最新八年級(jí)數(shù)學(xué)因式分解教案(精選23篇)

字號(hào):

    教案包括教學(xué)目標(biāo)、教學(xué)過(guò)程、教學(xué)方法、教學(xué)評(píng)價(jià)等內(nèi)容,是教師備課的重要組成部分。教案的編寫(xiě)需要考慮時(shí)間的安排和掌控,合理規(guī)劃課程的進(jìn)度和節(jié)奏。教案的優(yōu)化與創(chuàng)新是教師的重要任務(wù)之一,我們要不斷探索。
    八年級(jí)數(shù)學(xué)因式分解教案篇一
    《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級(jí)下冊(cè)第十九章第二節(jié)的內(nèi)容??v觀整個(gè)初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識(shí)及簡(jiǎn)單圖形的平移和旋轉(zhuǎn)等平面幾何知識(shí),并且具備有初步的觀察、操作等活動(dòng)經(jīng)驗(yàn)的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識(shí)的延續(xù),又是對(duì)平行四邊形、菱形、矩形進(jìn)行綜合的不可缺少的重要環(huán)節(jié)。
    本節(jié)課的重點(diǎn)是正方形的概念和性質(zhì),難點(diǎn)是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識(shí)、能力、情感三方面的目標(biāo)。
    (一)知識(shí)目標(biāo):
    1、要求學(xué)生掌握正方形的概念及性質(zhì);
    2、能正確運(yùn)用正方形的性質(zhì)進(jìn)行簡(jiǎn)單的計(jì)算、推理、論證;
    (二)能力目標(biāo):
    1、通過(guò)本節(jié)課培養(yǎng)學(xué)生觀察、動(dòng)手、探究、分析、歸納、總結(jié)等能力;
    2、發(fā)展學(xué)生合情推理意識(shí),主動(dòng)探究的習(xí)慣,逐步掌握說(shuō)理的基本方法;
    (三)情感目標(biāo):
    1、讓學(xué)生樹(shù)立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實(shí)際的良好學(xué)風(fēng);
    2、培養(yǎng)學(xué)生互相幫助、團(tuán)結(jié)協(xié)作、相互討論的團(tuán)隊(duì)精神;
    3、通過(guò)正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。
    該段學(xué)生具有一定的獨(dú)立思考和探究的能力,但語(yǔ)言表達(dá)能力方面稍有欠缺,所以在本節(jié)課的教學(xué)過(guò)程中,特意設(shè)計(jì)了讓學(xué)生自己組織語(yǔ)言培養(yǎng)說(shuō)理能力,讓學(xué)生們能逐步提高。
    針對(duì)本節(jié)課的特點(diǎn),采用"實(shí)踐--觀察--總結(jié)歸納--運(yùn)用"為主線的教學(xué)方法。
    通過(guò)學(xué)生動(dòng)手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過(guò)觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過(guò)一道拔高題對(duì)定義、性質(zhì)理解、鞏固加以升華。
    本節(jié)課重點(diǎn)是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點(diǎn),著重指導(dǎo)學(xué)生動(dòng)手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過(guò)互相學(xué)習(xí),讓學(xué)生體驗(yàn)合作學(xué)習(xí)的樂(lè)趣。
    第一環(huán)節(jié):相關(guān)知識(shí)回顧。
    以提問(wèn)的形式復(fù)習(xí)平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實(shí)質(zhì)是由平行四邊形角度、邊長(zhǎng)的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時(shí)發(fā)生在平行四邊形上,則會(huì)得到什么樣的圖形?讓學(xué)生們通過(guò)手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。
    第二環(huán)節(jié):新課講解通過(guò)學(xué)生們的發(fā)現(xiàn)引出課題“正方形”
    1、正方形的定義:引導(dǎo)學(xué)生說(shuō)出自己變化出正方形的過(guò)程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過(guò)程。請(qǐng)同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個(gè)角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個(gè)必要條件,并且由這三個(gè)條件通過(guò)重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個(gè)角是直角可得到正方形的另兩個(gè)定義:一個(gè)角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過(guò)程,進(jìn)一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。
