教案可以提供教學過程的詳細安排,有助于教師掌握教學進度和時間分配。教案的編寫要注意與學生實際生活和社會實踐緊密結(jié)合。這些教案以清晰的教學目標、具體的教學內(nèi)容和細致的教學步驟為特點,可供教師參考。
函數(shù)的定義教案篇一
難點是對函數(shù)抽象符號的認識與使用.
投影儀
自學研究與啟發(fā)討論式.
一、復(fù)習與引入
(要求學生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學過的函數(shù)例子)
提問1.是函數(shù)嗎?
(由學生討論,發(fā)表各自的意見,有的認為它不是函數(shù),理由是沒有兩個變量,也有的認為是函數(shù),理由是可以可做.)
二、新課
現(xiàn)在請同學們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)
提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.
(板書)2.2函數(shù)
一、函數(shù)的概念
問題3:映射與函數(shù)有何關(guān)系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)
引導學生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集.
2.本質(zhì):函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書)
然后讓學生試回答剛才關(guān)于是不是函數(shù)的問題,要求從映射的角度解釋.
此時學生可以清楚的看到滿足映射觀點下的函數(shù)定義,故是一個函數(shù),這樣解釋就很自然.
教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個函數(shù)?
從映射角度看可以是其中定義域是,值域是.
3.函數(shù)的三要素及其作用(板書)
以下關(guān)系式表示函數(shù)嗎?為什么?
(1);(2).
解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù).
(2)由有意義得,解得.定義域為,值域為.
由以上兩題可以看出三要素的作用
(1)判斷一個函數(shù)關(guān)系是否存在.(板書)
(1);(2) (3);(4).
解:先認清,它是(定義域)到(值域)的映射,其中
.
再看(1)定義域為且,是不同的;(2)定義域為,是不同的;
(4),法則是不同的;
而(3)定義域是,值域是,法則是乘2減1,與完全相同.
(2)判斷兩個函數(shù)是否相同.(板書)
4.對函數(shù)符號的理解(板書)
已知函數(shù)試求(板書)
分析:首先讓學生認清的含義,要求學生能從變量觀點和映射觀點解釋,再進行計算.
含義1:當自變量取3時,對應(yīng)的函數(shù)值即;
含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.
計算之后,要求學生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.
三、小結(jié)
1.函數(shù)的定義
2.對函數(shù)三要素的認識
3.對函數(shù)符號的認識
四、作業(yè):略
五、
2.2函數(shù)例1.例3.
一.函數(shù)的概念
1.定義
2.本質(zhì)例2.小結(jié):
3.函數(shù)三要素的認識及作用
4.對函數(shù)符號的理解
答案:
函數(shù)的定義教案篇二
1.能從二倍角的正弦、余弦、正切公式導出半角公式,了解它們的內(nèi)在聯(lián)系;揭示知識背景,引發(fā)學生學習興趣,激發(fā)學生分析、探求的學習態(tài)度,強化學生的參與意識.并培養(yǎng)學生綜合分析能力.
2.掌握公式及其推導過程,會用公式進行化簡、求值和證明。
3.通過公式推導,掌握半角與倍角之間及半角公式與倍角公式之間的聯(lián)系,培養(yǎng)邏輯推理能力。
二、過程與方法。
2.通過例題講解,總結(jié)方法.通過做練習,鞏固所學知識.
三、情感、態(tài)度與價值觀。
1.通過公式的推導,了解半角公式和倍角公式之間的內(nèi)在聯(lián)系,從而培養(yǎng)邏輯推理能力和辯證唯物主義觀點。
2.培養(yǎng)用聯(lián)系的觀點看問題的觀點。
【教學重點與難點】:
重點:半角公式的推導與應(yīng)用(求值、化簡、證明)。
難點:半角公式與倍角公式之間的內(nèi)在聯(lián)系,以及運用公式時正負號的選取。
【學法與教學用具】:
1.學法:
(1)自主+探究性學習:讓學生自己由和角公式導出倍角公式,領(lǐng)會從一般化歸為特殊的數(shù)學思想,體會公式所蘊涵的和諧美,激發(fā)學生學數(shù)學的興趣。
(2)反饋練習法:以練習來檢驗知識的應(yīng)用情況,找出未掌握的內(nèi)容及其存在的差距.
2.教學方法:觀察、歸納、啟發(fā)、探究相結(jié)合的教學方法。
引導學生復(fù)習二倍角公式,按課本知識結(jié)構(gòu)設(shè)置提問引導學生動手推導出半角公式,課堂上在老師引導下,以學生為主體,分析公式的結(jié)構(gòu)特征,會根據(jù)公式特點得出公式的應(yīng)用,用公式來進行化簡證明和求值,老師為學生創(chuàng)設(shè)問題情景,鼓勵學生積極探究。
3.教學用具:多媒體、實物投影儀.
【授課類型】:新授課。
【課時安排】:1課時。
【教學思路】:
一、創(chuàng)設(shè)情景,揭示課題。
二、研探新知。
四、鞏固深化,反饋矯正。
五、歸納整理,整體認識。
1.鞏固倍角公式,會推導半角公式、和差化積及積化和差公式。
2.熟悉"倍角"與"二次"的關(guān)系(升角--降次,降角--升次).
3.特別注意公式的三角表達形式,且要善于變形:
4.半角公式左邊是平方形式,只要知道角終邊所在象限,就可以開平方;公式的"本質(zhì)"是用?角的余弦表示角的正弦、余弦、正切.
5.注意公式的結(jié)構(gòu),尤其是符號.
六、承上啟下,留下懸念。
七、板書設(shè)計(略)。
八、課后記:略。
函數(shù)的定義教案篇三
3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系.
利用誘導公式(二),口答下列三角函數(shù)值.
(1). ;(2). ;(3). .
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.
由sin300= 出發(fā),用三角的定義引導學生求出 sin(-300),sin1500值,讓學生聯(lián)想若已知sin = ,能否求出sin( ),sin( )的值.
1.探究任意角 與 的三角函數(shù)又有什么關(guān)系;
2.探究任意角 與 的三角函數(shù)之間又有什么關(guān)系.
遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過程,從特殊到一般,數(shù)形結(jié)合,學生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學生無形中鼓舞了氣勢,增強了自信,加大了挑戰(zhàn).而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進步.
誘導公式(三)、(四)
給出本節(jié)課的課題
三角函數(shù)誘導公式
標題的后出,讓學生在經(jīng)歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點已經(jīng)輕松掌握,同時也是對本節(jié)課內(nèi)容的小結(jié).
的三角函數(shù)值,等于 的同名函數(shù)值,前面加上一個把 看成銳角時原函數(shù)值的符合.(即:函數(shù)名不變,符號看象限.)
設(shè)計意圖
簡便記憶公式.
求下列三角函數(shù)的值:(1).sin( ); (2). co.
設(shè)計意圖
本練習的設(shè)置重點體現(xiàn)一題多解,讓學生不僅學會靈活運用應(yīng)用三角函數(shù)的誘導公式,還能養(yǎng)成靈活處理問題的良好習慣.這里還要給學生指出課本中的“負角”化為“正角”是針對具體負角而言的.
學生練習
化簡: .
設(shè)計意圖
重點加強對三角函數(shù)的誘導公式的綜合應(yīng)用.
1.小結(jié)使用誘導公式化簡任意角的三角函數(shù)為銳角的步驟.
2.體會數(shù)形結(jié)合、對稱、化歸的思想.
3.“學會”學習的習慣.
1.課本p-27,第1,2,3小題;
2.附加課外題 略.
設(shè)計意圖
加強學生對三角函數(shù)的誘導公式的記憶及靈活應(yīng)用,附加題的設(shè)置有利于有能力的同學“更上一樓”.
八.課后反思
對本節(jié)內(nèi)容在進行教學設(shè)計之前,本人反復(fù)閱讀了課程標準和教材,針對教材的內(nèi)容,編排了一系列問題,讓學生親歷知識發(fā)生、發(fā)展的過程,積極投入到思維活動中來,通過與學生的互動交流,關(guān)注學生的思維發(fā)展,在逐漸展開中,引導學生用已學的知識、方法予以解決,并獲得知識體系的更新與拓展,收到了一定的預(yù)期效果,尤其是練習的處理,讓學生通過個人、小組、集體等多種解難釋疑的嘗試活動,感受“觀察——歸納——概括——應(yīng)用”等環(huán)節(jié),在知識的形成、發(fā)展過程中展開思維,逐步培養(yǎng)學生發(fā)現(xiàn)問題、探索問題、解決問題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學生的主體作用,也提高了學生主體的合作意識,達到了設(shè)計中所預(yù)想的目標。
然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認為,教師的干預(yù)(講解)還是太多。
在以后的教學中,對于一些較簡單的內(nèi)容,應(yīng)放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內(nèi)容等教學因素,都在不斷更新,作為數(shù)學教師要更新教學觀念,從學生的全面發(fā)展來設(shè)計課堂教學,關(guān)注學生個性和潛能的發(fā)展,使教學過程更加切合《課程標準》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。
函數(shù)的定義教案篇四
難點:其一般的性質(zhì)分析,再由性質(zhì)得到一般圖像。
三.教學方法和用具。
方法:歸納總結(jié),數(shù)形結(jié)合,分析驗證。
用具:幻燈片,幾何畫板,黑板。
四.教學過程。
(幻燈片見附件)。
1.設(shè)置問題情境,找出所得函數(shù)的共同形式,由形式給出冪函數(shù)的定義(幻燈片1?幻燈片2)(板書)。
2.從形式上比較指數(shù)函數(shù)和冪函數(shù)的異同(幻燈片3)。
3.利用定義的形式,判斷所給函數(shù)是否是冪函數(shù),并得出判斷依據(jù)(幻燈片4)。
4.畫常見的三種冪函數(shù)的圖像,再讓學生用描點法畫另兩種,并用幾何畫板驗證(幻燈片5)(幾何畫板)。
5.用幾何畫板畫出這五個冪函數(shù)的圖像,觀察圖像完成書中冪函數(shù)的函數(shù)性質(zhì)的表格,并分析得出更一般的結(jié)論(板書)(幾何畫板)。
函數(shù)的定義教案篇五
數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導、探索相結(jié)合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。
三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教a版)數(shù)學必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導公式中的公式(二)至公式(六).本節(jié)是第一課時,教學內(nèi)容為公式(二)、(三)、(四).教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角與終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關(guān)系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導公式公式(二)、(三)、(四).同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
本節(jié)課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發(fā)現(xiàn)的教學方法應(yīng)該能輕松的完成本節(jié)課的教學內(nèi)容.
