角和的大小比較來激發(fā)學生探索的興趣。教材為了得到三角形內(nèi)角和是180的結(jié)論安排了兩個活動,通過學生測量,折疊,撕拼來找到答案。
    學生在已有的會用量角器來度量一個角的度數(shù)的基礎上,會首先想到這種方法。但測量的誤差會導致測量不同,因此,學生會想到采取其他更好的辦法,通過親手實踐,得出結(jié)論。
    教學過程:
    學生各抒己見。
    師;剛才我們觀察三角形哪個內(nèi)角和大,同學們有兩種不同的猜想,可以肯定,必定有錯下面我們來測量驗證。
    (1)以小組為單位請同學們拿出量角器,量一量,算一算圖中大小兩個三角形內(nèi)角和度數(shù),并做好記錄,記錄每個內(nèi)角的度數(shù)。
    (2)組內(nèi)交流。
    (3)全班交流。由小組匯報測出結(jié)果(三角形內(nèi)角和)。
    (4)師小結(jié):我們通過測量發(fā)現(xiàn),每個三角形的內(nèi)角和測出結(jié)果接近180。
    (一)組內(nèi)探索:
    (1)以小組為單位探索更好的辦法。
    (2)以小組為單位邊展示邊匯報探索的過程與發(fā)現(xiàn)的結(jié)果。
    (有的小組想不出來,可以安排小組和小組之間進行交流,目的是讓學生通過實踐發(fā)現(xiàn)結(jié)果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學生學習到良好的學習方法)。
    (3)把你沒有想到的方法動手做一次。
    (使學生更直觀地理解三角形的內(nèi)角和是180的證明過程)。
    (4)根據(jù)學生的反饋情況教師進行操作演示。
    (二)教師演示。
    撕拼法1。教師取出三角形教具,把三個角撕下來,拼在一起,如圖所示。
    2.師:這三個內(nèi)角放在一起你有什么發(fā)現(xiàn)?
    生:發(fā)現(xiàn)三個內(nèi)角拼成一個平角。
    師:平角是多少度呢?說明什么?
    生:180?說明三個內(nèi)角和剛好等于180。
    師:這種方法是不是適用各種三角形呢?
    進行實驗后,結(jié)果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個內(nèi)角和是180。
    折疊法:師:剛才我們通過測量發(fā)現(xiàn)三角形內(nèi)角和接近180,那是因為測量的不那么精確,所以說“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個內(nèi)角剛好拼成一個平角,進一步說明三個內(nèi)角和是180,現(xiàn)在再來演示另一種實驗,再次證明我們的發(fā)現(xiàn)。
    你們也來試一試好嗎?
    在學生完成這一實踐后肯定這一發(fā)現(xiàn)。
    四。鞏固練習,知識升華。
    1.完成課本第28頁的“試一試”第三題。
    2.想一想:鈍角三角形最多有幾個鈍角?為什么?
    3.有一個四邊形,你能不用量角器而算出它的四個內(nèi)角和嗎?
    試一試,看誰算得快。
    師:誰來說說自己的計算過程?
    生:它們的內(nèi)角和都是180度。
    [回答可能有二]:
    (一種全部說是:)。
    師:請問,你們是怎么想的,為什么這么認為?
    生:……。
    師:看來,大家是通過這兩個三角形猜想的,是嗎?想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內(nèi)角和的秘密吧!(師在課題“內(nèi)角和”下面劃上橫線,打上問號)。
    (一種有一部分同學說是,有一部分同學說不是:)。
    師:看來,大家的意見不一致,想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內(nèi)角和的秘密吧?。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號)。
    (二)動手操作,探究新知。
    師:老師看你們有答案了,哪位同學愿意說一說你的奇思妙想?
    生:我準備用量的方法。
    師:然后呢?
    生:然后把它們?nèi)齻€內(nèi)角的度數(shù)相加起來,就知道了三角形的內(nèi)角和是多少?
    師:說的真不錯,還有沒有其它的方法?
    生:我是把三角形的三個角剪下來,拼在一起(師鼓勵:你的想法很有創(chuàng)意,等一會兒用你的行動來驗證你的猜想吧!)。
    生:……。
    (如生一時想不到,師可引導:他是把三個內(nèi)角的度數(shù)相加在一起,我們能不能想辦法把三個內(nèi)角放在一起進行觀察,看看能不能發(fā)現(xiàn)些什么呢?)。
    師:好啦,老師相信咱們班的同學個個都是小數(shù)學家,一定能找出更多的方法的,請你們在研究之前,也像老師一樣,在三個內(nèi)角上編上序號,角一、角二、角三,現(xiàn)在就請同學們對銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進行研究,看看它們的內(nèi)角和各有什么特點。咱們比一比,看一看,哪個小組的方法多,方法好!
    開始吧?。▽W生研究,師巡回指導)預設時間:5分鐘。
    師:老師看各小組已經(jīng)研究好了,哪位同學愿意上來交流一下?
    師:請你告訴大家,你是怎么研究的,最后發(fā)現(xiàn)了什么結(jié)果?
    (預設:如果第一類同學說的是量的方法)。
    師:你是用什么來研究的?
    生:量角器。
    師:那請你說一下你度量的結(jié)果好嗎?
    (生匯報度量結(jié)果)。
    生:180度。
    師:那到底三角形的內(nèi)角和是不是180度呢?還有哪位同學有其它的方法進行驗證嗎?
    生:我是先把三角形的三個角剪掉以后粘在一起,然后在量出它們?nèi)齻€角組成的度數(shù)。
    師:他演示的真好,你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。
    (師邊講解邊點擊flash:把三角形按照三個內(nèi)角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調(diào)個頭,插在角一角二的中間,這樣它們?nèi)齻€內(nèi)角就形成了一個大角,角一的這條邊,角二這條邊看起來在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來量一下,師演示后問學生:是不是在一條直線上,那這個大角是個什么角呢?通過剛才拼的過程,你有什么發(fā)現(xiàn)?)。
    生:我們還用了折的方法(生介紹方法)。
    師:你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。
    (師邊講解邊點擊flash:先找到兩條邊的中點,把它連起來,把角一沿著中間的這條線向?qū)厡φ郏侔呀嵌蚶飳φ?,使它的頂點與角一對齊,最后把角三也用同樣的方法對折,這樣它們?nèi)齻€內(nèi)角就形成了一個大角,這個大角是個什么角呢?)。
    生:是個平角。180度。
    師:請這位同學來說給大家聽聽吧!
    生:我把兩個相同的直角三角形拼成了一個長方形,因為長方形里面有四個直角,所以它的內(nèi)角和是360度,那么一個三角形的內(nèi)角和就是180度。
    生1:量的不準。
    生2:有的量角器有誤差。
    師:對,這就是測量的誤差,如果測量儀器再精密一些,我們的方法再準確一些,那么任意一個三角形的內(nèi)角和也將是180度。
    師:把你們偉大的發(fā)現(xiàn)讀一讀吧!
    (三)拓展應用,深化認識。
    師:請看老師手上的這兩個三角形,左邊這個內(nèi)角和是多少度?(生:180度)右邊呢(生:也是180度)。
    師:現(xiàn)在老師把它們拼在一起,這個大三角形的內(nèi)角和又是多少度呢?
    (生答后師引導歸納得出:三角形的內(nèi)角和與形狀大小無關,組成的大三角形的內(nèi)角和依然是180度。)。
    師:剛才我們在討論學習三角形知識的時候,三角形中的兩個好朋友卻爭執(zhí)了起來,想知道怎么回事嗎?讓我們一起去看看吧?。ǔ鍪菊n件,課件內(nèi)容:一個大一些的直角三角形說:“我的個頭比你大,我的內(nèi)角和一定比你大”。另一個稍小的銳角三角形說:“是這樣嗎”?)。
    師:到底誰說的對呢?今天我們就用我們今天學到的知識來為它們解決解決吧!
    師:好,請看大屏幕!
    (出示基礎練習)在一個三角形中角一是140度,角三是25度,求角二的度數(shù)。
    生答后,師提問:你是怎樣想的?
    生陳述后,師鼓勵:說的真好!
    出示自行車、等邊三角形的路標牌、告訴頂角求底角的房頂、直角三角形的電線桿架進行練習。
    師:同學們,今天我們一起學習了三角形的內(nèi)角和,你有哪些收獲呢?
    師:嗯,真不錯,你們知道嗎?三角形的內(nèi)角和等于180度是法國著名的數(shù)學家帕斯卡在1635年他12歲時獨自發(fā)現(xiàn)的,今天憑著同學們的聰明智慧也研究出了三角形的內(nèi)角和是180度,老師為你們感到驕傲,老師相信在你們的勤奮學習和刻苦鉆研下,你們就是下一個“帕斯卡”!