    2、正方形的性質(zhì)定理1:正方形的四個(gè)角都是直角,四條邊都相等;
    定理2:正方形的兩條對(duì)角線相等,并且互相垂直、平分,每條對(duì)角線平分一組對(duì)角。
    以上是對(duì)正方形定義和性質(zhì)的學(xué)習(xí),之后是進(jìn)行例題講解。
    4、課堂練習(xí):第一部分采用三道有關(guān)正方形的周長(zhǎng)、面積、對(duì)角線、邊長(zhǎng)計(jì)算的填空題,目的是對(duì)正方形性質(zhì)的進(jìn)一步理解,并考察學(xué)生掌握的情況。
    第二部分是選擇題,通過(guò)體現(xiàn)生活中實(shí)際問(wèn)題,來(lái)提升學(xué)生所學(xué)的知識(shí),并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識(shí)到數(shù)學(xué)實(shí)質(zhì)是來(lái)源于生活并要服務(wù)于生活。
    5、課堂小結(jié):此環(huán)節(jié)我是通過(guò)圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過(guò)對(duì)所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識(shí)充實(shí)自己,達(dá)到理想中的完美。
    6、作業(yè)設(shè)計(jì):作業(yè)是教材159頁(yè),第12、14兩小道證明題,通過(guò)此作業(yè)讓同學(xué)們進(jìn)一步鞏固有關(guān)正方形的知識(shí)。
    八年級(jí)數(shù)學(xué)因式分解教案篇二
    認(rèn)知基礎(chǔ):學(xué)生在七年級(jí)下冊(cè)第四章已學(xué)習(xí)了《變量之間的關(guān)系》,對(duì)變量間互相依存的關(guān)系有了一定的認(rèn)識(shí),但對(duì)于變量間的變化規(guī)律尚不明確,理解的很膚淺,也缺乏理論高度,另外本章在認(rèn)知方式和思維深度上對(duì)學(xué)生有較高的要求,學(xué)生在理解和運(yùn)用時(shí)會(huì)有一定的難度。
    活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在七年級(jí)下冊(cè)《變量之間的關(guān)系》一章中,學(xué)生接觸了大量的生活實(shí)例額,體會(huì)了變量之間相互依賴(lài)關(guān)系的普遍性,感受到了學(xué)習(xí)變量關(guān)系的必要性,初步具備了一定的識(shí)圖能力和主動(dòng)參與、合作的意識(shí)和初步的觀察、分析、抽象概括的能力。
    知識(shí)與技能目標(biāo):
    (1)初步掌握函數(shù)概念,能判斷兩個(gè)變量之間的關(guān)系是否可以看作函數(shù)。
    (2)根據(jù)兩個(gè)變量之間的關(guān)系式,給定其中一個(gè)變量的值相應(yīng)的會(huì)求出另一個(gè)變量的值。
    (3)會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為函數(shù)問(wèn)題。
    過(guò)程與方法目標(biāo):
    (1)通過(guò)函數(shù)概念初步形成利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。
    (2)經(jīng)歷具體實(shí)例的抽象概括過(guò)程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。
    情感態(tài)度與價(jià)值觀目標(biāo):
    (1)經(jīng)歷函數(shù)概念的抽象概括過(guò)程,體會(huì)函數(shù)的模型思想。
    (2)能主動(dòng)從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。
    八年級(jí)數(shù)學(xué)因式分解教案篇三
    根據(jù)大綱要求,結(jié)合本教材特點(diǎn)和學(xué)生認(rèn)知能力,將教學(xué)目標(biāo)確定為:
    知識(shí)與技能:1、理解因式分解的含義,能判斷一個(gè)式子的變形是否為因式分解。
    2、熟練運(yùn)用提取公因式法分解因式。
    過(guò)程與方法:在教學(xué)過(guò)程中,體會(huì)類(lèi)比的數(shù)學(xué)思想逐步形成獨(dú)立思考,主動(dòng)探索的習(xí)慣。
    情感態(tài)度與價(jià)值觀:通過(guò)現(xiàn)實(shí)情景,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,并提高學(xué)生關(guān)注生存環(huán)境的環(huán)保意識(shí)。
    八年級(jí)數(shù)學(xué)因式分解教案篇四
    1、知識(shí)與能力:
    1)進(jìn)一步鞏固相似三角形的知識(shí).
    2)能夠運(yùn)用三角形相似的知識(shí),解決不能直接測(cè)量物體的長(zhǎng)度和高度(如測(cè)量金字塔高度問(wèn)題、測(cè)量河寬問(wèn)題)等的一些實(shí)際問(wèn)題.