(1).基礎(chǔ)知識目標:理解誘導公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導公式;。
(4).個性品質(zhì)目標:通過誘導公式的學習和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學生的唯物史觀.
理解并掌握誘導公式.
正確運用誘導公式,求三角函數(shù)值,化簡三角函數(shù)式.
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預(yù)期效果等三個方面做如下分析.
數(shù)學教學是數(shù)學思維活動的教學,而不僅僅是數(shù)學活動的結(jié)果,數(shù)學學習的目的不僅僅是為了獲得數(shù)學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質(zhì).
在本節(jié)課的教學過程中,本人以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應(yīng)用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環(huán)境,讓學生體味學習的快樂和成功的喜悅.
“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生最大程度的消化知識,提高學習熱情是教者必須思考的問題.
在本節(jié)課的教學過程中,本人引導學生的學法為思考問題共同探討解決問題簡單應(yīng)用重現(xiàn)探索過程練習鞏固.讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉(zhuǎn)化為主動的自主學習.
1.復(fù)習銳角300,450,600的三角函數(shù)值;。
2.復(fù)習任意角的三角函數(shù)定義;。
3.問題:由,你能否知道sin2100的值嗎?引如新課.
自信的鼓勵是增強學生學習數(shù)學的自信,簡單易做的題加強了每個學生學習的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法.
1.讓學生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;。
2100與sin300之間有什么關(guān)系.
由特殊問題的引入,使學生容易了解,實現(xiàn)教學過程的平淡過度,為同學們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊.
函數(shù)的定義教案篇六
通過對這節(jié)課的教學研究,我深刻地認識到新課程背景下的數(shù)學課堂教學應(yīng)注意:
1、教師要“放得開”,做一個邊緣人。我們應(yīng)該充分相信學生,給學生成長的機會和空間。不再搞“包辦代替”,不能急性子。凡是學生能做的,就應(yīng)該讓他們自主去做;凡是學生之間能合作完成的,就應(yīng)該讓他們自主探究。給學生一滴水的機會,也許他會收獲一片海洋。
2、要做到“問題引領(lǐng)”,用問題牽引學習。本節(jié)課的設(shè)計給予學生的基礎(chǔ),設(shè)計了多個學生容易解決的問題串,這樣,能夠在循序漸進中學到知識。
3、要創(chuàng)造性地使用教材。教學過程中,不應(yīng)局限于教材,而應(yīng)充分利用教材這個平臺,伸向與教材有關(guān)的領(lǐng)域。數(shù)學是思維的體操,因此,若能對數(shù)學教材科學安排,對問題妙引導,有意識地引導學生有意識地主動學習更多更全面的數(shù)學知識,變“傳授”為“探究”,充分暴露知識的發(fā)生發(fā)展過程,以探索者的身份去發(fā)現(xiàn)問題、總結(jié)規(guī)律。
4、注重探究,體驗知識的形成過程。數(shù)學教學從本質(zhì)上講,是教師和學生以課堂為主渠道的交流活動,是教師和學生在某種教學情境中的探究活動。這節(jié)課教師本著“讓學生充分經(jīng)歷知識的形成、發(fā)展和應(yīng)用過程,充分體驗數(shù)學的發(fā)現(xiàn)和創(chuàng)造歷程”的教學理念,對教學過程和教學手段作了充分的準備。整節(jié)課學生在教師的引導下逐步探索、不斷發(fā)現(xiàn),品嘗到了數(shù)學學習的樂趣,教師的主導作用和學生的主體地位都得到了很好地體現(xiàn)。
總之,我們的教學工作是一項內(nèi)涵豐富的系統(tǒng)工程。教學中用問題引領(lǐng)學生,提升效率,不是一朝一夕就可以取得明顯成效的,它更是一個復(fù)雜的課題。“冰凍三尺,非一日之寒”,在教學中必須循序漸進,長期實踐,與時俱進,爭取做教學改革的有心人,只有這樣才能在教學研究工作中有所作為。因此,在實際教學中,我們應(yīng)時刻以學生為中心,充分給予學生成長的時間,鼓勵學生自主探究,采用適時激勵與點撥的方法使學生的思維活躍起來,讓課堂真正成為學生學習、發(fā)現(xiàn)的樂園。
函數(shù)的定義教案篇七
當x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:
1.在x大于0時,函數(shù)的值域總是大于0的實數(shù)。
2.在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。
而只有a為正數(shù),0才進入函數(shù)的值域。
定義域。
當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:
1.如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);2.如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。
函數(shù)的定義教案篇八
即:一角的正弦大于另一個角的余弦。
2、若,則,。
3、的圖象的對稱中心為(),對稱軸方程為。
4、的圖象的對稱中心為(),對稱軸方程為。
5、及的圖象的對稱中心為()。
6、常用三角公式:。
有理公式:;。
降次公式:,;。
萬能公式:,,(其中)。
7、輔助角公式:,其中。輔助角的位置由坐標決定,即角的終邊過點。
8、時,。
9、。
其中為內(nèi)切圓半徑,為外接圓半徑。
特別地:直角中,設(shè)c為斜邊,則內(nèi)切圓半徑,外接圓半徑。
10、的圖象的圖象(時,向左平移個單位,時,向右平移個單位)。
11、解題時,條件中若有出現(xiàn),則可設(shè),。
則。
12、等腰三角形中,若且,則。
13、若等邊三角形的邊長為,則其中線長為,面積為。
14、;。
函數(shù)的定義教案篇九
形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。
當a取非零的有理數(shù)時是比較容易理解的,而對于a取無理數(shù)時,初學者則不大容易理解了。因此,在初等函數(shù)里,我們不要求掌握指數(shù)為無理數(shù)的問題,只需接受它作為一個已知事實即可,因為這涉及到實數(shù)連續(xù)性的極為深刻的知識。
函數(shù)的定義教案篇十
1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。
3、會對一個具體實例進行概括抽象成為數(shù)學問題。
過程與方法。
1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。
2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。
情感與價值觀。
1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。
1、掌握函數(shù)概念。
2、判斷兩個變量之間的關(guān)系是否可看作函數(shù)。
3、能把實際問題抽象概括為函數(shù)問題。
1、理解函數(shù)的概念。
2、能把實際問題抽象概括為函數(shù)問題。
一、創(chuàng)設(shè)問題情境,導入新課。
『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?
函數(shù)的定義教案篇十一
值域。
名稱定義。
(1)化歸法;(2)圖象法(數(shù)形結(jié)合),
(3)函數(shù)單調(diào)性法,
關(guān)于函數(shù)值域誤區(qū)。
定義域、對應(yīng)法則、值域是函數(shù)構(gòu)造的三個基本“元件”。平時數(shù)學中,實行“定義域優(yōu)先”的原則,無可置疑。然而事物均具有二重性,在強化定義域問題的同時,往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學生對函數(shù)的掌握時好時壞,事實上,定義域與值域二者的位置是相當?shù)?,絕不能厚此薄皮,何況它們二者隨時處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運算性質(zhì)有時并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的取值情況。才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實踐證明,如果加強了對值域求法的研究和討論,有利于對定義域內(nèi)函的理解,從而深化對函數(shù)本質(zhì)的認識。
“范圍”與“值域”相同嗎?
“范圍”與“值域”是我們在學習中經(jīng)常遇到的兩個概念,許多同學常常將它們混為一談,實際上這是兩個不同的概念?!爸涤颉笔撬泻瘮?shù)值的集合(即集合中每一個元素都是這個函數(shù)的取值),而“范圍”則只是滿足某個條件的一些值所在的集合(即集合中的元素不一定都滿足這個條件)。也就是說:“值域”是一個“范圍”,而“范圍”卻不一定是“值域”。
二.數(shù)學的學習方法。
1.數(shù)學要求具備熟練的計算能力,所以課后還有做足一定量的練習題,只有通過做題練習才能擁有計算能力。
2.課前要做好預(yù)習,這樣上數(shù)學課時才能把不會的知識點更好的消化吸收掉。
3.數(shù)學公式一定要記熟,并且還要會推導,能舉一反三。
4.數(shù)學重在理解,在開始學習知識的時候,一定要弄懂。所以上課要認真聽講,看看老師是怎樣講解的。
5.數(shù)學80%的分數(shù)來源于基礎(chǔ)知識,20%的分數(shù)屬于難點,所以考120分并不難。
6.數(shù)學需要沉下心去做,浮躁的人很難學好數(shù)學,踏踏實實做題才是硬道理。
7.數(shù)學要想學好,不琢磨是行不通的,遇到難題不能躲,研究明白了才能罷休。
8.數(shù)學最主要的就是解題過程,懂得數(shù)學思維很關(guān)鍵,思路通了,數(shù)學自然就會了。
9.數(shù)學不是用來看的,而是用來算的,或許這一秒沒思路,當你拿起筆開始計算的那一秒,就豁然開朗了。
10.數(shù)學題目不會做,原因之一就是例題沒研究明白,所以數(shù)學書上的例題絕對不要放過。
點擊。
將本文的word文檔下載到電腦,方便收藏和打印。
函數(shù)的定義教案篇十二
定義域、對應(yīng)法則、值域是函數(shù)構(gòu)造的三個基本“元件”。平時數(shù)學中,實行“定義域優(yōu)先”的原則,無可置疑。然而事物均具有二重性,在強化定義域問題的同時,往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學生對函數(shù)的掌握時好時壞,事實上,定義域與值域二者的位置是相當?shù)?,絕不能厚此薄彼,何況它們二者隨時處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運算性質(zhì)有時并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的取值情況。才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實踐證明,如果加強了對值域求法的研究和討論,有利于對定義域內(nèi)函的理解,從而深化對函數(shù)本質(zhì)的認識。
“范圍”與“值域”相同嗎?