    師:好,下課!同學們再見!
    三角形的內(nèi)角和教學設計篇四
    教學目標
    (一)知識與技能:掌握“三角形內(nèi)角和定理”的證明及其簡單應用,讓學生探索發(fā)現(xiàn)三角形的內(nèi)角和是180。
    (二)過程與方法:通過量算、撕拼、折拼等活動培養(yǎng)學生觀察、操作、探究、歸納、概括、反思等能力和初步的空間想象力,感受數(shù)學的轉(zhuǎn)化思想;發(fā)展學生的空間觀念和初步的邏輯思維能力;能運用所學知識解決簡單的問題,訓練學生對所學知識的運用能力。
    (三)情感態(tài)度與價值觀:
    1、滲透轉(zhuǎn)化遷移思想,培養(yǎng)學生大膽質(zhì)疑的勇氣和嚴謹科學的精神,及與他人合作交流的意識。
    2、讓學生切實感受到從實驗中得到的現(xiàn)象,經(jīng)過簡單的推理證明以后可以成為我們的一般公理,初步感受從個別到一般的思維過程。
    教學重點:
    讓學生經(jīng)歷“三角形內(nèi)角和是180度”這一知識的形成、發(fā)展和應用的全過程;知道三角形的內(nèi)角和是180度并且能應用。
    教學難點:
    三角形內(nèi)角和是180度的探索和驗證過程。
    教學過程:
    一、激趣引入
    1、畫三角形
    2、畫有兩個直角的三角形
    3、認識三角形的內(nèi)角,猜測內(nèi)角和。
    二、探究新知
    (一)研究特殊三角形的內(nèi)角和(三角尺)
    60°+30°+90°=180°
    45°+45°+90°=180°
    (二)操作、驗證完成一般三角形的內(nèi)角和是180度的.證明。
    1、小組合作完成
    2、匯報
    第一種:通過度量完成。
    第二種:通過撕拼或者折拼完成。
    第三類:通過長方形推算得出。
    其他類。
    3、小結(jié):
    (課件演示)剛才同學們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出,無論是什么樣的三角形的內(nèi)角和都是180°,你們真不錯,讓我們帶著自豪的語氣大聲地讀出“三角形的內(nèi)角和是180°”
    4、知識升華:
    大小不一的三角形的內(nèi)角和各是多少?
    一個三角形分成兩個三角形,他們的內(nèi)角和各是多少?
    三、實踐檢驗
    2、老師不小心把墨水倒在了三角形上,你知道它的度數(shù)嗎?
    3、數(shù)學日記。
    四、評價樹
    你對自己的評價。
    結(jié)束語:
    三角形是一棵大樹,內(nèi)家和只是它的一片葉子;
    數(shù)學是一棵大樹,三角形只是它的一片葉子;
    生活是一棵大樹,數(shù)學只是它的一片葉子,
    讓我們欣賞著、享受著三角形為生活添得美!
    三角形的內(nèi)角和教學設計篇五
    1.使學生知道三角形的內(nèi)角和是180 ,并能運用三角形的內(nèi)角和是180 解決生活中常見的問題。
    2.讓學生經(jīng)歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、 判斷、 交流和推理探索用多種方法證明三角形的內(nèi)角和是180 。
    3.培養(yǎng)學生自主學習、互動交流、合作探究的能力和習慣,培養(yǎng)學習數(shù)學的興趣,感受學習數(shù)學的樂趣。
    使學生知道三角形的內(nèi)角和是180 ,并能運用它解決生活中常見的問題。
    通過多種方法驗證三角形的內(nèi)角和是180 。
    課件。四組教學用三角板。鉛筆。大帆布兜子。固體膠。剪刀??曜尤舾伞?BR>    一、激趣導入,提煉學習方法
    1.課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規(guī)則的白紙,以一位老木匠的身份出現(xiàn)在學生面前。激發(fā)學生的好奇心。然后自述:“你們好,我是一個有三十多年工作經(jīng)驗的老木匠了。我收了三個徒弟,他們已經(jīng)從師學藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會我的徒弟試試這幾道題呢?”
    2.繼續(xù)以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。
    3.選擇工具,總結(jié)方法。
    讓選擇不同工具的同學用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。
    師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。
    4.導入新課。
    圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內(nèi)角,徒弟們能不能用學過的方法或者你喜歡的方法求一求三角形三個內(nèi)角的和是多少?(板書課題:三角形的內(nèi)角和)
    二、動手操作,探索交流新知
    1.分組活動,探索新知
    根據(jù)學生的選擇把學生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。
    量一量組同學發(fā)給以下幾種學具:
    折一折組同學發(fā)給上面的三角形一組。
    拼一拼組同學發(fā)給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。
    在學生探索的過程中教師要走近學生,與他們共同交流探討,在學生有困難的時候要適當給予引導。
    2.多方互動,交流新知
    師:請我的大徒弟(量一量組)的同學先來匯報你們的研究成果。
    (1)首先要求學生說一說你們小組是怎樣進行探究的。
    (2)說出你們組的探究結(jié)果怎樣。(在此過程中教師不能急于糾正學生不正確的結(jié)論,因為這是知識的形成過程。)
    (3)請學生說說通過探究活動你們組得出的結(jié)論是什么。
    師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?
    引導這一組從探究的過程和結(jié)論與同學、老師交流。
    師:別看小徒弟(拼一拼組)這么小,方法可能是最好的??靵戆涯銈兊姆椒ńo大家匯報匯報。
    同樣引導這一組從探究的過程和結(jié)論與同學、老師交流。
    3.思想碰撞,夯實新知
    師:三個徒弟你們能說說誰的方法最好嗎?
    學生都會說自己的方法最好,再讓其他同學發(fā)表自己的意見,此時生生之間,師生之間交流。(教師要引導學生說出量一量的方法可能由于量的不夠準確,所以結(jié)果可能比180 大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)
    師:不論你量的怎樣認真都會有不準確的地方,這就叫誤差。而其他兩組同學的方法更準確。三角形的內(nèi)角和就是180 。(板書:三角形的內(nèi)角和是180 )
    四、走進生活,提升運用能力
    1.出示課前那架柁標出它的頂角是120 ,求它的一個底角是多少度?
    2.給你三根木條,能做出一個有兩個直角的三角形嗎?
    五、總結(jié)
    六、拓展新知,課外延伸
    師:俗話說“活到老,學到老?!蹦銈兿律胶筮€要繼續(xù)探索,所以我要把我畢生都沒有完成的任務交給你們?nèi)パ芯俊?BR>    大屏幕出示:
    能用你今天學過的知識和方法探索一下四邊形的內(nèi)角和是多少度嗎?
    三角形的內(nèi)角和教學設計篇六
    遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設計的主要特點之一。學生對三角尺上每個角的度數(shù)比較熟悉,就從這里入手。先讓學生算出每塊三角尺三個內(nèi)角的和是180°,引發(fā)學生的猜想:其它三角形的內(nèi)角和也是180°嗎?接著,引導學生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導學生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角。再利用課件演示進一步驗證,由此獲得三角形的內(nèi)角和是180°的結(jié)論。這一系列活動潛移默化地向?qū)W生滲透了“轉(zhuǎn)化”數(shù)學思想,為后繼學習奠定了必要的基礎。
    最后讓學生運用結(jié)論解決實際問題,練習的安排上,注意練習層次,共安排三個層次,逐步加深。練習形式具有趣味性,激發(fā)了學生主動解題的積極性。第一個練習從知識的直接應用到間接應用,數(shù)學信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。這些題檢測不同層次的學生是否掌握所學知識應該達到的基本要求,顧及到智力水平發(fā)展較慢和中等的同學,第3個練習設計了開放性的練習,在小組內(nèi)完成。由一個同學出題,其它三個同學回答。先給出三角形兩個內(nèi)角的度數(shù),說出另外一個內(nèi)角。有唯一的答案。訓練多次后,只給出三角形一個內(nèi)角,說出其它兩個內(nèi)角,答案不唯一,可以得出無數(shù)個答案。讓學生在游戲中消除疲倦激發(fā)興趣,拓展學生思維。兼顧到智力水平發(fā)展較快的同學。在整個教學設計中,本著“學貴在思,思源于疑”的思想,不斷創(chuàng)設問題情境,讓學生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數(shù)學活動經(jīng)驗,發(fā)展空間觀念和推理能力。
    1、讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。
    2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學思想。
    3、使學生體驗成功的喜悅,激發(fā)學生主動學習數(shù)學的興趣。
    三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎。學生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經(jīng)過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。
    因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。
    讓學生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應用的全過程。
    多媒體課件、學具。
    師:我們已經(jīng)認識了什么是三角形,誰能說出三角形有什么特點?