    2.過(guò)程與方法:
    經(jīng)歷從實(shí)際問(wèn)題到建立數(shù)學(xué)模型的過(guò)程,發(fā)展學(xué)生的抽象概括能力。
    3.情感、態(tài)度與價(jià)值觀:
    1)通過(guò)利用相似形知識(shí)解決生活實(shí)際問(wèn)題,使學(xué)生體驗(yàn)數(shù)學(xué)來(lái)源于生活,服務(wù)于生活。
    2)通過(guò)對(duì)問(wèn)題的探究,培養(yǎng)學(xué)生認(rèn)真踏實(shí)的學(xué)習(xí)態(tài)度和科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)方法,通過(guò)獲得成功的經(jīng)驗(yàn)和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。
    (三)教學(xué)重點(diǎn)、難點(diǎn)和關(guān)鍵。
    重點(diǎn):利用相似三角形的知識(shí)解決實(shí)際問(wèn)題。
    難點(diǎn):運(yùn)用相似三角形的判定定理構(gòu)造相似三角形解決實(shí)際問(wèn)題。
    關(guān)鍵:將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型,利用所學(xué)的知識(shí)來(lái)進(jìn)行解答。
    八年級(jí)數(shù)學(xué)因式分解教案篇五
    1、知識(shí)與能力:
    1)進(jìn)一步鞏固相似三角形的知識(shí).
    2)能夠運(yùn)用三角形相似的知識(shí),解決不能直接測(cè)量物體的長(zhǎng)度和高度(如測(cè)量金字塔高度問(wèn)題、測(cè)量河寬問(wèn)題)等的一些實(shí)際問(wèn)題.
    2.過(guò)程與方法:
    經(jīng)歷從實(shí)際問(wèn)題到建立數(shù)學(xué)模型的過(guò)程,發(fā)展學(xué)生的抽象概括能力。
    3.情感、態(tài)度與價(jià)值觀:
    1)通過(guò)利用相似形知識(shí)解決生活實(shí)際問(wèn)題,使學(xué)生體驗(yàn)數(shù)學(xué)來(lái)源于生活,服務(wù)于生活。
    2)通過(guò)對(duì)問(wèn)題的探究,培養(yǎng)學(xué)生認(rèn)真踏實(shí)的學(xué)習(xí)態(tài)度和科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)方法,通過(guò)獲得成功的經(jīng)驗(yàn)和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。
    (三)教學(xué)重點(diǎn)、難點(diǎn)和關(guān)鍵
    重點(diǎn):利用相似三角形的知識(shí)解決實(shí)際問(wèn)題。
    難點(diǎn):運(yùn)用相似三角形的判定定理構(gòu)造相似三角形解決實(shí)際問(wèn)題。
    關(guān)鍵:將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型,利用所學(xué)的知識(shí)來(lái)進(jìn)行解答。
    【教法與學(xué)法】
    (一)教法分析
    為了突出教學(xué)重點(diǎn),突破教學(xué)難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律和心理特征,在教學(xué)過(guò)程中,我采用了以下的教學(xué)方法:
    1.采用情境教學(xué)法。整節(jié)課圍繞測(cè)量物體高度這個(gè)問(wèn)題展開(kāi),按照從易到難層層推進(jìn)。在數(shù)學(xué)教學(xué)中,注重創(chuàng)設(shè)相關(guān)知識(shí)的現(xiàn)實(shí)問(wèn)題情景,讓學(xué)生充分感知“數(shù)學(xué)來(lái)源于生活又服務(wù)于生活”。
    2.貫徹啟發(fā)式教學(xué)原則。教學(xué)的各個(gè)環(huán)節(jié)均從提出問(wèn)題開(kāi)始,在師生共同分析、討論和探究中展開(kāi)學(xué)生的思路,把啟發(fā)式思想貫穿與教學(xué)活動(dòng)的全過(guò)程。
    3.采用師生合作教學(xué)模式。本節(jié)課采用師生合作教學(xué)模式,以師生之間、生生之間的全員互動(dòng)關(guān)系為課堂教學(xué)的核心,使學(xué)生共同達(dá)到教學(xué)目標(biāo)。教師要當(dāng)好“導(dǎo)演”,讓學(xué)生當(dāng)好“演員”,從充分尊重學(xué)生的潛能和主體地位出發(fā),課堂教學(xué)以教師的“導(dǎo)”為前提,以學(xué)生的“演”為主體,把較多的課堂時(shí)間留給學(xué)生,使他們有機(jī)會(huì)進(jìn)行獨(dú)立思考,相互磋商,并發(fā)表意見(jiàn)。
    (二)學(xué)法分析
    按照學(xué)生的認(rèn)識(shí)規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體的指導(dǎo)思想,在本節(jié)課的學(xué)習(xí)過(guò)程中,采用自主探究、合作交流的學(xué)習(xí)方式,讓學(xué)生思考問(wèn)題、獲取知識(shí)、掌握方法,運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題,啟發(fā)學(xué)生從書(shū)本知識(shí)到社會(huì)實(shí)踐,學(xué)以致用,力求促使每個(gè)學(xué)生都在原有的基礎(chǔ)上得到有效的發(fā)展。
    【教學(xué)過(guò)程】
    一、知識(shí)梳理
    1、判斷兩三角形相似有哪些方法?