“范圍”與“值域”是我們在學習中經(jīng)常遇到的兩個概念,許多同學常常將它們混為一談,實際上這是兩個不同的概念?!爸涤颉笔撬泻瘮?shù)值的集合(即集合中每一個元素都是這個函數(shù)的取值),而“范圍”則只是滿足某個條件的一些值所在的集合(即集合中的元素不一定都滿足這個條件)。也就是說:“值域”是一個“范圍”,而“范圍”卻不一定是“值域”。
函數(shù)的定義教案篇十三
在研究編程語言的過程中,我們離不開對函數(shù)的分析和應(yīng)用。在Python編程語言中,我們可以自定義函數(shù),來實現(xiàn)我們所需要的功能。在本次實驗中,我們學習了如何自定義函數(shù),并且通過實際的編程作業(yè),深刻體會到了函數(shù)的概念和應(yīng)用。本文將圍繞著自定義函數(shù)進行探討,并結(jié)合個人體會,闡述自定義函數(shù)在編程中的重要性。
自定義函數(shù)即使用開發(fā)者自己編寫的一段程序來實現(xiàn)一定的功能,并將這一程序封裝在一個函數(shù)中。自定義函數(shù)在Python編程語言中十分常見,遠遠不僅僅是簡單的數(shù)學運算。在實驗中,我們接觸到的自定義函數(shù)有很多種,有的函數(shù)用于對字符串進行操作(比如字符串拼接、大小寫轉(zhuǎn)換等),有的函數(shù)用于對數(shù)組進行操作(比如給數(shù)組排序、獲取數(shù)組中最大值最小值等),還有的函數(shù)用于文件讀寫操作。當我們需要實現(xiàn)某一功能時,只需要調(diào)用對應(yīng)的自定義函數(shù),就可以輕松實現(xiàn)。
在實驗中,我們需要通過自定義函數(shù)來完成一些任務(wù)。比如在第二次作業(yè)中,我們需要對輸入的數(shù)列進行分割和展示,通過設(shè)定“分段展示”的功能,可以將每個數(shù)列以規(guī)定長度為單位分段輸出。在實現(xiàn)這個需求時,我們需要自定義一個函數(shù),不同的編程者可能會有不同的實現(xiàn)方式。而在實現(xiàn)的過程中,我發(fā)現(xiàn)一些細節(jié)處理非常重要,比如在編寫分段展示函數(shù)時,需要對長度不足的部分進行補全,以便全面展示所有的數(shù)列,這樣才能使程序更完整、更可用。
在編寫函數(shù)時,我們需要注意函數(shù)的生命周期。Python中的函數(shù)是一次性的,也就是說一旦函數(shù)被調(diào)用執(zhí)行完畢后,程序就會自動銷毀函數(shù)。但我們有時候需要維護函數(shù)的活性,讓函數(shù)可以被多次調(diào)用。這是就需要注意函數(shù)的定義域及變量范圍問題。我們可以簡單的理解為函數(shù)內(nèi)定義的變量只有在函數(shù)內(nèi)部有效,作用域只能是節(jié)點內(nèi)部。如果我們希望函數(shù)可以被用來執(zhí)行多個任務(wù),我們需要設(shè)計合理的變量作用域,比如將變量定義為全局變量,這樣可以確保變量文件范圍內(nèi)生效,可在多個函數(shù)間共享。
第五段:總結(jié)。
通過本次實驗,我們不僅學習了自定義函數(shù)的概念和應(yīng)用,更重要的是,我們掌握了實現(xiàn)自定義函數(shù)的技巧,并體會到函數(shù)在Python編程語言中的巨大作用。自定義函數(shù)可以讓我們的程序更加簡潔、高效,提高程序?qū)崿F(xiàn)的效率和程序的代碼重用性;同時,我們也發(fā)現(xiàn)了自定義函數(shù)在程序設(shè)計中的一些注意事項,比如函數(shù)的定義域及變量范圍問題等。相信通過本次實驗,我們可以更加深入地理解自定義函數(shù)的目的及實現(xiàn)方式,從而更好地應(yīng)用在日常編程實踐中,提高自己的編程能力。
函數(shù)的定義教案篇十四
(1)是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學習對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以應(yīng)重點研究.
(2)本節(jié)的教學重點是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì).難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.
(3)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.
教法建議。
(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是.
(2)對底數(shù)的限制條件的理解與認識也是認識的重要內(nèi)容.如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對的認識及性質(zhì)的分類討論,還關(guān)系到后面學習對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來.
關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象.
函數(shù)的定義教案篇十五
1.使學生掌握的概念,圖象和性質(zhì).
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域.
(2)能在基本性質(zhì)的指導下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質(zhì).
(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象.
2.通過對的概念圖象性質(zhì)的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法.
3.通過對的研究,讓學生認識到數(shù)學的應(yīng)用價值,激發(fā)學生學習數(shù)學的興趣.使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題.
函數(shù)的定義教案篇十六
1、使學生掌握的概念,圖象和性質(zhì)。
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域。
(2)能在基本性質(zhì)的指導下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質(zhì)。
(3)x能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如x的圖象。
2、x通過對的概念圖象性質(zhì)的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。
3、通過對的研究,讓學生認識到數(shù)學的應(yīng)用價值,激發(fā)學生學習數(shù)學的興趣。使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題。
(1)x是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學習對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以應(yīng)重點研究。
(2)x本節(jié)的教學重點是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點是對底數(shù)x在x和x時,函數(shù)值變化情況的區(qū)分。
(3)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。
(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是x的樣子,不能有一點差異,諸如x,x等都不是。
(2)對底數(shù)x的限制條件的理解與認識也是認識的重要內(nèi)容。如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對的認識及性質(zhì)的分類討論,還關(guān)系到后面對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來。
關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象。
1。x理解的定義,初步掌握的圖象,性質(zhì)及其簡單應(yīng)用。
2。x通過的圖象和性質(zhì)的學習,培養(yǎng)學生觀察,分析,歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。
3。x通過對的研究,使學生能把握函數(shù)研究的基本方法,激發(fā)學生的學習興趣。
重點是理解的定義,把握圖象和性質(zhì)。
難點是認識底數(shù)對函數(shù)值影響的認識。
投影儀
啟發(fā)討論研究式
一、x引入新課
我們前面學習了指數(shù)運算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)。
1、6、(板書)
這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:
由學生回答:x與x之間的關(guān)系式,可以表示為x。
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長度為x米,試寫出x與x之間的函數(shù)關(guān)系。
由學生回答:x。
在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量x均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。
x的概念(板書)
1、定義:形如x的函數(shù)稱為。(板書)
教師在給出定義之后再對定義作幾點說明。
2、幾點說明x(板書)
(1)x關(guān)于對x的規(guī)定:
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學生感到有困難,可將問題分解為若x會有什么問題?如x,此時x,x等在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。
若x對于x都無意義,若x則x無論x取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定x且x。
(2)關(guān)于的定義域x(板書)
教師引導學生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時教師可指出,其實當指數(shù)為無理數(shù)時,x也是一個確定的實數(shù),對于無理指數(shù)冪,學過的有理指數(shù)冪的"性質(zhì)和運算法則它都適用,所以將指數(shù)范圍擴充為實數(shù)范圍,所以的定義域為x。擴充的另一個原因是因為使她它更具代表更有應(yīng)用價值。
(3)關(guān)于是否是的判斷(板書)
剛才分別認識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。
(4)x,x
(5)x。
學生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數(shù)圖象。
最后提醒學生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細致歸納性質(zhì)。
3、歸納性質(zhì)
作圖的用什么方法。用列表描點發(fā)現(xiàn),教師準備明確性質(zhì),再由學生回答。
函數(shù)
1、定義域x:
2、值域:
3、奇偶性x:既不是奇函數(shù)也不是偶函數(shù)
4、截距:在x軸上沒有,在x軸上為1。
對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應(yīng)會證明。對于單調(diào)性,我建議找一些特殊點。,先看一看,再下定論。對最后一條也是指導函數(shù)圖象畫圖的依據(jù)。(圖象位于x軸上方,且與x軸不相交。)
在此基礎(chǔ)上,教師可指導學生列表,描點了。取點時還要提醒學生由于不具備對稱性,故x的值應(yīng)有正有負,且由于單調(diào)性不清,所取點的個數(shù)不能太少。