    生1:三角形是由三條線段圍成的圖形。
    生2:三角形有三個角,……。
    師:請看屏幕(課件演示三條線段圍成三角形的過程)。
    師:三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。(這里,有必要向?qū)W生直觀介紹“內(nèi)角”。)。
    (二)設疑,激發(fā)學生探究新知的心理。
    師:請同學們幫老師畫一個三角形,能做到嗎?(激發(fā)學生主動學習的心理)。
    生:能。
    師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設置矛盾,使學生在矛盾中去發(fā)現(xiàn)問題、探究問題。)。
    師:有誰畫出來啦?
    生1:不能畫。
    生2:只能畫兩個直角。
    生3:只能畫長方形。
    師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。
    師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?
    生:想。
    師:那就讓我們一起來研究吧!
    (揭示矛盾,巧妙引入新知的探究)。
    師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數(shù)。(課件閃動其中的一塊三角板)。
    生:90°、60°、30°。(課件演示:由三角板抽象出三角形)。
    師:也就是這個三角形各角的度數(shù)。它們的和怎樣?
    生:是180°。
    師:你是怎樣知道的?
    生:90°+60°+30°=180°。
    師:對,把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。
    師:(課件演示另一塊三角板的各角的度數(shù)。)這個呢?它的內(nèi)角和是多少度呢?
    生:90°+45°+45°=180°。
    師:從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)什么?
    生2:這兩個三角形都是直角三角形,并且是特殊的三角形。
    1、猜一猜。
    師:猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。
    生1:180°。
    生2:不一定。
    ……。
    (1)小組合作、進行探究。
    師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?
    生:可以先量出每個內(nèi)角的度數(shù),再加起來。
    師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!
    師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務。(課前每個小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導學生選擇解決問題的策略,進行合理分工,提高效率。)。
    (2)小組匯報結(jié)果。
    師:請各小組匯報探究結(jié)果。
    生1:180°。
    生2:175°。
    生3:182°。
    師:沒有得到統(tǒng)一的結(jié)果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?
    生1:有。
    生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個平角。
    師:怎樣才能把三個內(nèi)角放在一起呢?
    生:把它們剪下來放在一起。
    1、用拼合的方法驗證。
    師:很好,請用不同的三角形來驗證。
    師:小組內(nèi)完成,仍然先分工怎樣才能很快完成任務,開始吧。
    2、匯報驗證結(jié)果。
    師:先驗證銳角三角形,我們得出什么結(jié)論?
    生1:銳角三角形的內(nèi)角拼在一起是一個平角,所以銳角三角形的內(nèi)角和是180°。
    3、課件演示驗證結(jié)果。
    師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結(jié)果一樣?(播放課件)。
    師:我們可以得出一個怎樣的結(jié)論?
    師:為什么用測量計算的方法不能得到統(tǒng)一的結(jié)果呢?
    生1:量的不準。
    生2:有的量角器有誤差。
    師:對,這就是測量的誤差。
    三角形的內(nèi)角和教學設計篇七
    本節(jié)微課視頻是蘇教版數(shù)學教科書四年級下冊第78~79頁的教學內(nèi)容。在教學之前,學生已經(jīng)掌握了角的概念、角的分類和角的測量;認識了三角形,知道三角形是由三條線段首尾相接圍成的圖形,有三個頂點、三條邊和三個角。這些已經(jīng)構(gòu)成學生進一步學習的認知基礎?!度切蔚膬?nèi)角和》是三角形的一個重要性質(zhì)。學生在學習四年級上冊“角的度量”時,通過測量三角尺三個角的度數(shù),知道三角尺三個角加起來的和是180度,再加上課前的預習,大部分的學生已經(jīng)能得出結(jié)論:三角形的內(nèi)角和是180度,只不過他們不清楚其中的道理,只是機械性的記憶。因此,本節(jié)課的重點不是結(jié)論,而是驗證結(jié)論的過程。教材組織學生對不同形狀、不同大小的三角形的內(nèi)角和進行探索,通過轉(zhuǎn)化、推理、比較、操作和驗證,總結(jié)概括出“所有三角形的內(nèi)角和都是180度”的規(guī)律,從而進一步發(fā)展學生的空間觀念,提高學生的自主學習能力和推理能力。
    下面就具體談談微課的教學設計:
    一、教學目標
    1、通過測量、轉(zhuǎn)化、觀察和比較等活動探索發(fā)現(xiàn)并驗證“三角形的內(nèi)角和是180度”的規(guī)律,并且能利用這一結(jié)論解決求三角形中未知角的度數(shù)等實際問題。
    2、通過折一折、拼一拼和剪一剪等一系列的操作活動培養(yǎng)學生的'聯(lián)想意識和動手操作能力。體驗驗證結(jié)論的過程與方法,提高學生分析和解決問題的能力。
    3、使學生通過操作的過程獲得發(fā)現(xiàn)規(guī)律的喜悅,獲得成就感,從而激發(fā)學生積極主動學習數(shù)學的興趣。
    二、教學重點和難點
    重點:讓學生親自驗證并總結(jié)出三角形的內(nèi)角和是180度的結(jié)論
    難點:對不同驗證方法的理解和掌握。
    三、教學過程
    (一)質(zhì)疑――發(fā)現(xiàn)問題,提出問題
    交流:不同三角尺的內(nèi)角和都是一樣的嗎?三角尺的內(nèi)角和有什么特征?
    引導學生得出三角尺的三個內(nèi)角的度數(shù)和是180度。
    提問:三角尺的形狀是什么三角形?三角尺的內(nèi)角和是180度,我們還可以說成是什么?(得出結(jié)論:直角三角形的內(nèi)角和是180度。)
    你有什么辦法驗證這一結(jié)論呢?(動手操作,尋找答案)
    方法一:拿出不同的直角三角形,分別測量三個內(nèi)角的度數(shù),再求和。(提示存在誤差,但三個內(nèi)角的和都在180度左右)
    方法二:用兩個相同的直角三角形拼成一個長方形,由于長方形的四個內(nèi)角和是360度,因此能得出一個直角三角形的三個內(nèi)角和是180度。
    (二)探究――分析問題,解決問題
    出示三個三角形:直角三角形、銳角三角形和鈍角三角形。
    引導:直角三角形的內(nèi)角和是180度了,由此我們聯(lián)想到銳角三角形和鈍角三角形的內(nèi)角和也有可能是180度。
    提問:你有什么辦法來驗證這一猜想呢?
    拿出事先從課本第113頁剪下來的3個三角形,動手操作,自主探索,發(fā)現(xiàn)規(guī)律。
    方法一:可以像上面那樣先測量每個三角形的三個內(nèi)角的度數(shù),再計算出它們的和,看看能發(fā)現(xiàn)什么規(guī)律。學生測量計算,教師巡視指導。
    引導:測量時要盡量做到準確,測量是存在誤差的,對于測量的不準的同學要重新測定和確認,計算出它們的和,發(fā)現(xiàn)其中的規(guī)律。
    方法二:既然是求三角形的內(nèi)角和,我們就可以想辦法把三角形的3個內(nèi)角拼在一起,看看拼成了什么角。那怎樣才能把3個內(nèi)角拼在一起呢?我們可以將三角形中的3個內(nèi)角撕下來,再拼在一起,會發(fā)現(xiàn)拼成了一個平角,是180度。
    方法三:把三角形的三個內(nèi)角撕下來,雖然能將他們拼在一起,但是原有的三角形被破壞了。因此,我們還可以通過折一折的方法,把三個內(nèi)角折過來拼在一起,同樣會發(fā)現(xiàn)拼成一個平角,是180度。
    方法四:將銳角三角形和鈍角三角形分別分成兩個直角三角形,利用直角三角形內(nèi)角和是180度進行推理。180+180=360度,360-90-90=180度。
    (三)歸納――獲得結(jié)論
    交流:回顧以上3個三角形的內(nèi)角和的探索過程,你發(fā)現(xiàn)了什么規(guī)律?
    總結(jié):通過測量計算、拼一拼和折一折的方法,我們可以消除心中的問號,肯定得說出所有三角形的內(nèi)角和都是180度這一結(jié)論。
    (四)拓展――鞏固練習
    1、將一個大三角形剪成兩個小三角形,每個小三角形的內(nèi)角和是多少度?
    2、在一個三角形中,根據(jù)兩個內(nèi)角的度數(shù),求第三個內(nèi)角的度數(shù)?