    1)定義:2)定理(平行法):
    3)判定定理一(邊邊邊):
    4)判定定理二(邊角邊):
    5)判定定理三(角角):
    2、相似三角形有什么性質(zhì)?
    對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等
    (通過(guò)對(duì)知識(shí)的梳理,幫助學(xué)生形成自己的知識(shí)結(jié)構(gòu)體系,為解決問(wèn)題儲(chǔ)備理論依據(jù)。)
    二、情境導(dǎo)入
    胡夫金字塔是埃及現(xiàn)存規(guī)模的金字塔,被喻為“世界古代七大奇觀之一”。塔的4個(gè)斜面正對(duì)東南西北四個(gè)方向,塔基呈正方形,每邊長(zhǎng)約230多米。據(jù)考證,為建成大金字塔,共動(dòng)用了10萬(wàn)人花了時(shí)間.原高146.59米,但由于經(jīng)過(guò)幾千年的風(fēng)吹雨打,頂端被風(fēng)化吹蝕.所以高度有所降低。
    (數(shù)學(xué)教學(xué)從學(xué)生的生活體驗(yàn)和客觀存在的事實(shí)或現(xiàn)實(shí)課題出發(fā),為學(xué)生提供較感興趣的問(wèn)題情景,幫助學(xué)生順利地進(jìn)入學(xué)習(xí)情景。同時(shí),問(wèn)題是知識(shí)、能力的生長(zhǎng)點(diǎn),通過(guò)富有實(shí)際意義的問(wèn)題能夠激活學(xué)生原有認(rèn)知,促使學(xué)生主動(dòng)地進(jìn)行探索和思考。)
    三、例題講解
    例1(教材p49例3——測(cè)量金字塔高度問(wèn)題)
    《相似三角形的應(yīng)用》教學(xué)設(shè)計(jì)分析:根據(jù)太陽(yáng)光的光線是互相平行的特點(diǎn),可知在同一時(shí)刻的陽(yáng)光下,豎直的兩個(gè)物體的影子互相平行,從而構(gòu)造相似三角形,再利用相似三角形的判定和性質(zhì),根據(jù)已知條件,求出金字塔的高度.
    解:略(見(jiàn)教材p49)
    問(wèn):你還可以用什么方法來(lái)測(cè)量金字塔的高度?(如用身高等)
    解法二:用鏡面反射(如圖,點(diǎn)a是個(gè)小鏡子,根據(jù)光的反射定律:由入射角等于反射角構(gòu)造相似三角形).(解法略)
    例2(教材p50練習(xí)?——測(cè)量河寬問(wèn)題)
    《相似三角形的應(yīng)用》教學(xué)設(shè)計(jì)《相似三角形的應(yīng)用》教學(xué)設(shè)計(jì)分析:設(shè)河寬ab長(zhǎng)為xm,由于此種測(cè)量方法構(gòu)造了三角形中的平行截線,故可得到相似三角形,因此有,即《相似三角形的應(yīng)用》教學(xué)設(shè)計(jì).再解x的方程可求出河寬.
    解:略(見(jiàn)教材p50)
    問(wèn):你還可以用什么方法來(lái)測(cè)量河的寬度?
    解法二:如圖構(gòu)造相似三角形(解法略).
    四、鞏固練習(xí)
    五、回顧小結(jié)
    一)相似三角形的應(yīng)用主要有如下兩個(gè)方面
    1測(cè)高(不能直接使用皮尺或刻度尺量的)
    2測(cè)距(不能直接測(cè)量的兩點(diǎn)間的距離)
    二)測(cè)高的方法
    測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)的比例”的原理解決
    三)測(cè)距的方法
    測(cè)量不能到達(dá)兩點(diǎn)間的距離,常構(gòu)造相似三角形求解
    (落實(shí)教師的引導(dǎo)作用以及學(xué)生的主體地位,既訓(xùn)練學(xué)生的概括歸納能力,又有助于學(xué)生在歸納的過(guò)程中把所學(xué)的知識(shí)條理化、系統(tǒng)化。)
    六、拓展提高
    怎樣利用相似三角形的有關(guān)知識(shí)測(cè)量旗桿的高度?