此處教師可利用計算機列表描點,給出十組數(shù)據(jù),而學生自己列表描點,至少六組數(shù)據(jù)。連點成線時,一定提醒學生圖象的變化趨勢(當x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。
二、圖象與性質(zhì)(板書)
1、圖象的畫法:性質(zhì)指導下的列表描點法。
2、草圖:
當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且x,取值可分為兩段)讓學生明白需再畫第二個,不妨取x為例。
此時畫它的圖象的方法應(yīng)讓學生來選擇,應(yīng)讓學生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單。即x=x與x圖象之間關(guān)于x軸對稱,而此時x的圖象已經(jīng)有了,具備了變換的條件。讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到x的圖象。
最后問學生是否需要再畫。(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質(zhì),若認為還需畫,則教師可利用計算機再畫出如x的圖象一起比較,再找共性)
由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:
以上內(nèi)容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。
填好后,讓學生仿照此例再列一個x的表,將相應(yīng)的內(nèi)容填好。為進一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì)。
3、性質(zhì)。
(1)無論x為何值,x都有定義域為x,值域為x,都過點x。
(2)x時,x在定義域內(nèi)為增函數(shù),x時,x為減函數(shù)。
(3)x時,x,x x時,x。
總結(jié)之后,特別提醒學生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。
三、簡單應(yīng)用x (板書)
1、利用單調(diào)性比大小。x(板書)
一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。
例1、x比較下列各組數(shù)的大小
(1)x與x;x(2)x與x;
(3)x與1x。(板書)
首先讓學生觀察兩個數(shù)的特點,有什么相同?由學生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。
解:x在x上是增函數(shù),且
教師最后再強調(diào)過程必須寫清三句話:
(1)x構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。
(2)x自變量的大小比較。
(3)x函數(shù)值的大小比較。
后兩個題的過程略。要求學生仿照第(1)題敘述過程。
例2。比較下列各組數(shù)的大小
(1)x與x;x(2)x與x ;
(3)x與x。(板書)
先讓學生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導學生發(fā)現(xiàn)對(1)來說x可以寫成x,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說x可以寫成x,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學生思考解決。(教師可提示學生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)
最后由學生說出x1,1。
解決后由教師小結(jié)比較大小的方法
(1)x構(gòu)造函數(shù)的方法:x數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)
(2)x搭橋比較法:x用特殊的數(shù)1或0。
四、鞏固練習
練習:比較下列各組數(shù)的大小(板書)
(1)x與x x(2)x與x;
(3)x與x;x(4)x與x。解答過程略
五、小結(jié)
1、的概念
2、的圖象和性質(zhì)
3、簡單應(yīng)用
六、板書設(shè)計
函數(shù)的定義教案篇十七
函數(shù)定義域?qū)瘮?shù)圖象、解析式等都起著決定性的作用,要使得函數(shù)解析式中的所有式子有意義,需要找出所有對函數(shù)自變量有限制的條件,進而求出函數(shù)的定義域。以下幾種情況需要同學們格外注意:
1、關(guān)系式為整式時,函數(shù)定義域為全體實數(shù);
2、關(guān)系式含有分式時,分式的分母不等于零;
3、關(guān)系式含有二次根式時,被開放方數(shù)大于等于零;
4、關(guān)系式中含有指數(shù)為零的式子時,底數(shù)不等于零;
5、實際問題中,函數(shù)定義域還要和實際情況相符合,使之有意義。
函數(shù)的定義教案篇十八
自定義函數(shù)是編程中的重要組成部分,也是實現(xiàn)代碼重用的機制。在學習自定義函數(shù)的過程中,我們需要深入了解它的實現(xiàn)原理以及如何在實際編程中靈活運用。在本篇文章中,我將分享我學習自定義函數(shù)的心得和體會。
第二段:自定義函數(shù)的基本概念
自定義函數(shù)是一段封裝好的可重復(fù)使用的代碼塊,它被封裝在一個名稱下,來實現(xiàn)某種特定的功能。自定義函數(shù)可以被多次調(diào)用,重復(fù)使用,從而節(jié)省代碼量,提高代碼復(fù)用性和可維護性。自定義函數(shù)的基本語法包括函數(shù)名、參數(shù)列表、函數(shù)體和返回語句等。
第三段:實驗過程中的收獲
在實驗中,我通過編寫多個自定義函數(shù),加深了對函數(shù)的理解。在實踐中,我學會了如何創(chuàng)建和調(diào)用自定義函數(shù),以及如何在定義函數(shù)時設(shè)置參數(shù)和返回值。這使我更好地掌握了函數(shù)的使用方法和意義,并能夠更好地運用自定義函數(shù)解決實際問題。
第四段:應(yīng)用實例
在應(yīng)用自定義函數(shù)時,我們可以結(jié)合其他程序語言特性來實現(xiàn)更加復(fù)雜的操作。例如,我們可以結(jié)合條件判斷語句、循環(huán)語句等實現(xiàn)更復(fù)雜的功能。自定義函數(shù)可以作為其他程序塊的模塊進行調(diào)用,是提高代碼重用率和可維護性的不二選擇。
第五段:總結(jié)
總的來說,自定義函數(shù)是學習編程必須掌握的重要技能。在學習的過程中,要深入理解函數(shù)的基本概念,多寫、多試、多調(diào),才能帶來更多的收獲。在應(yīng)用自定義函數(shù)的時候,我們要靈活運用各種語言特性,提高代碼的重用和可維護性。自定義函數(shù)的使用不僅是一種工具,更體現(xiàn)了編程思維的核心精髓。
函數(shù)的定義教案篇十九
自定義函數(shù)是程序設(shè)計語言中重要的一部分,它是一個可以重復(fù)使用的代碼塊,在程序中承擔著特定作用的任務(wù),有利于代碼的模塊化和可讀性。在學習過程中,要求我們實驗并寫出心得體會。本文將分享我在自定義函數(shù)實驗中的體會感悟。
第一段:了解自定義函數(shù)的基本概念
在開始實驗后,首先要了解自定義函數(shù)的基本概念。自定義函數(shù)是指我們自行編寫的代碼塊,它可以完成特定的任務(wù)。自定義函數(shù)包含函數(shù)頭、函數(shù)體和返回值。其中函數(shù)頭包括函數(shù)名和參數(shù)列表,表示函數(shù)接受的輸入;函數(shù)體是函數(shù)實現(xiàn)的代碼塊,完成數(shù)據(jù)處理和邏輯判斷等任務(wù);返回值是函數(shù)完成后返回的結(jié)果。理解這些基本概念對后面的實驗任務(wù)實現(xiàn)有幫助。
第二段:熟悉自定義函數(shù)的語法和注意事項
為了更好地編寫自定義函數(shù),我們需要熟悉自定義函數(shù)的語法和注意事項。自定義函數(shù)的語法格式一般由 def 開頭,后面跟著函數(shù)名和參數(shù)列表。在函數(shù)體內(nèi)部,可以使用 if、for、while 等語句來實現(xiàn)特定的功能。在編寫自定義函數(shù)時還需要注意參數(shù)的類型和數(shù)量;同時要注意避免全局變量的使用和命名沖突等問題。對于初學者來說,這些問題也許會讓人感到困難,需要不斷進行實踐和理解,才能真正掌握熟練。
第三段:實踐中的挑戰(zhàn)與解決方法
在實驗中,我遇到了一些挑戰(zhàn)和問題。在編寫自定義函數(shù)時,有時需要將函數(shù)的輸出作為輸入傳遞給另一個函數(shù),這要求我們特別注意參數(shù)的個數(shù)和位置等信息,以避免出現(xiàn)錯誤。有些情況下函數(shù)的參數(shù)列表較長,會導致在函數(shù)調(diào)用時發(fā)生錯誤,此時需要考慮將參數(shù)定義為全局變量或使用字典等數(shù)據(jù)結(jié)構(gòu)進行存儲。此外,函數(shù)的遞歸調(diào)用也是一個較為難以掌握的問題,需要對函數(shù)實現(xiàn)的細節(jié)和調(diào)用的順序進行規(guī)劃和理解。以上這些問題,需要我們在實踐操作中不斷摸索和解決。
第四段:自定義函數(shù)的應(yīng)用場景
自定義函數(shù)在編寫程序時具有很大的靈活性和應(yīng)用價值。對于一些需要重復(fù)使用的代碼,我們可以將其封裝成自定義函數(shù),以便在需要時直接調(diào)用。此外,自定義函數(shù)可以使代碼的結(jié)構(gòu)更加清晰,增加代碼的可讀性,也有助于在項目開發(fā)中團隊協(xié)作和合作。在實踐中探索自定義函數(shù)的應(yīng)用場景,可以幫助我們更好地理解函數(shù)的創(chuàng)建和使用,更為熟練地進行編程和項目實施。
第五段:總結(jié)感悟和思考
通過本次自定義函數(shù)實驗,我認識到自定義函數(shù)的重要性和應(yīng)用價值,也明白了自定義函數(shù)的創(chuàng)建和使用涉及到許多技能和知識點,需要我們不斷學習和實踐。僅僅學會語法是遠遠不夠的,還需要對函數(shù)編寫有一定的想象力和靈活性,不斷嘗試和探索新的應(yīng)用場景和解決方案。同時,我們也許需要更多的實際操作和項目實踐,來提升自身的編程能力和應(yīng)用價值。因此,我對未來的學習計劃也提出了一些思考和期望,希望能夠更深刻地理解自定義函數(shù)的應(yīng)用,不斷提升自身能力和價值。
函數(shù)的定義教案篇一
難點是對函數(shù)抽象符號的認識與使用.
投影儀
自學研究與啟發(fā)討論式.
一、復(fù)習與引入
(要求學生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學過的函數(shù)例子)
提問1.是函數(shù)嗎?
(由學生討論,發(fā)表各自的意見,有的認為它不是函數(shù),理由是沒有兩個變量,也有的認為是函數(shù),理由是可以可做.)
二、新課
現(xiàn)在請同學們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)
提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.
(板書)2.2函數(shù)
一、函數(shù)的概念
問題3:映射與函數(shù)有何關(guān)系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?)
引導學生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集.
2.本質(zhì):函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書)
然后讓學生試回答剛才關(guān)于是不是函數(shù)的問題,要求從映射的角度解釋.
此時學生可以清楚的看到滿足映射觀點下的函數(shù)定義,故是一個函數(shù),這樣解釋就很自然.
教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋是個函數(shù)?
從映射角度看可以是其中定義域是,值域是.
3.函數(shù)的三要素及其作用(板書)
以下關(guān)系式表示函數(shù)嗎?為什么?
(1);(2).
解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù).