    三角形的內(nèi)角和教學設計篇八
    本節(jié)課的教學先通過計算三角尺的3個內(nèi)角的度數(shù)的和,激發(fā)學生的好奇心,進而引發(fā)“三角形內(nèi)角和是180度”的猜想,再通過組織操作活動驗證猜想,得出結(jié)論。
    1、讓學生通過觀察、操作、比較、歸納,發(fā)現(xiàn)“三角形的內(nèi)角和是180o”。
    2、讓學生學會根據(jù)“三角形的內(nèi)角和是180o”這一知識求三角形中一個未知角的度數(shù)。
    3、激發(fā)學生主動參與、自主探索的意識,鍛煉動手能力,發(fā)展空間觀念。
    教學準備:三角板,量角器、點子圖、自制的三種三角形紙片等。
    一、提出猜想:
    看了這2個算式你有什么猜想?
    二、驗證猜想:
    1、畫、量:在點子圖上,分別畫銳角三角形、直角三角形、鈍角三角形。畫好后分別量出各個角的度數(shù),再把三個角的度數(shù)相加。
    老師注意巡視和指導。交流各自加得的結(jié)果,說說你的發(fā)現(xiàn)。
    2、折、拼:學生用自己事先剪好的圖形,折一折。
    指名介紹折的方法:比如折的是一個銳角三角形,可以先把它上面的一個角折下,頂點和下面的邊重合,再分別把左邊、右邊的角往里折,三個角的頂點要重合。發(fā)現(xiàn):三個角會正好在一直線上,說明它們合起來是一個平角,也就是180度。
    繼續(xù)用該方法折鈍角三角形,得到同樣的結(jié)果。
    通過交流使學生明白:除了用剛才的方法之外,直角三角形還可以用更簡便的方法折;可以直角不動,而把兩個銳角折下,正好能拼成一個直角;兩個直角的度數(shù)和也是180度。
    3、撕、拼:可能有個別學生對折的方法感到有困難。那么還可以用撕的方法。
    在撕之前要分別在三個角上標好角1、角2和角3。然后撕下三個角,把三個角的一條邊、頂點重合,也能清楚地看到三個角合起來就是一個平角——180度。
    小結(jié):我們可以用多種方法,得到同樣的結(jié)果:三角形的內(nèi)角和是180o。
    4、試一試:
    三角形中,角1=75o,角2=39o,角3=()o。
    算一算,量一量,結(jié)果相同嗎?
    三、完成想想做做:
    1、算出下面每個三角形中未知角的度數(shù)。
    在交流的時候可以分別學生說說怎么算才更方便。比如第1題,可先算40加60等于100,再用180減100等于80o。第2題則先算180減110等于70,再用70減55更方便。第3題是直角三角形,可不用180去減,而用90減55更好。
    指出:在計算的時候,我們可根據(jù)具體的數(shù)據(jù)選擇更佳的算法。
    然后再分別算一算圖上的這三個三角形的內(nèi)角和。得出結(jié)論:三角形不論大小,它的內(nèi)角和都是180o。
    3、用一張正方形紙折一折,填一填。
    4、說理:一個直角三角形中最多有幾個直角?為什么?
    一個鈍角三角形中最多有幾個直角?為什么?
    1、(第2題)你能連一連嗎?
    學生獨立做,做完后把有疑問的幾個選出來交流。
    2、在釘子板上分別圍出銳角三角形、直角三角形和鈍角三角形。
    學生圍好后,互相檢查驗證。
    3、用一張長方形紙,折出兩個完全一樣的直角三角形。
    用一張正方形紙,折出四個完全一樣的直角三角形。
    讓學生動手折一折,在交流的時候用“對角線“來說一說。
    5、你能在下面的三角形中分別畫一條線段,把它分成兩個直角三角形嗎?
    通過交流使學生明白:畫出的線段就是原來三角形的高。
    三角形的內(nèi)角和教學設計篇九
    1、通過量、剪、拼、擺等直觀操作的方法,讓學生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180度。
    2、在活動交流中培養(yǎng)學生合作學習的意識和能力,讓學生經(jīng)歷猜測探索總結(jié)的數(shù)學學習過程,在實驗活動中體驗探索的過程和方法。
    3、通過運用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題,使學生體會數(shù)學與現(xiàn)實生活的聯(lián)系,體會到數(shù)學的價值,增加學生學數(shù)學的信心和興趣。
    探索發(fā)現(xiàn)三角形內(nèi)角和等于180并能應用。
    三角形內(nèi)角和是180的探索和驗證。
    師:大家喜歡猜謎語嗎?
    生:喜歡。
    師:下面請大家猜一個謎語(大屏幕出示形狀似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。
    (打一幾何圖形))
    生:三角形。
    師:三角形中都有哪些學問?
    生:三角形有三條邊,三個角,具有穩(wěn)定性。
    生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。
    生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。
    生:一個三角形中最多只能有一個直角,最多只能有一個鈍角,最少有兩個銳角。
    生:三角形的內(nèi)有和是180。
    生:(一臉疑惑)
    師:(板書:三角形的內(nèi)角和是180),你有什么疑惑? 生:什么是內(nèi)角?
    生:每個三角形的內(nèi)角和都是180嗎?
    (根據(jù)學生的問題,在三角形的內(nèi)角和是180后面加上一個?)
    1、理解內(nèi)角 師:什么是內(nèi)角?
    生:我認為三角形的內(nèi)角就是指三角形的三個角。
    師:三角形的每個角都是三角形的內(nèi)角,每個三角形都有三個內(nèi)角。
    2、理解內(nèi)角和。
    師:那三角形的內(nèi)角和又是指什么?
    生:我認為三角形的內(nèi)角和就是把三角形的三個內(nèi)角的度數(shù)加起來的和。
    師:為了方便,我們將三角形的每個內(nèi)角編上序號1、2、3、我們叫它1、2、3,這三個角的度數(shù)和,就是這個三角形的內(nèi)角和。
    3、實踐驗證
    師:每個三角形的內(nèi)角和都是180嗎?用什么方法來驗證呢?
    生:量一量每個角的度數(shù),然后加起來看看是不是180。
    師:請大家拿出課前準備的三角形,親自量一量,算一算。(學生動手量一量)
    師:誰愿意把你的勞動成果和大家分享一下?
    生:我量的這個三角形的三個內(nèi)角的度數(shù)分別是60、60、60,加起來一共是180。
    師:這位同學量的是一個銳角三角形,并且是比較特殊的三角形等邊三角形。
    生:我量這個三角形的三個內(nèi)角的度數(shù)分別是45、45、90,加起來一共是180。
    師:這是我們?nèi)浅咧械囊粋€,也比較特殊,是一個等腰直角三角形。
    生:我量的是三角尺中的另一個,三個內(nèi)角的度數(shù)分別是60、30、90,加起來一共是180 生:我量的是鈍角三角形,三個內(nèi)角的度數(shù)分別是85、60、38,加起來一共是183。
    師:你發(fā)現(xiàn)了什么?
    生:有的三角形的內(nèi)角和是180,而有的三角形的內(nèi)角和卻不是180。
    師:看來三角形的內(nèi)角和不一定是180。
    生:老師,測量會有誤差,量出來的不是很精確,那么求出來的結(jié)果也不夠精確。雖然不都是三個內(nèi)角加起來不都是180,但都接近180。
    生:都接近180就能說一定是180嗎?
    師:科學來不得半點虛假,看來這個是不能讓大家信服的。那還可以用什么方法來驗證呢?下面請同學們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學具進行驗證,比一比哪些組的方法富有新意,開始!
    (學生在小組內(nèi)進行探索驗證。教師巡視,參與到學生的研究中)
    師:請每個小組選擇一個代言人,和大家分享一下你們的智慧。
    生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個內(nèi)角都向內(nèi)折,三個內(nèi)角就拼成了一個平角,也就是180,所以我們小組得出三角形的內(nèi)角和是180。
    生:我們小組也有折的直角三角形,鈍角三角形。
    (其它的成員展示不同的三角形)
    師:看這個小組的同學想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進行驗證,老師實在是佩服你們組的智慧,讓我們把掌聲送給他們!
    師:哪個小組和他們的方法不一樣?
    生:我們小組把三角形的三個內(nèi)角都撕了下來,拼在了一起,正好拼成了一個平角,也就是180。我們也實驗了不同的三角形,三個內(nèi)角都可以拼成平角,所以我們小組得出結(jié)論,三角形的內(nèi)角和是180。
    師:這個小組的方法簡便,易操作,很好。
    生:我們小組成員是這樣想的,一個長方形有4個直角,每個直角90,那么長方形的內(nèi)角和就是360,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180。 師:你們小組很聰明,從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!