(2)由有意義得,解得.定義域為,值域為.
由以上兩題可以看出三要素的作用
(1)判斷一個函數(shù)關(guān)系是否存在.(板書)
(1);(2) (3);(4).
解:先認清,它是(定義域)到(值域)的映射,其中
.
再看(1)定義域為且,是不同的;(2)定義域為,是不同的;
(4),法則是不同的;
而(3)定義域是,值域是,法則是乘2減1,與完全相同.
(2)判斷兩個函數(shù)是否相同.(板書)
4.對函數(shù)符號的理解(板書)
已知函數(shù)試求(板書)
分析:首先讓學生認清的含義,要求學生能從變量觀點和映射觀點解釋,再進行計算.
含義1:當自變量取3時,對應(yīng)的函數(shù)值即;
含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即.
計算之后,要求學生了解與的區(qū)別,是常量,而是變量,只是中一個特殊值.
三、小結(jié)
1.函數(shù)的定義
2.對函數(shù)三要素的認識
3.對函數(shù)符號的認識
四、作業(yè):略
五、
2.2函數(shù)例1.例3.
一.函數(shù)的概念
1.定義
2.本質(zhì)例2.小結(jié):
3.函數(shù)三要素的認識及作用
4.對函數(shù)符號的理解
答案:
函數(shù)的定義教案篇二
1.能從二倍角的正弦、余弦、正切公式導出半角公式,了解它們的內(nèi)在聯(lián)系;揭示知識背景,引發(fā)學生學習興趣,激發(fā)學生分析、探求的學習態(tài)度,強化學生的參與意識.并培養(yǎng)學生綜合分析能力.
2.掌握公式及其推導過程,會用公式進行化簡、求值和證明。
3.通過公式推導,掌握半角與倍角之間及半角公式與倍角公式之間的聯(lián)系,培養(yǎng)邏輯推理能力。
二、過程與方法。
2.通過例題講解,總結(jié)方法.通過做練習,鞏固所學知識.
三、情感、態(tài)度與價值觀。
1.通過公式的推導,了解半角公式和倍角公式之間的內(nèi)在聯(lián)系,從而培養(yǎng)邏輯推理能力和辯證唯物主義觀點。
2.培養(yǎng)用聯(lián)系的觀點看問題的觀點。
【教學重點與難點】:
重點:半角公式的推導與應(yīng)用(求值、化簡、證明)。
難點:半角公式與倍角公式之間的內(nèi)在聯(lián)系,以及運用公式時正負號的選取。
【學法與教學用具】:
1.學法:
(1)自主+探究性學習:讓學生自己由和角公式導出倍角公式,領(lǐng)會從一般化歸為特殊的數(shù)學思想,體會公式所蘊涵的和諧美,激發(fā)學生學數(shù)學的興趣。
(2)反饋練習法:以練習來檢驗知識的應(yīng)用情況,找出未掌握的內(nèi)容及其存在的差距.
2.教學方法:觀察、歸納、啟發(fā)、探究相結(jié)合的教學方法。
引導學生復(fù)習二倍角公式,按課本知識結(jié)構(gòu)設(shè)置提問引導學生動手推導出半角公式,課堂上在老師引導下,以學生為主體,分析公式的結(jié)構(gòu)特征,會根據(jù)公式特點得出公式的應(yīng)用,用公式來進行化簡證明和求值,老師為學生創(chuàng)設(shè)問題情景,鼓勵學生積極探究。
3.教學用具:多媒體、實物投影儀.
【授課類型】:新授課。
【課時安排】:1課時。
【教學思路】:
一、創(chuàng)設(shè)情景,揭示課題。
二、研探新知。
四、鞏固深化,反饋矯正。
五、歸納整理,整體認識。
1.鞏固倍角公式,會推導半角公式、和差化積及積化和差公式。
2.熟悉"倍角"與"二次"的關(guān)系(升角--降次,降角--升次).
3.特別注意公式的三角表達形式,且要善于變形:
4.半角公式左邊是平方形式,只要知道角終邊所在象限,就可以開平方;公式的"本質(zhì)"是用?角的余弦表示角的正弦、余弦、正切.
5.注意公式的結(jié)構(gòu),尤其是符號.
六、承上啟下,留下懸念。
七、板書設(shè)計(略)。
八、課后記:略。
函數(shù)的定義教案篇三
3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系.
利用誘導公式(二),口答下列三角函數(shù)值.
(1). ;(2). ;(3). .
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.
由sin300= 出發(fā),用三角的定義引導學生求出 sin(-300),sin1500值,讓學生聯(lián)想若已知sin = ,能否求出sin( ),sin( )的值.
1.探究任意角 與 的三角函數(shù)又有什么關(guān)系;
2.探究任意角 與 的三角函數(shù)之間又有什么關(guān)系.
遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過程,從特殊到一般,數(shù)形結(jié)合,學生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學生分組討論,重現(xiàn)了探索的整個過程,加深了知識的深刻記憶,對學生無形中鼓舞了氣勢,增強了自信,加大了挑戰(zhàn).而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進步.
誘導公式(三)、(四)
給出本節(jié)課的課題
三角函數(shù)誘導公式
標題的后出,讓學生在經(jīng)歷整個探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識點已經(jīng)輕松掌握,同時也是對本節(jié)課內(nèi)容的小結(jié).
的三角函數(shù)值,等于 的同名函數(shù)值,前面加上一個把 看成銳角時原函數(shù)值的符合.(即:函數(shù)名不變,符號看象限.)
設(shè)計意圖
簡便記憶公式.
求下列三角函數(shù)的值:(1).sin( ); (2). co.
設(shè)計意圖
本練習的設(shè)置重點體現(xiàn)一題多解,讓學生不僅學會靈活運用應(yīng)用三角函數(shù)的誘導公式,還能養(yǎng)成靈活處理問題的良好習慣.這里還要給學生指出課本中的“負角”化為“正角”是針對具體負角而言的.
學生練習
化簡: .
設(shè)計意圖
重點加強對三角函數(shù)的誘導公式的綜合應(yīng)用.
1.小結(jié)使用誘導公式化簡任意角的三角函數(shù)為銳角的步驟.
2.體會數(shù)形結(jié)合、對稱、化歸的思想.
3.“學會”學習的習慣.
1.課本p-27,第1,2,3小題;
2.附加課外題 略.
設(shè)計意圖
加強學生對三角函數(shù)的誘導公式的記憶及靈活應(yīng)用,附加題的設(shè)置有利于有能力的同學“更上一樓”.
八.課后反思
對本節(jié)內(nèi)容在進行教學設(shè)計之前,本人反復(fù)閱讀了課程標準和教材,針對教材的內(nèi)容,編排了一系列問題,讓學生親歷知識發(fā)生、發(fā)展的過程,積極投入到思維活動中來,通過與學生的互動交流,關(guān)注學生的思維發(fā)展,在逐漸展開中,引導學生用已學的知識、方法予以解決,并獲得知識體系的更新與拓展,收到了一定的預(yù)期效果,尤其是練習的處理,讓學生通過個人、小組、集體等多種解難釋疑的嘗試活動,感受“觀察——歸納——概括——應(yīng)用”等環(huán)節(jié),在知識的形成、發(fā)展過程中展開思維,逐步培養(yǎng)學生發(fā)現(xiàn)問題、探索問題、解決問題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學生的主體作用,也提高了學生主體的合作意識,達到了設(shè)計中所預(yù)想的目標。
然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認為,教師的干預(yù)(講解)還是太多。
在以后的教學中,對于一些較簡單的內(nèi)容,應(yīng)放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內(nèi)容等教學因素,都在不斷更新,作為數(shù)學教師要更新教學觀念,從學生的全面發(fā)展來設(shè)計課堂教學,關(guān)注學生個性和潛能的發(fā)展,使教學過程更加切合《課程標準》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。
函數(shù)的定義教案篇四
難點:其一般的性質(zhì)分析,再由性質(zhì)得到一般圖像。
三.教學方法和用具。
方法:歸納總結(jié),數(shù)形結(jié)合,分析驗證。
用具:幻燈片,幾何畫板,黑板。
四.教學過程。
(幻燈片見附件)。
1.設(shè)置問題情境,找出所得函數(shù)的共同形式,由形式給出冪函數(shù)的定義(幻燈片1?幻燈片2)(板書)。
2.從形式上比較指數(shù)函數(shù)和冪函數(shù)的異同(幻燈片3)。
3.利用定義的形式,判斷所給函數(shù)是否是冪函數(shù),并得出判斷依據(jù)(幻燈片4)。
4.畫常見的三種冪函數(shù)的圖像,再讓學生用描點法畫另兩種,并用幾何畫板驗證(幻燈片5)(幾何畫板)。
5.用幾何畫板畫出這五個冪函數(shù)的圖像,觀察圖像完成書中冪函數(shù)的函數(shù)性質(zhì)的表格,并分析得出更一般的結(jié)論(板書)(幾何畫板)。
函數(shù)的定義教案篇五
數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導、探索相結(jié)合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現(xiàn)的更加完美。
三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教a版)數(shù)學必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導公式中的公式(二)至公式(六).本節(jié)是第一課時,教學內(nèi)容為公式(二)、(三)、(四).教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導公式(一)的基礎(chǔ)上,利用對稱思想發(fā)現(xiàn)任意角與終邊的對稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點坐標之間關(guān)系,進而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導公式公式(二)、(三)、(四).同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
本節(jié)課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發(fā)現(xiàn)的教學方法應(yīng)該能輕松的完成本節(jié)課的教學內(nèi)容.
(1).基礎(chǔ)知識目標:理解誘導公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導公式;。
(4).個性品質(zhì)目標:通過誘導公式的學習和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運用化歸等數(shù)學思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學生的唯物史觀.
理解并掌握誘導公式.
正確運用誘導公式,求三角函數(shù)值,化簡三角函數(shù)式.
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數(shù)學知識,更重要的是傳授給學生數(shù)學思想方法,如何實現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預(yù)期效果等三個方面做如下分析.
數(shù)學教學是數(shù)學思維活動的教學,而不僅僅是數(shù)學活動的結(jié)果,數(shù)學學習的目的不僅僅是為了獲得數(shù)學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質(zhì).
在本節(jié)課的教學過程中,本人以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應(yīng)用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環(huán)境,讓學生體味學習的快樂和成功的喜悅.
“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生最大程度的消化知識,提高學習熱情是教者必須思考的問題.
在本節(jié)課的教學過程中,本人引導學生的學法為思考問題共同探討解決問題簡單應(yīng)用重現(xiàn)探索過程練習鞏固.讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉(zhuǎn)化為主動的自主學習.
1.復(fù)習銳角300,450,600的三角函數(shù)值;。
2.復(fù)習任意角的三角函數(shù)定義;。
3.問題:由,你能否知道sin2100的值嗎?引如新課.
自信的鼓勵是增強學生學習數(shù)學的自信,簡單易做的題加強了每個學生學習的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學生既有好像會做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機會證明我能行,從而思考解決的辦法.
1.讓學生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;。
2100與sin300之間有什么關(guān)系.
由特殊問題的引入,使學生容易了解,實現(xiàn)教學過程的平淡過度,為同學們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊.
函數(shù)的定義教案篇六
通過對這節(jié)課的教學研究,我深刻地認識到新課程背景下的數(shù)學課堂教學應(yīng)注意:
1、教師要“放得開”,做一個邊緣人。我們應(yīng)該充分相信學生,給學生成長的機會和空間。不再搞“包辦代替”,不能急性子。凡是學生能做的,就應(yīng)該讓他們自主去做;凡是學生之間能合作完成的,就應(yīng)該讓他們自主探究。給學生一滴水的機會,也許他會收獲一片海洋。
2、要做到“問題引領(lǐng)”,用問題牽引學習。本節(jié)課的設(shè)計給予學生的基礎(chǔ),設(shè)計了多個學生容易解決的問題串,這樣,能夠在循序漸進中學到知識。
3、要創(chuàng)造性地使用教材。教學過程中,不應(yīng)局限于教材,而應(yīng)充分利用教材這個平臺,伸向與教材有關(guān)的領(lǐng)域。數(shù)學是思維的體操,因此,若能對數(shù)學教材科學安排,對問題妙引導,有意識地引導學生有意識地主動學習更多更全面的數(shù)學知識,變“傳授”為“探究”,充分暴露知識的發(fā)生發(fā)展過程,以探索者的身份去發(fā)現(xiàn)問題、總結(jié)規(guī)律。
4、注重探究,體驗知識的形成過程。數(shù)學教學從本質(zhì)上講,是教師和學生以課堂為主渠道的交流活動,是教師和學生在某種教學情境中的探究活動。這節(jié)課教師本著“讓學生充分經(jīng)歷知識的形成、發(fā)展和應(yīng)用過程,充分體驗數(shù)學的發(fā)現(xiàn)和創(chuàng)造歷程”的教學理念,對教學過程和教學手段作了充分的準備。整節(jié)課學生在教師的引導下逐步探索、不斷發(fā)現(xiàn),品嘗到了數(shù)學學習的樂趣,教師的主導作用和學生的主體地位都得到了很好地體現(xiàn)。
總之,我們的教學工作是一項內(nèi)涵豐富的系統(tǒng)工程。教學中用問題引領(lǐng)學生,提升效率,不是一朝一夕就可以取得明顯成效的,它更是一個復(fù)雜的課題。“冰凍三尺,非一日之寒”,在教學中必須循序漸進,長期實踐,與時俱進,爭取做教學改革的有心人,只有這樣才能在教學研究工作中有所作為。因此,在實際教學中,我們應(yīng)時刻以學生為中心,充分給予學生成長的時間,鼓勵學生自主探究,采用適時激勵與點撥的方法使學生的思維活躍起來,讓課堂真正成為學生學習、發(fā)現(xiàn)的樂園。
函數(shù)的定義教案篇七
當x為不同的數(shù)值時,冪函數(shù)的值域的不同情況如下:
1.在x大于0時,函數(shù)的值域總是大于0的實數(shù)。
2.在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。
而只有a為正數(shù),0才進入函數(shù)的值域。
定義域。
當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:
1.如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);2.如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。
函數(shù)的定義教案篇八
即:一角的正弦大于另一個角的余弦。
2、若,則,。
3、的圖象的對稱中心為(),對稱軸方程為。
4、的圖象的對稱中心為(),對稱軸方程為。
5、及的圖象的對稱中心為()。
6、常用三角公式:。
有理公式:;。
降次公式:,;。
萬能公式:,,(其中)。
7、輔助角公式:,其中。輔助角的位置由坐標決定,即角的終邊過點。
8、時,。
9、。
其中為內(nèi)切圓半徑,為外接圓半徑。
特別地:直角中,設(shè)c為斜邊,則內(nèi)切圓半徑,外接圓半徑。
10、的圖象的圖象(時,向左平移個單位,時,向右平移個單位)。
11、解題時,條件中若有出現(xiàn),則可設(shè),。
則。
12、等腰三角形中,若且,則。
13、若等邊三角形的邊長為,則其中線長為,面積為。
14、;。
函數(shù)的定義教案篇九
形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。
當a取非零的有理數(shù)時是比較容易理解的,而對于a取無理數(shù)時,初學者則不大容易理解了。因此,在初等函數(shù)里,我們不要求掌握指數(shù)為無理數(shù)的問題,只需接受它作為一個已知事實即可,因為這涉及到實數(shù)連續(xù)性的極為深刻的知識。
函數(shù)的定義教案篇十
1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。
3、會對一個具體實例進行概括抽象成為數(shù)學問題。
過程與方法。
1、通過函數(shù)概念,初步形成學生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。
2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學生的抽象思維能力。
情感與價值觀。
1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學知識的理解和有效的學習模式。
1、掌握函數(shù)概念。
2、判斷兩個變量之間的關(guān)系是否可看作函數(shù)。
3、能把實際問題抽象概括為函數(shù)問題。
1、理解函數(shù)的概念。
2、能把實際問題抽象概括為函數(shù)問題。
一、創(chuàng)設(shè)問題情境,導入新課。
『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?
函數(shù)的定義教案篇十一
值域。
名稱定義。
(1)化歸法;(2)圖象法(數(shù)形結(jié)合),
(3)函數(shù)單調(diào)性法,
關(guān)于函數(shù)值域誤區(qū)。
定義域、對應(yīng)法則、值域是函數(shù)構(gòu)造的三個基本“元件”。平時數(shù)學中,實行“定義域優(yōu)先”的原則,無可置疑。然而事物均具有二重性,在強化定義域問題的同時,往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學生對函數(shù)的掌握時好時壞,事實上,定義域與值域二者的位置是相當?shù)?,絕不能厚此薄皮,何況它們二者隨時處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運算性質(zhì)有時并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的取值情況。才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實踐證明,如果加強了對值域求法的研究和討論,有利于對定義域內(nèi)函的理解,從而深化對函數(shù)本質(zhì)的認識。
“范圍”與“值域”相同嗎?
“范圍”與“值域”是我們在學習中經(jīng)常遇到的兩個概念,許多同學常常將它們混為一談,實際上這是兩個不同的概念?!爸涤颉笔撬泻瘮?shù)值的集合(即集合中每一個元素都是這個函數(shù)的取值),而“范圍”則只是滿足某個條件的一些值所在的集合(即集合中的元素不一定都滿足這個條件)。也就是說:“值域”是一個“范圍”,而“范圍”卻不一定是“值域”。
二.數(shù)學的學習方法。
1.數(shù)學要求具備熟練的計算能力,所以課后還有做足一定量的練習題,只有通過做題練習才能擁有計算能力。
2.課前要做好預(yù)習,這樣上數(shù)學課時才能把不會的知識點更好的消化吸收掉。
3.數(shù)學公式一定要記熟,并且還要會推導,能舉一反三。
4.數(shù)學重在理解,在開始學習知識的時候,一定要弄懂。所以上課要認真聽講,看看老師是怎樣講解的。
5.數(shù)學80%的分數(shù)來源于基礎(chǔ)知識,20%的分數(shù)屬于難點,所以考120分并不難。
6.數(shù)學需要沉下心去做,浮躁的人很難學好數(shù)學,踏踏實實做題才是硬道理。
7.數(shù)學要想學好,不琢磨是行不通的,遇到難題不能躲,研究明白了才能罷休。
8.數(shù)學最主要的就是解題過程,懂得數(shù)學思維很關(guān)鍵,思路通了,數(shù)學自然就會了。
9.數(shù)學不是用來看的,而是用來算的,或許這一秒沒思路,當你拿起筆開始計算的那一秒,就豁然開朗了。
10.數(shù)學題目不會做,原因之一就是例題沒研究明白,所以數(shù)學書上的例題絕對不要放過。
點擊。
將本文的word文檔下載到電腦,方便收藏和打印。
函數(shù)的定義教案篇十二
定義域、對應(yīng)法則、值域是函數(shù)構(gòu)造的三個基本“元件”。平時數(shù)學中,實行“定義域優(yōu)先”的原則,無可置疑。然而事物均具有二重性,在強化定義域問題的同時,往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學生對函數(shù)的掌握時好時壞,事實上,定義域與值域二者的位置是相當?shù)?,絕不能厚此薄彼,何況它們二者隨時處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運算性質(zhì)有時并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的取值情況。才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實踐證明,如果加強了對值域求法的研究和討論,有利于對定義域內(nèi)函的理解,從而深化對函數(shù)本質(zhì)的認識。
“范圍”與“值域”相同嗎?