    4、小結(jié)
    生:沒有。
    師:(去掉問號)那就讓我們大聲地讀出來三角形的內(nèi)角和是1800。
    1、說一說每個三角形的內(nèi)角和是多少度
    師:(出示一個大三角形)這個大三角形的內(nèi)角和是多少度?
    生: 180
    師:(出示一個小三角形)這個小三角形的內(nèi)角和是多少度?
    生:180
    師:(演示)把這兩個三角形拼在一起,拼成的大三角形的內(nèi)角和是多少度?
    生:180
    生:把兩個三角形拼成一個大三角形,兩個直角不再是大三角形的內(nèi)角,所以少了180
    師:(演示)把一個大三角形分成兩個三角形,每個三角形的內(nèi)角和是多少度?
    生:180
    2、求下面各角的度數(shù)
    師:如果老師告訴你一個三角形的兩個角的度數(shù),你能說出第三個角的度數(shù)嗎?
    (出)
    3、一個等腰三角形的風箏,它的一個底角是70,它的頂角是多少度?
    師:三角形的內(nèi)角和在我們的生活中應用很廣泛,老師給大家?guī)硪粋€在建筑中應用的例子。
    生:用量角器量一量
    師:量哪個角?量一量斜拉的鋼索與橋柱形成的夾角嗎?
    師:你真是個善于觀察、善于思考的孩子,努力學習,將來一定會成為一名優(yōu)秀的建筑師。
    四、回顧總結(jié),拓展延伸
    師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?
    生:我知道了三角形的內(nèi)角和是180。
    生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內(nèi)角和都是180。
    生:把一個大三角形分成兩個小三角形,每個三角形的內(nèi)角和還是180,把兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和還是180。
    生:我可以用撕、拼、折等方法來驗證三角形的內(nèi)角和是180。
    師:這個同學不僅學會了知識,而且學會了方法,我們只有學會了方法,才能更好地去探究更多的知識。
    師:那你現(xiàn)在知道為什么一個三角形內(nèi)只能有一個直角或一個鈍角嗎?
    生:兩個直角的度數(shù)之和是180,再加上一個角,三個角的度數(shù)之和超過了180,所以一個三角形中最多只能有一個直角。
    生:兩個鈍角的度數(shù)之和就超過了180,再加上一個角,就更大了,所以一個三角形中最多只能有一個鈍角。
    師:我們學習知識,必須知其然并知其所以然。
    師:三角形中還有許許多多的學問,讓我們在以后的學習中繼續(xù)去研究。
    三角形的內(nèi)角和教學設計篇十
    一堂好課不應是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術的集中展示。一堂好課不是看它的熱鬧程度,而在于學生從中得到了什么,它留給人們的應是思考、啟示和回味。2月19日上午,在沈家門第一小學,我有幸聆聽了趙斌娜老師執(zhí)教的《三角形的內(nèi)角和》一課,這就是一堂好課。
    趙老師營造了寬松和諧的課堂氣氛,讓學生能主動參與學習活動,既關注了學生的個人差異和不同的學習需求,又注重了學生的個體感悟,強調(diào)情感體驗的過程。確立了學生在課堂教學中的主體地位,使學生在學習過程中既調(diào)動了積極性,又激發(fā)了學生的主體意識和進取精神。學生在自主、合作、探究的學習方式中互相激勵,取長補短,能團結(jié)協(xié)作,最終形成了相應能力;同時培養(yǎng)了學生刻苦鉆研,事實求是的態(tài)度。
    教學過程是一堂課關鍵中的關鍵,新課標提出數(shù)學教學是數(shù)學活動的教學,而數(shù)學活動應是學生自己建構(gòu)知識的活動。教師讓學生“在參與中體驗,在活動中發(fā)展”。本節(jié)課有操作活動、自主探索與合作交流、應用活動三個方面,下面我重點談談操作活動。
    1、在實踐材料上下了工夫。
    操作實踐的材料是精心選擇的,老師為學生準備了用卡紙制作的形狀、大小、顏色不同的三角形各幾個,這樣學生在操作時候,便于選擇、測量、拼擺、觀察、思考問題,而且這些三角形顏色醒目、比較大,學生應用起來很得手,操作的材料和學生的動手實踐配合恰當。
    2、找準時機讓學生進行實踐操作。
    本節(jié)課安排了兩次操作活動:一是在得出三角形內(nèi)角和規(guī)律前進行實踐操作,促使學生在實踐操作中探究新知識;二是在初步得出規(guī)律之后,讓學生通過實踐操作來驗證新知識。幫助學生清楚地認識到第一次出現(xiàn)內(nèi)角和偏差的原因是測量誤差造成的。給學生提供的這兩次動手實踐的機會,不僅提高了操作的效果,更重要的使“聽數(shù)學”變?yōu)椤白鰯?shù)學”。促使學生在“做數(shù)學”的過程中對所學知識產(chǎn)生了深刻的體驗,從中感悟和理解到新知識的形成和發(fā)展,體會了數(shù)學學習的過程與方法,獲得數(shù)學活動的經(jīng)驗。
    3、把實踐操作和數(shù)學思維結(jié)合起來。
    學生通過實踐操作獲得的認識是一種感性的認識,是外在的直觀的印象。在本節(jié)課中趙老師在學生實踐操作的基礎上引導學生把動手實踐和數(shù)學思維結(jié)合起來,先讓學生思考出可以用量、撕和拼的方法來推導三角形內(nèi)角和的度數(shù),接著引導學生說出量的方法,最后讓學生實際測量。采取邊說邊操作,邊討論邊操作的方式,讓手、腦、口并用,在操作和直觀教學的基礎上及時對三角形內(nèi)角和規(guī)律進行抽象概括。做到邊動手,邊思考。同時學生獲得了一種數(shù)學思想和方法,學會了解決一些類似的一系列的問題,提高了實踐動手的有效性。
    三角形的內(nèi)角和教學設計篇十一
    課程標準這樣描述:通過觀察、操作了解三角形內(nèi)角和是180。
    分析教材內(nèi)容,在上學期的學習中學生已經(jīng)掌握了角的`分類及度量的知識。在本課之前,學生又研究了三角形的特性、三邊間的關系及三角形的分類等知識。積累了一些有關三角形的知識和經(jīng)驗,形成了一定的空間觀念,可以在比較抽象的水平上進一步認識三角形,探索新知。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°,學好它有助于學生理解三角形的三個內(nèi)角之間的關系,也是進一步學習其他圖形內(nèi)角和的基礎,同時為初中進一步論證做好準備。
    課前我對學情進行了分析:
    1、學生在學習本課前已經(jīng)掌握了銳角、直角、鈍角、平角和周角的度數(shù),認識了三角形的基本特征及其分類,由于學生的數(shù)學知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題策略的多樣化。
    2、已經(jīng)有不少學生知道了三角形內(nèi)角和是180度的結(jié)論,但是很可能都知其然不知其所以然。
    通過對課程標準的認識,以及內(nèi)容分析和學情分析,我制定了這樣的學習目標:
    1、通過量、拼、折、剪等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°并會應用這一規(guī)律解決實際的問題。
    2、通過研究直角三角形進而研究銳角三角形、鈍角三角形,初步認識、理解由特殊到一般的邏輯思辨方法。
    針對這一目標的完成,我設計了一下評價方式:
    1、交流式評價:通過師生、生生對話交流,在交流中對學生進行評價。
    2、表現(xiàn)性評價:通過小組討論表現(xiàn)、學生回答問題情況,適當對學生進行點撥。
    1、通過3個練習題(1、做一做。2、說一說.3、拼一拼、想一想。)。
    檢測學習目標1的掌握情況。
    2、通過小組、同桌合作、匯報,教師引導學生理解本節(jié)課所蘊含的學習方法,檢測學習目標2的掌握情況。
    教具準備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格。
    學具準備:三角板、量角器。
    這節(jié)課的教學我通過一下四個環(huán)節(jié)完成。
    1、觀察猜測,引入新知;
    2、動手操作,探索新知;
    3、鞏固新知,拓展應用;
    4、總結(jié)評價、延伸知識。
    第一環(huán)節(jié),觀察猜測,引入新知。
    由圖形引入,讓學生指出銳角三角形,直角三角形,鈍角三角形的三個內(nèi)角,發(fā)現(xiàn)在這些三角形中最大的內(nèi)角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:
    (1)鈍角變小,另外兩個角怎樣變?
    (2)鈍角變大,另外兩個角怎樣變?
    (3)鈍角變大、變大、變大再變大,還能再大嗎?發(fā)現(xiàn)再大就成平角了。平角多少度?這時把三角形三個內(nèi)角的加起來,和可能多少呢?猜測:180度。
    第二環(huán)節(jié),動手操作,探索新知。
    先讓學生觀察一副三角板的內(nèi)角和,發(fā)現(xiàn)都是180度,和猜測是一樣的,是不是所有的直角三角形內(nèi)角和都是180度呢?課件出示一些直角三角形,讓學生用手中的工具驗證你的猜測。
    四人小組合作,拿出學具袋里三個紅色的直角三角形和表格,用不同的方法驗證猜測。學生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學生說一說方法,同時在課件上展示。
    這個環(huán)節(jié)引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內(nèi)角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結(jié)論的統(tǒng)一,從而使學生明白獲得探究問題的方法比獲得結(jié)論更為重要。
    課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學到的知識來研究它們的內(nèi)角和嗎?動手試一試,可以同桌討論。(學生操作,匯報,課件演示)讓學生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內(nèi)角和也是180度。我們就可以說所有三角形的內(nèi)角和都是180度。這是三角形的一個特性。
    這樣引導學生通過直角三角形的內(nèi)角和是180度來推導出銳角和鈍角三角形的內(nèi)角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。
    第三環(huán)節(jié)、鞏固新知,拓展應用。
    用三角形的這一特性來解決一些問題。
    1、基本練習。
    通過做一做和說一說這兩個練習來強化學生認知。
    2、拓展練習。
    拼一拼、想一想。
    (1)兩個三角形拼成大三角形,說出大三角形的內(nèi)角和。
    (2)一個三角形去掉一部分。
    引導學生發(fā)現(xiàn),無論三角形的形狀或大小如何改變,內(nèi)角和都是180度,看來三角形的內(nèi)角和度數(shù)和他的大小形狀都無關。
    (3)再把這個三角形剪去一部分剪成一個四邊形,它的內(nèi)角和是多少度?
    (4)如果變成五邊形,你還能求出他的度數(shù)嗎?
    充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內(nèi)角和等于180度。在此基礎上滲透數(shù)學的“轉(zhuǎn)化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。
    第四環(huán)節(jié)、總結(jié)評價、延伸知識。
    通過這個環(huán)節(jié)讓學生談一談自己的收獲或感受,對本節(jié)課的知識進行拓展升華。
    猜測(180度)。
    驗證:測量、撕拼、折疊結(jié)論。
    我的板書簡明扼要,體現(xiàn)了本節(jié)課的重點,而且是對本節(jié)課學習方法的一個回顧。
    三角形的內(nèi)角和教學設計篇十二
    教材第67頁例6、“做一做”及教材第69頁練習十六第1~3題。
    1.通過動手操作,使學生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。
    2.能運用三角形的內(nèi)角和是180°這一結(jié)論,求三角形中未知角的度數(shù)。
    3.培養(yǎng)學生動手動腦及分析推理能力。
    導學過程。
    1、什么是平角?平角是多少度?
    2、計算角的度數(shù)。
    3、回憶三角形的相關知識。(出示直角三角形、銳角三角形、鈍角三角形)。
    (設計意圖:讓學生經(jīng)歷質(zhì)疑驗證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識,真正驗證了“實踐出真知”的道理,這樣的教學,將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學知識背景,滲透數(shù)學知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學生的綜合素養(yǎng))。
    1、讀學卡的學習目標、任務目標,做到心里有數(shù)。
    4、驗證:
    (1)初證:用一副三角板說明直角三角形的內(nèi)角和是180°。
    (2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
    (3)再證:請按學卡提示,拿出學具,選擇自己喜歡的方式驗證三角形的內(nèi)角和是180°(師巡視)。
    (4)匯報結(jié)論(清楚明白的給小組加優(yōu)秀10分)。
    5、結(jié)論:修改板書,把“?”去掉,寫“是”。
    6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說明三角形無論大小它的內(nèi)角和都是180°(課件演示)。
    7、看微課感知“偉大的發(fā)現(xiàn)”(設計意圖:讓學生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)。
    1、填空。
    (1)一個三角形,它的兩個內(nèi)角度數(shù)之和是110,第三個內(nèi)角是().
    (2)一個直角三角形的一個銳角是50,則另一個銳角是()。
    (3)等邊三角形的3個內(nèi)角都是()。
    (4)一個等腰三角形,它的一個底角是50,那么它的頂角是()。
    (5)一個等腰三角形的頂角是60,這個三角形也是()三角形。
    2、判斷。
    (1)一個三角形中最多有兩個直角。()。
    (2)銳角三角形任意兩個內(nèi)角的和大于90。()。
    (3)有一個角是60的等腰三角形不一定是等邊三角形。()。
    (4)三角形任意兩個內(nèi)角的和都大于第三個內(nèi)角。()。
    (5)直角三角形中的兩個銳角的和等于90。()。
    根據(jù)所學的知識,你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?
    1、小組討論。
    2、匯報結(jié)果。
    3、課件提示幫助理解。
    教學反思。
    今天我講了《三角形內(nèi)角和》這部分內(nèi)容,學生其實通過不同途徑已經(jīng)知道三角形內(nèi)角和是180°,是不是說這節(jié)課的重難點就已經(jīng)突破了,只要學生能應用知識解決問題就算是達到這節(jié)課的教學目標了呢?我想應該好好思考教材背后要傳遞的東西。
    任何規(guī)律的發(fā)現(xiàn)都要經(jīng)過一個猜測、驗證的過程,不經(jīng)歷這個探究的過程,學生對于這一內(nèi)容的認識就不深刻,聰明的孩子還會懷疑三角形內(nèi)角和是180°嗎?。因此這個結(jié)論必須由實踐操作得出結(jié)論。所以最終我把本課定為一個實踐探究課。
    如何開篇點題,是我這次要解決的第一個問題。怎樣才能讓學生由已知順利轉(zhuǎn)向?qū)ξ粗奶角?,怎樣直接轉(zhuǎn)向研究三個角的“和”的問題呢?因此我只設計了三個簡單的問題然學生快速進入主題。
    如何驗證內(nèi)角和是180°,是我一直比較糾結(jié)的環(huán)節(jié)。由于小學生的知識背景有限,無法利用證明給予嚴格的驗證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實驗”的特點,那么就都會有誤差,其實都無法嚴格的證明。但是這節(jié)課我們除了要尊重知識的嚴謹還應該尊重孩子的認知。如果通過剪拼、折疊、想象后,還有的孩子認為三角形內(nèi)角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴謹,同時對知識有一種尊重,對自己的操作結(jié)果充滿自信,否則拼個差不多也可以簡單的認同了內(nèi)角和是180°。
    本節(jié)課的練習的設置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內(nèi)角和體會三角形內(nèi)角和跟大小無關、跟形狀無關,到已知兩個角的度數(shù)求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內(nèi)角和是多少度,求被剪開的三角形,形成的新圖形的內(nèi)角和是多少度,這些都是對三角形內(nèi)角和的一次拓展。讓學生的認知發(fā)生沖突,提出挑戰(zhàn)。
    給學生一個平臺,她會給你一片精彩。通過動手操作來驗證內(nèi)角和是否是180°,學生最容易出現(xiàn)的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節(jié)課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因為我給了他們足夠的時間去思考。當有了空間,孩子才會施展他們的才華。這是我的一大收獲。
    前邊驗證時間過多,到練習時間就有些少,特別是求四邊形和六邊形內(nèi)角和時,給的時間過短,學生沒有充分思維。
    總而言之,這次的公開課,給了我一次學習和鍛煉的機會。在教案設計時,該怎么樣把每一個環(huán)節(jié)落實到位,怎么樣說好每一句話,預設好每一個環(huán)節(jié),在教研中聽取各位教師的點評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學團隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻自己的想法,讓我在教學中,能夠在一個輕松和諧的教學氛圍中與學生共同去探討,去發(fā)現(xiàn),去學習。
    三角形的內(nèi)角和教學設計篇十三
    三角形的內(nèi)角和是四年級下冊第五單元的內(nèi)容,是在學生認識三角形的特征、分類的基礎上進行教學的,主要通過不同形式的動手操作驗證三角形的內(nèi)角和的度數(shù)。
    一、亮點。
    1.注重數(shù)學思想方法的滲透。在教學中,孔石蕾老師首先通過猜想,讓學。
    生通過量一量銳角三角形、直角三角形和鈍角三角形每個角的度數(shù),有的學生得到三角形的內(nèi)角和正好是180°,有的大于180°,而有的則小于180°,由此讓學生去想辦法去驗證三角形的內(nèi)角和的度數(shù)。在驗證的過程中,學生采用了把三角形的三個角撕下來拼成直角的方法、把三角形的三個角折成平角的方法得出了三角形的內(nèi)角和是180度,接著教師又通過動畫演示操作和幾何畫板的量角的優(yōu)勢,讓學生清晰地看出三角形內(nèi)角和的度數(shù)是180度,最后又應用這一知識進行了綜合的練習。在整個教學過程中,教師采用了猜想、驗證、得出結(jié)論、應用的四個探究環(huán)節(jié),讓學生經(jīng)歷了知識的發(fā)生、發(fā)展過程,提高了解決問題的能力。
    2.精心準備,精彩呈現(xiàn)。在教學過程中,孔石蕾老師在課件的制作,幾何畫板的應用、知識材料的拓展、習題的選擇等方面進行了精心設計和準備,教學過程流暢、教學環(huán)節(jié)緊湊,教學語言清晰,有效地達成了教學目標,使學生在學習的過程中不僅掌握了知識,也掌握了學習數(shù)學的方法。
    二、建議。
    在教學過程中,可以適當?shù)倪M行知識的延伸拓展,如通過學習三角形的內(nèi)角和對于后續(xù)的學習有什么影響,可以想到四邊形的內(nèi)角和等等方面的內(nèi)容。
    三角形的內(nèi)角和教學設計篇十四
    北師大版四年級數(shù)學下冊。
    1、探索與發(fā)現(xiàn)三角形的內(nèi)角和是180°,已知三角形的兩個角度,會求出第三個角度。
    2、培養(yǎng)學生動手操作和合作交流的能力,促進掌握學習數(shù)學的方法。
    3、培養(yǎng)學生自主學習、積極探索的好習慣,激發(fā)學生學習數(shù)學應用數(shù)學的興趣。
    重點掌握三角形的內(nèi)角和是180°,會應用三角形的內(nèi)角和解決實際問題;難點是探索性質(zhì)的過程。
    《三角形內(nèi)角和》屬于空間與圖形的范疇,是在學生已經(jīng)接觸了三角形的穩(wěn)定性和三角形的分類相關知識后對三角形的進一步研究,探索三個內(nèi)角的和。教材中安排了學生對不同形狀的、大小的三角形進行進行度量,運用折疊、拼湊等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°。擴充了學生認識圖形的一般規(guī)律從直觀感性的認識到具體的性質(zhì)探索,更加深入的培養(yǎng)了學生的空間觀念。
    一、創(chuàng)設情境,激發(fā)興趣。
    出示課件,提出兩個兩個疑問:
    1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內(nèi)角和比你大,是這樣的嗎?