“范圍”與“值域”是我們在學習中經(jīng)常遇到的兩個概念,許多同學常常將它們混為一談,實際上這是兩個不同的概念?!爸涤颉笔撬泻瘮?shù)值的集合(即集合中每一個元素都是這個函數(shù)的取值),而“范圍”則只是滿足某個條件的一些值所在的集合(即集合中的元素不一定都滿足這個條件)。也就是說:“值域”是一個“范圍”,而“范圍”卻不一定是“值域”。
函數(shù)的定義教案篇十三
在研究編程語言的過程中,我們離不開對函數(shù)的分析和應(yīng)用。在Python編程語言中,我們可以自定義函數(shù),來實現(xiàn)我們所需要的功能。在本次實驗中,我們學習了如何自定義函數(shù),并且通過實際的編程作業(yè),深刻體會到了函數(shù)的概念和應(yīng)用。本文將圍繞著自定義函數(shù)進行探討,并結(jié)合個人體會,闡述自定義函數(shù)在編程中的重要性。
自定義函數(shù)即使用開發(fā)者自己編寫的一段程序來實現(xiàn)一定的功能,并將這一程序封裝在一個函數(shù)中。自定義函數(shù)在Python編程語言中十分常見,遠遠不僅僅是簡單的數(shù)學運算。在實驗中,我們接觸到的自定義函數(shù)有很多種,有的函數(shù)用于對字符串進行操作(比如字符串拼接、大小寫轉(zhuǎn)換等),有的函數(shù)用于對數(shù)組進行操作(比如給數(shù)組排序、獲取數(shù)組中最大值最小值等),還有的函數(shù)用于文件讀寫操作。當我們需要實現(xiàn)某一功能時,只需要調(diào)用對應(yīng)的自定義函數(shù),就可以輕松實現(xiàn)。
在實驗中,我們需要通過自定義函數(shù)來完成一些任務(wù)。比如在第二次作業(yè)中,我們需要對輸入的數(shù)列進行分割和展示,通過設(shè)定“分段展示”的功能,可以將每個數(shù)列以規(guī)定長度為單位分段輸出。在實現(xiàn)這個需求時,我們需要自定義一個函數(shù),不同的編程者可能會有不同的實現(xiàn)方式。而在實現(xiàn)的過程中,我發(fā)現(xiàn)一些細節(jié)處理非常重要,比如在編寫分段展示函數(shù)時,需要對長度不足的部分進行補全,以便全面展示所有的數(shù)列,這樣才能使程序更完整、更可用。
在編寫函數(shù)時,我們需要注意函數(shù)的生命周期。Python中的函數(shù)是一次性的,也就是說一旦函數(shù)被調(diào)用執(zhí)行完畢后,程序就會自動銷毀函數(shù)。但我們有時候需要維護函數(shù)的活性,讓函數(shù)可以被多次調(diào)用。這是就需要注意函數(shù)的定義域及變量范圍問題。我們可以簡單的理解為函數(shù)內(nèi)定義的變量只有在函數(shù)內(nèi)部有效,作用域只能是節(jié)點內(nèi)部。如果我們希望函數(shù)可以被用來執(zhí)行多個任務(wù),我們需要設(shè)計合理的變量作用域,比如將變量定義為全局變量,這樣可以確保變量文件范圍內(nèi)生效,可在多個函數(shù)間共享。
第五段:總結(jié)。
通過本次實驗,我們不僅學習了自定義函數(shù)的概念和應(yīng)用,更重要的是,我們掌握了實現(xiàn)自定義函數(shù)的技巧,并體會到函數(shù)在Python編程語言中的巨大作用。自定義函數(shù)可以讓我們的程序更加簡潔、高效,提高程序?qū)崿F(xiàn)的效率和程序的代碼重用性;同時,我們也發(fā)現(xiàn)了自定義函數(shù)在程序設(shè)計中的一些注意事項,比如函數(shù)的定義域及變量范圍問題等。相信通過本次實驗,我們可以更加深入地理解自定義函數(shù)的目的及實現(xiàn)方式,從而更好地應(yīng)用在日常編程實踐中,提高自己的編程能力。
函數(shù)的定義教案篇十四
(1)是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學習對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以應(yīng)重點研究.
(2)本節(jié)的教學重點是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì).難點是對底數(shù)在和時,函數(shù)值變化情況的區(qū)分.
(3)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.
教法建議。
(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是.
(2)對底數(shù)的限制條件的理解與認識也是認識的重要內(nèi)容.如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對的認識及性質(zhì)的分類討論,還關(guān)系到后面學習對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來.
關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象.
函數(shù)的定義教案篇十五
1.使學生掌握的概念,圖象和性質(zhì).
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域.
(2)能在基本性質(zhì)的指導下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質(zhì).
(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如的圖象.
2.通過對的概念圖象性質(zhì)的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法.
3.通過對的研究,讓學生認識到數(shù)學的應(yīng)用價值,激發(fā)學生學習數(shù)學的興趣.使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題.
函數(shù)的定義教案篇十六
1、使學生掌握的概念,圖象和性質(zhì)。
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域。
(2)能在基本性質(zhì)的指導下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質(zhì)。
(3)x能利用的性質(zhì)比較某些冪形數(shù)的大小,會利用的圖象畫出形如x的圖象。
2、x通過對的概念圖象性質(zhì)的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。
3、通過對的研究,讓學生認識到數(shù)學的應(yīng)用價值,激發(fā)學生學習數(shù)學的興趣。使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題。
(1)x是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學習對數(shù)函數(shù)的基礎(chǔ),同時在生活及生產(chǎn)實際中有著廣泛的應(yīng)用,所以應(yīng)重點研究。
(2)x本節(jié)的教學重點是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點是對底數(shù)x在x和x時,函數(shù)值變化情況的區(qū)分。
(3)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。
(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是x的樣子,不能有一點差異,諸如x,x等都不是。
(2)對底數(shù)x的限制條件的理解與認識也是認識的重要內(nèi)容。如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關(guān)系到對的認識及性質(zhì)的分類討論,還關(guān)系到后面對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來。
關(guān)于圖象的繪制,雖然是用列表描點法,但在具體教學中應(yīng)避免描點前的盲目列表計算,也應(yīng)避免盲目的連點成線,要把表列在關(guān)鍵之處,要把點連在恰當之處,所以應(yīng)在列表描點前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象。
1。x理解的定義,初步掌握的圖象,性質(zhì)及其簡單應(yīng)用。
2。x通過的圖象和性質(zhì)的學習,培養(yǎng)學生觀察,分析,歸納的能力,進一步體會數(shù)形結(jié)合的思想方法。
3。x通過對的研究,使學生能把握函數(shù)研究的基本方法,激發(fā)學生的學習興趣。
重點是理解的定義,把握圖象和性質(zhì)。
難點是認識底數(shù)對函數(shù)值影響的認識。
投影儀
啟發(fā)討論研究式
一、x引入新課
我們前面學習了指數(shù)運算,在此基礎(chǔ)上,今天我們要來研究一類新的常見函數(shù)。
1、6、(板書)
這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:
由學生回答:x與x之間的關(guān)系式,可以表示為x。
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了x次后繩子剩余的長度為x米,試寫出x與x之間的函數(shù)關(guān)系。
由學生回答:x。
在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量x均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。
x的概念(板書)
1、定義:形如x的函數(shù)稱為。(板書)
教師在給出定義之后再對定義作幾點說明。
2、幾點說明x(板書)
(1)x關(guān)于對x的規(guī)定:
教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學生感到有困難,可將問題分解為若x會有什么問題?如x,此時x,x等在實數(shù)范圍內(nèi)相應(yīng)的函數(shù)值不存在。
若x對于x都無意義,若x則x無論x取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定x且x。
(2)關(guān)于的定義域x(板書)
教師引導學生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時教師可指出,其實當指數(shù)為無理數(shù)時,x也是一個確定的實數(shù),對于無理指數(shù)冪,學過的有理指數(shù)冪的"性質(zhì)和運算法則它都適用,所以將指數(shù)范圍擴充為實數(shù)范圍,所以的定義域為x。擴充的另一個原因是因為使她它更具代表更有應(yīng)用價值。
(3)關(guān)于是否是的判斷(板書)
剛才分別認識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。
(4)x,x
(5)x。
學生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是,其中(3)x可以寫成x,也是指數(shù)圖象。
最后提醒學生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質(zhì),此時研究的關(guān)鍵在于畫出它的圖象,再細致歸納性質(zhì)。