    二、初建模型,實際驗證自己的猜想。
    在第一步的基礎上學生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關系都接近180度。這時教師要組織學生進行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內(nèi)角,并計算出它們的總和是多少?把小組的測量結(jié)果和討論結(jié)果記錄下來以便全班進行交流。
    三、再建模型,徹底的得出正確的結(jié)論。
    因為在上一環(huán)節(jié)學生已經(jīng)得出三角形的內(nèi)角和大約都是或接近180度。因為我們在測量時由于測量人不同、測量工具不同可能產(chǎn)生一些誤差。有的同學難免可能猜想三角形的內(nèi)角和就是180度呢?我們繼續(xù)研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的方法來證明三角形的內(nèi)角和都是180度呢?教師放手讓學生去思考、去動手操作,對有困難和有疑問的同學進行提示和指導。然后讓學生到前面演示驗證的方法,教師借助多媒體進行演示。
    四、應用新知,鞏固練習。
    1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數(shù)。(1小題屬于基本練習)。
    2、試一試,在直角三角形中已知其中的一個角求另一個角的度數(shù)。
    3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數(shù)求三角形的頂角。
    五、拓展與延伸。
    通過三角形的內(nèi)角和是180度的事實來探討四邊形、五邊行的內(nèi)角和。
    三角形的內(nèi)角和教學設計篇十五
    各位老師:
    你們好,我是來應聘xx數(shù)學老師的x號考生,我今天抽到的試講題目是《三角形的內(nèi)角和》,下面開始我的試講。
    大家拿出事先準備好的三角板和量角器吧,同學們,你們現(xiàn)在用量角器來測量一下每一個三角形的角的度數(shù),待會老師會進行統(tǒng)計。(轉(zhuǎn)身畫兩個三角板模型),測好了吧,下面請靠窗的同學告訴老師你的測量答案。30度60度90度,非常好,那另一個呢?45度45度和90度,非常精確,請坐,相信咱們其他同學也一定能夠測量出來。那么大家仔細觀察一下,這兩組數(shù)據(jù)有沒有什么相似點。有的同學說都有個九十度,很好,還有呢,很好!有的同學發(fā)現(xiàn)了,說這三個角加起來是180度,非常棒。也就是這兩個三角形內(nèi)角和是180度。
    可是是不是所有內(nèi)角和都是180度啊,同學們,你們自己分別畫一個不同的銳角、鈍角、直角三角形,并且測量每個內(nèi)角度數(shù),并報給老師內(nèi)角和。好,請第一排的女生起來回答,你的三個內(nèi)角和是多少?179,180,180很好,大家知道為什么第一個不是嗎?對,是因為畢竟有誤差的存在,很棒。
    下面大家按以前的安排分成六個組,交給你們一個任務,你們討論一下,怎么來驗證我們剛剛得出的這個結(jié)論呢?給大家十分鐘時間來討論。
    老師看到很多同學都皺起了眉頭,那老師來給大家一點小提示, 我們試著把三角形的三個角剪下來拼拼看。啊,很棒我看到前排的同學把三個角拼成了一個平角,大家知道平角多少度?180。那下面,大家可以動動手,任意再畫幾個三角形,用剛剛的方法看看能不能拼成一個平角?好,大家都非常積極,通過剛剛的驗證,我們可以肯定:三角形的內(nèi)角和是180度。
    那接下來我們回到咱們剛開始上課的問題:為什么不能畫一個有兩個直角的三角形?誰愿意給大家說說?好,你舉手最快,請你來說說。嗯,很好,因為有兩個九十度的角加起來就是180度了, 不可能畫出一個三角形,太棒了。請坐。
    大家看大屏幕,這里有兩個三角形,老師給分別給大家標出了其中兩個角的度數(shù),有沒有同學告訴我剩下的度數(shù)???趕緊開動腦筋算算看。好,算好的同學大聲告訴老師,第一個是30度,很棒。第二個50度,很棒,算的非常準確,看來大家上課都非常認真。
    這堂課我們就上到這里,請大家回去完成課后習題1到3。好,下課!