3、歸納性質(zhì)
作圖的用什么方法。用列表描點發(fā)現(xiàn),教師準備明確性質(zhì),再由學生回答。
函數(shù)
1、定義域x:
2、值域:
3、奇偶性x:既不是奇函數(shù)也不是偶函數(shù)
4、截距:在x軸上沒有,在x軸上為1。
對于性質(zhì)1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應(yīng)會證明。對于單調(diào)性,我建議找一些特殊點。,先看一看,再下定論。對最后一條也是指導函數(shù)圖象畫圖的依據(jù)。(圖象位于x軸上方,且與x軸不相交。)
在此基礎(chǔ)上,教師可指導學生列表,描點了。取點時還要提醒學生由于不具備對稱性,故x的值應(yīng)有正有負,且由于單調(diào)性不清,所取點的個數(shù)不能太少。
此處教師可利用計算機列表描點,給出十組數(shù)據(jù),而學生自己列表描點,至少六組數(shù)據(jù)。連點成線時,一定提醒學生圖象的變化趨勢(當x越小,圖象越靠近x軸,x越大,圖象上升的越快),并連出光滑曲線。
二、圖象與性質(zhì)(板書)
1、圖象的畫法:性質(zhì)指導下的列表描點法。
2、草圖:
當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且x,取值可分為兩段)讓學生明白需再畫第二個,不妨取x為例。
此時畫它的圖象的方法應(yīng)讓學生來選擇,應(yīng)讓學生意識到列表描點不是唯一的方法,而圖象變換的方法更為簡單。即x=x與x圖象之間關(guān)于x軸對稱,而此時x的圖象已經(jīng)有了,具備了變換的條件。讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到x的圖象。
最后問學生是否需要再畫。(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質(zhì),若認為還需畫,則教師可利用計算機再畫出如x的圖象一起比較,再找共性)
由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:
以上內(nèi)容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數(shù)的性質(zhì),即從代數(shù)角度的描述,將表中另一部分填滿。
填好后,讓學生仿照此例再列一個x的表,將相應(yīng)的內(nèi)容填好。為進一步整理性質(zhì),教師可提出從另一個角度來分類,整理函數(shù)的性質(zhì)。
3、性質(zhì)。
(1)無論x為何值,x都有定義域為x,值域為x,都過點x。
(2)x時,x在定義域內(nèi)為增函數(shù),x時,x為減函數(shù)。
(3)x時,x,x x時,x。
總結(jié)之后,特別提醒學生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質(zhì)。
三、簡單應(yīng)用x (板書)
1、利用單調(diào)性比大小。x(板書)
一類函數(shù)研究完它的概念,圖象和性質(zhì)后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。
例1、x比較下列各組數(shù)的大小
(1)x與x;x(2)x與x;
(3)x與1x。(板書)
首先讓學生觀察兩個數(shù)的特點,有什么相同?由學生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學生聯(lián)想,提出構(gòu)造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。
解:x在x上是增函數(shù),且
教師最后再強調(diào)過程必須寫清三句話:
(1)x構(gòu)造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應(yīng)的單調(diào)性。
(2)x自變量的大小比較。
(3)x函數(shù)值的大小比較。
后兩個題的過程略。要求學生仿照第(1)題敘述過程。
例2。比較下列各組數(shù)的大小
(1)x與x;x(2)x與x ;
(3)x與x。(板書)
先讓學生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導學生發(fā)現(xiàn)對(1)來說x可以寫成x,這樣就可以轉(zhuǎn)化成同底的問題,再用例1的方法解決,對(2)來說x可以寫成x,也可轉(zhuǎn)化成同底的,而(3)前面的方法就不適用了,考慮新的轉(zhuǎn)化方法,由學生思考解決。(教師可提示學生的函數(shù)值與1有關(guān),可以用1來起橋梁作用)
最后由學生說出x1,1。
解決后由教師小結(jié)比較大小的方法
(1)x構(gòu)造函數(shù)的方法:x數(shù)的特征是同底不同指(包括可轉(zhuǎn)化為同底的)
(2)x搭橋比較法:x用特殊的數(shù)1或0。
四、鞏固練習
練習:比較下列各組數(shù)的大小(板書)
(1)x與x x(2)x與x;
(3)x與x;x(4)x與x。解答過程略
五、小結(jié)
1、的概念
2、的圖象和性質(zhì)
3、簡單應(yīng)用
六、板書設(shè)計
函數(shù)的定義教案篇十七
函數(shù)定義域?qū)瘮?shù)圖象、解析式等都起著決定性的作用,要使得函數(shù)解析式中的所有式子有意義,需要找出所有對函數(shù)自變量有限制的條件,進而求出函數(shù)的定義域。以下幾種情況需要同學們格外注意:
1、關(guān)系式為整式時,函數(shù)定義域為全體實數(shù);
2、關(guān)系式含有分式時,分式的分母不等于零;
3、關(guān)系式含有二次根式時,被開放方數(shù)大于等于零;
4、關(guān)系式中含有指數(shù)為零的式子時,底數(shù)不等于零;
5、實際問題中,函數(shù)定義域還要和實際情況相符合,使之有意義。
函數(shù)的定義教案篇十八
自定義函數(shù)是編程中的重要組成部分,也是實現(xiàn)代碼重用的機制。在學習自定義函數(shù)的過程中,我們需要深入了解它的實現(xiàn)原理以及如何在實際編程中靈活運用。在本篇文章中,我將分享我學習自定義函數(shù)的心得和體會。
第二段:自定義函數(shù)的基本概念
自定義函數(shù)是一段封裝好的可重復(fù)使用的代碼塊,它被封裝在一個名稱下,來實現(xiàn)某種特定的功能。自定義函數(shù)可以被多次調(diào)用,重復(fù)使用,從而節(jié)省代碼量,提高代碼復(fù)用性和可維護性。自定義函數(shù)的基本語法包括函數(shù)名、參數(shù)列表、函數(shù)體和返回語句等。
第三段:實驗過程中的收獲
在實驗中,我通過編寫多個自定義函數(shù),加深了對函數(shù)的理解。在實踐中,我學會了如何創(chuàng)建和調(diào)用自定義函數(shù),以及如何在定義函數(shù)時設(shè)置參數(shù)和返回值。這使我更好地掌握了函數(shù)的使用方法和意義,并能夠更好地運用自定義函數(shù)解決實際問題。
第四段:應(yīng)用實例
在應(yīng)用自定義函數(shù)時,我們可以結(jié)合其他程序語言特性來實現(xiàn)更加復(fù)雜的操作。例如,我們可以結(jié)合條件判斷語句、循環(huán)語句等實現(xiàn)更復(fù)雜的功能。自定義函數(shù)可以作為其他程序塊的模塊進行調(diào)用,是提高代碼重用率和可維護性的不二選擇。
第五段:總結(jié)
總的來說,自定義函數(shù)是學習編程必須掌握的重要技能。在學習的過程中,要深入理解函數(shù)的基本概念,多寫、多試、多調(diào),才能帶來更多的收獲。在應(yīng)用自定義函數(shù)的時候,我們要靈活運用各種語言特性,提高代碼的重用和可維護性。自定義函數(shù)的使用不僅是一種工具,更體現(xiàn)了編程思維的核心精髓。
函數(shù)的定義教案篇十九
自定義函數(shù)是程序設(shè)計語言中重要的一部分,它是一個可以重復(fù)使用的代碼塊,在程序中承擔著特定作用的任務(wù),有利于代碼的模塊化和可讀性。在學習過程中,要求我們實驗并寫出心得體會。本文將分享我在自定義函數(shù)實驗中的體會感悟。
第一段:了解自定義函數(shù)的基本概念
在開始實驗后,首先要了解自定義函數(shù)的基本概念。自定義函數(shù)是指我們自行編寫的代碼塊,它可以完成特定的任務(wù)。自定義函數(shù)包含函數(shù)頭、函數(shù)體和返回值。其中函數(shù)頭包括函數(shù)名和參數(shù)列表,表示函數(shù)接受的輸入;函數(shù)體是函數(shù)實現(xiàn)的代碼塊,完成數(shù)據(jù)處理和邏輯判斷等任務(wù);返回值是函數(shù)完成后返回的結(jié)果。理解這些基本概念對后面的實驗任務(wù)實現(xiàn)有幫助。
第二段:熟悉自定義函數(shù)的語法和注意事項
為了更好地編寫自定義函數(shù),我們需要熟悉自定義函數(shù)的語法和注意事項。自定義函數(shù)的語法格式一般由 def 開頭,后面跟著函數(shù)名和參數(shù)列表。在函數(shù)體內(nèi)部,可以使用 if、for、while 等語句來實現(xiàn)特定的功能。在編寫自定義函數(shù)時還需要注意參數(shù)的類型和數(shù)量;同時要注意避免全局變量的使用和命名沖突等問題。對于初學者來說,這些問題也許會讓人感到困難,需要不斷進行實踐和理解,才能真正掌握熟練。
第三段:實踐中的挑戰(zhàn)與解決方法
在實驗中,我遇到了一些挑戰(zhàn)和問題。在編寫自定義函數(shù)時,有時需要將函數(shù)的輸出作為輸入傳遞給另一個函數(shù),這要求我們特別注意參數(shù)的個數(shù)和位置等信息,以避免出現(xiàn)錯誤。有些情況下函數(shù)的參數(shù)列表較長,會導致在函數(shù)調(diào)用時發(fā)生錯誤,此時需要考慮將參數(shù)定義為全局變量或使用字典等數(shù)據(jù)結(jié)構(gòu)進行存儲。此外,函數(shù)的遞歸調(diào)用也是一個較為難以掌握的問題,需要對函數(shù)實現(xiàn)的細節(jié)和調(diào)用的順序進行規(guī)劃和理解。以上這些問題,需要我們在實踐操作中不斷摸索和解決。
第四段:自定義函數(shù)的應(yīng)用場景
自定義函數(shù)在編寫程序時具有很大的靈活性和應(yīng)用價值。對于一些需要重復(fù)使用的代碼,我們可以將其封裝成自定義函數(shù),以便在需要時直接調(diào)用。此外,自定義函數(shù)可以使代碼的結(jié)構(gòu)更加清晰,增加代碼的可讀性,也有助于在項目開發(fā)中團隊協(xié)作和合作。在實踐中探索自定義函數(shù)的應(yīng)用場景,可以幫助我們更好地理解函數(shù)的創(chuàng)建和使用,更為熟練地進行編程和項目實施。
第五段:總結(jié)感悟和思考
通過本次自定義函數(shù)實驗,我認識到自定義函數(shù)的重要性和應(yīng)用價值,也明白了自定義函數(shù)的創(chuàng)建和使用涉及到許多技能和知識點,需要我們不斷學習和實踐。僅僅學會語法是遠遠不夠的,還需要對函數(shù)編寫有一定的想象力和靈活性,不斷嘗試和探索新的應(yīng)用場景和解決方案。同時,我們也許需要更多的實際操作和項目實踐,來提升自身的編程能力和應(yīng)用價值。因此,我對未來的學習計劃也提出了一些思考和期望,希望能夠更深刻地理解自定義函數(shù)的應(yīng)用,不斷提升自身能力和價值。