    三角形的內(nèi)角和教學設計篇十六
    《三角形內(nèi)角和》是北師大版《數(shù)學》四年級下冊的內(nèi)容。是在學生學習了三角形的概念及特征之后進行的,它是掌握多邊形內(nèi)角和及其他實際問題的基礎,因此,掌握三角形的內(nèi)角和是180度這一規(guī)律具有重要意義。教材首先出示了兩個三角形比內(nèi)角和這一情境,讓學生通過測量、折疊、拼湊等方法,發(fā)現(xiàn)三角形的內(nèi)角和是180度。教材還安排了試一試,練一練的內(nèi)容。已知三角形兩個內(nèi)角的度數(shù),求出第三個角的度數(shù)。
    三角形的內(nèi)角和教學設計篇十七
    各位評委、老師:
    我說課的題目是《三角形內(nèi)角和》,內(nèi)容選自人教版九年義務教育七年級下冊第七章第二節(jié)第一課時。
    數(shù)學是人與人之間精神層面上進行的交往。課堂教學中的交往主要是教師與學生、學生與學生之間的交往。它需要運用“對話式”的學習方式,采取多種教學策略,使學生在合作、探索、交流中發(fā)展能力。新課程中對學生的情感、體驗、價值觀,以及獲取知識的渠道都有悖于傳統(tǒng)的教學模式,這正是教師在新課程中尋找新的教學方式的著眼點。應該說,新的教學方式將伴隨著教師對新課程的逐漸透視而形成新的路徑。要破除原有教學活動的框架,建立適應師生相互交流的教學活動體系;滿足學生的心理需求,實現(xiàn)教者與學者感情上的融洽和情感上的共鳴;給學生體驗成功的機會,把“要我學”變成“我要學”。我認為教師角色的轉(zhuǎn)變一定會促進學生的發(fā)展、促進教育的長足發(fā)展,在未來的教學過程里,教師要做的是:幫助學生決定適當?shù)膶W習目標,并確認和協(xié)調(diào)達到目標的最佳途徑;指導學生形成良好的學習習慣,掌握學習策略;創(chuàng)造豐富的教學情境,培養(yǎng)學生的學習興趣,充分調(diào)動學生的學習積極性;為學生提供各種便利,為學生的學習服務;建立一個接納的、支持性的'、寬容的課堂氣氛;作為學習的參與者,與學生分享自己的感情和想法;和學生一道尋找真理,能夠承認自己的過失和錯誤。教學情境的營造是教師走進新課程中所面臨的挑戰(zhàn),適應新一輪基礎教育課程改革的教學情境不是文本中的約定,也不是現(xiàn)成的拿來就能用的,需要我們在教學活動的全過程中去探索、研究、發(fā)現(xiàn)、形成。
    三角形的內(nèi)角和定理揭示了組成三角形的三個角的數(shù)量關系,此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎,三角形的內(nèi)角和定理也是幾何問題代數(shù)化的體現(xiàn)。
    處于這個年齡階段的學生有能力自己動手,在自己的視野范圍內(nèi)因地制宜地收集、編制、改造適合自身使用,貼近生活實際的數(shù)學建模問題,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結(jié)的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學生充分的自由和空間,同時注意問題的開放性與可擴展性。
    1.知識目標:在情境教學中,通過探索與交流,逐步發(fā)現(xiàn)“三角形內(nèi)角和定理”,使學生親身經(jīng)歷知識的發(fā)生過程,并能進行簡單應用。能夠探索具體問題中的數(shù)量關系和變化規(guī)律,體會方程的思想。通過開放式命題,嘗試從不同角度尋求解決問題的方法。教學中,通過有效措施讓學生在對解決問題過程的反思中,獲得解決問題的經(jīng)驗,進行富有個性的學習。
    2.能力目標:通過拼圖實踐、問題思考、合作探索、組內(nèi)及組間交流,培養(yǎng)學生的的邏輯推理、大膽猜想、動手實踐等能力。
    3.德育目標:通過添置輔助線教學,滲透美的思想和方法教育。
    4.情感、態(tài)度、價值觀:在良好的師生關系下,建立輕松的學習氛圍,使學生樂于學數(shù)學,遇到困難不避讓,在數(shù)學活動中獲得成功的體驗,增強自信心,在合作學習中增強集體責任感。
    采用“問題情境——建立模型——解釋、應用與拓展”的模式展開教學。
    采用對話式、嘗試教學、問題教學、分層教學等多種教學方法,以達到教學目的。
    三角形的內(nèi)角和教學設計篇十八
    三角形的內(nèi)角和是北師大版四年級下冊第二單元的內(nèi)容。三角形的內(nèi)角和是三角形的一個重要性質(zhì),學好它有助于學生理解三角形內(nèi)角之間的關系,也是進一步學習幾何的基礎。
    本節(jié)課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,學生已經(jīng)具備一定的關于三角形的認識的直接經(jīng)驗,也已具備了一些相應的三角形知識和技能,這為感受、理解、抽象三角形的內(nèi)角和的規(guī)律,打下了堅實的基礎。
    因此,我確定本節(jié)課的教學目標是:
    知識與技能:通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180。知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。能應用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題。
    發(fā)展學生動手操作、觀察比較和抽象概括的能力。
    情感、態(tài)度與價值觀:體驗數(shù)學活動的探索樂趣,體會研究數(shù)學問題的思想方法。
    學生經(jīng)歷探究三角形內(nèi)角和的全過程并歸納概括三角形內(nèi)角和等于180。
    三角形內(nèi)角和的探索與驗證,對不同探究方法的指導和學生對規(guī)律的靈活應用。
    整個教學將體現(xiàn)以人為本,先放后扶的教學策略。放,不是漫無目的的放,而是為學生提供足夠的探究規(guī)律的材料和時間,放手讓學生自主學習,合作探究;扶,則是根據(jù)學生的不同探究方法和出現(xiàn)的錯誤,給予恰當指導,引導學生歸納概括出規(guī)律。
    《課程標準》明確指出:要結(jié)合有關內(nèi)容的教學,引導學生進行觀察、操作、猜想,培養(yǎng)學生初步的思維能力。四年級學生經(jīng)過第一學段以及本單元的學習,已經(jīng)掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作、主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導學生從猜測――驗證展開學習活動,讓學生感受這種重要的數(shù)學思維方式。在教學中,學生通過測量、拼折、驗證等方式確定三角形內(nèi)角的度數(shù)和。這樣,既培養(yǎng)了觀察能力和歸納概括能力,又體現(xiàn)了動手實踐、合作交流,自主探索的學習方式,同時也培養(yǎng)了探索能力和創(chuàng)新精神。
    基于以上分析,我以猜測、驗證、結(jié)論和應用四個活動環(huán)節(jié)為主線,讓學生通過自主探究學習進行數(shù)學的思考過程,積累數(shù)學活動經(jīng)驗。
    通過出示一個角形,讓學生說知道三角形的知識來引出三角形的內(nèi)角的概念,讓學生自由猜測,三角形內(nèi)角和是多少?引出課題,以疑激思。
    動手實踐,自主探究,是學生學習數(shù)學的重要方式,新課程的一個重要理念就是提倡學生做數(shù)學用親身體驗的方式來經(jīng)歷數(shù)學,探究數(shù)學,這要求老師首先為學生提供充分的研究材料,以及充裕的時間,保證學生能真正地試驗,操作和探索。
    這一環(huán)節(jié)我設計為以下三步:
    1、操作感知。
    組織學生通過算一算初步感知三角形的內(nèi)角和。根據(jù)學生特點,為了節(jié)約學生上課的時間,作為預習作業(yè),我提前讓學生在家里自制鈍角、銳角、直角三角形,并測量出每個角的度數(shù),寫在三角形對應的角上,也填在書上的表格里。這時直接讓學生計算,學生匯報計算結(jié)果,不同的學生可能會有不同的結(jié)果,有可能大于180或小于180甚至等于180,只要相對合理(允許一點誤差)都給與肯定。這時可引導學生得出結(jié)論(強調(diào)在排除測量誤差的前提下):三角形的內(nèi)角和是180度。在這一過程中,學生有困惑,有疑問,而正是這些困惑激發(fā)了學生更強的探究欲望,正是這些疑問,使得合作成為學生的內(nèi)在需要。
    2、小組合作。
    針對探究過程中不同思維能力的學生,要做到因材施教。對于得出結(jié)論的學生要鼓勵他們思考新的方法,對于無法下手的學生,要啟發(fā)他們知道三角形的內(nèi)角和,我們可以把角合起來看是多少?能用什么方法將三個角合起來。在探究學習中,老師只是起一個引導者的作用,引導學生不斷地深入探究,盡可能用多種合理的方法,驗證結(jié)論。
    3、交流反饋,得出結(jié)論。
    學生完成探究活動之后,在有親身體驗的基礎上,我將選擇不同方法的代表,在展示平臺上展示自己的探究過程,并說說自己是怎樣想的。我關注的不是學生最后論證的結(jié)果,而是學生思維的過程。學生可能通過:拼一拼、折一折、畫一畫的方法,驗證得出三角形的內(nèi)角和是180度,并通過觀察對比各組所用的三角形,是不同類型的而且大小不同的,發(fā)現(xiàn)這一規(guī)律是具有普遍性的,對于任意三角形都是適用。在學生探究之后,我用課件重新演示了3種方法,讓學生有一個系統(tǒng)的知識體系。
    揭示規(guī)律之后,學生要掌握知識,形成技能技巧,就要通過解答實際問題的練習來鞏固內(nèi)化。根據(jù)學生能力的不同,我將練習分為以下3個層次。
    1、基礎練習。要求學生利用三角形內(nèi)角和是180度在三角形內(nèi)已知兩個角,求第三個角。由于學生空間思維能力的局限,我將先出示有具體圖形的題目,再出示文字敘述題。在這之間指導學生注意一題多解。
    2、提高練習。如已知一個直角三角形的一個角的度數(shù),求另一個角的度數(shù);已知一個等腰三角形的頂角或底角的度數(shù),求底角或頂角的度數(shù)。
    3、拓展練習。針對不同思維能力的學生,我設計的思考題是要求學生應用三角形內(nèi)角和是180的規(guī)律,求多邊形的內(nèi)角和。我的目的不僅僅是為了讓學生去求解多邊形的內(nèi)角和,更重要的是為了讓學生靈活應用知識點,培養(yǎng)學生的空間思維能力。
    這樣安排可以兼顧不同能力的學生,在保證基本教學要求的同時,盡量滿足學生的學習需要,啟發(fā)學生的思維活動。
    本節(jié)課通過這樣的設計,學生全身心投入到數(shù)學探究互動中去,學生不僅學到科學探究的方法,而體驗到探索的甘苦,領略成功的喜悅,學生在探索中學習,在探索中發(fā)現(xiàn),在探索中成長,最終實現(xiàn)可持續(xù)性發(fā)展。
    猜測驗證結(jié)論應用。