    七、作業(yè)
    課本習(xí)題27.210題、11題。
    八年級(jí)數(shù)學(xué)因式分解教案篇六
    1.知識(shí)與技能
    會(huì)應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力.
    2.過(guò)程與方法
    經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過(guò)程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性.
    3.情感、態(tài)度與價(jià)值觀
    培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問(wèn)題中的應(yīng)用價(jià)值.
    重、難點(diǎn)與關(guān)鍵
    1.重點(diǎn):利用平方差公式分解因式.
    2.難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的徹底性.
    3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問(wèn)題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來(lái).
    教學(xué)方法
    采用“問(wèn)題解決”的教學(xué)方法,讓學(xué)生在問(wèn)題的牽引下,推進(jìn)自己的思維.
    教學(xué)過(guò)程
    一、觀察探討,體驗(yàn)新知
    【問(wèn)題牽引】
    請(qǐng)同學(xué)們計(jì)算下列各式.
    (1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
    【學(xué)生活動(dòng)】動(dòng)筆計(jì)算出上面的兩道題,并踴躍上臺(tái)板演.
    (1)(a+5)(a-5)=a2-52=a2-25;
    (2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
    【教師活動(dòng)】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.
    1.分解因式:a2-25;2.分解因式16m2-9n.
    【學(xué)生活動(dòng)】從逆向思維入手,很快得到下面答案:
    (1)a2-25=a2-52=(a+5)(a-5).
    (2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
    【教師活動(dòng)】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時(shí),導(dǎo)出課題:用平方差公式因式分解.
    平方差公式:a2-b2=(a+b)(a-b).
    評(píng)析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式).
    二、范例學(xué)習(xí),應(yīng)用所學(xué)
    【例1】把下列各式分解因式:(投影顯示或板書(shū))
    (1)x2-9y2;(2)16x4-y4;
    (3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;
    (5)m2(16x-y)+n2(y-16x).
    【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿(mǎn)足平方差公式的特征,可以使用平方差公式因式分解.
    【教師活動(dòng)】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演.
    【學(xué)生活動(dòng)】分四人小組,合作探究.
    解:(1)x2-9y2=(x+3y)(x-3y);
    (5)m2(16x-y)+n2(y-16x)
    =(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
    八年級(jí)數(shù)學(xué)因式分解教案篇七
    教學(xué)過(guò)程中滲透類(lèi)比的數(shù)學(xué)思想,形成新的知識(shí)結(jié)構(gòu)體系;設(shè)置探究式教學(xué),讓學(xué)生經(jīng)歷知識(shí)的形成,從而達(dá)到對(duì)知識(shí)的深刻理解與靈活應(yīng)用。
    學(xué)法:自主、合作、探索的學(xué)習(xí)方式
    在教學(xué)活動(dòng)中,既要提高學(xué)生獨(dú)立解決問(wèn)題的能力,又要培養(yǎng)團(tuán)結(jié)協(xié)作精神,拓展學(xué)生探究問(wèn)題的深度與廣度,體現(xiàn)素質(zhì)教育的要求。
    八年級(jí)數(shù)學(xué)因式分解教案篇八
    【知識(shí)與技能】
    1.會(huì)求反比例函數(shù)的解析式;2.鞏固反比例函數(shù)圖象和性質(zhì),通過(guò)對(duì)圖象的分析,進(jìn)一步探究反比例函數(shù)的增減性.
    【過(guò)程與方法】
    經(jīng)歷觀察、分析、交流的過(guò)程,逐步提高運(yùn)用知識(shí)的能力.
    【情感態(tài)度】
    提高學(xué)生的觀察、分析能力和對(duì)圖形的感知水平.
    【教學(xué)重點(diǎn)】
    會(huì)求反比例函數(shù)的解析式.
    【教學(xué)難點(diǎn)】
    反比例函數(shù)圖象和性質(zhì)的運(yùn)用.
    教學(xué)過(guò)程
    一、情景導(dǎo)入,初步認(rèn)知
    【教學(xué)說(shuō)明】復(fù)習(xí)上節(jié)課的內(nèi)容,同時(shí)引入新課.
    二、思考探究,獲取新知
    1.思考:已知反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)p(2,4)
    (1)求k的值,并寫(xiě)出該函數(shù)的表達(dá)式;
    (2)判斷點(diǎn)a(-2,-4),b(3,5)是否在這個(gè)函數(shù)的圖象上;
    分析:
    (1)題中已知圖象經(jīng)過(guò)點(diǎn)p(2,4),即表明把p點(diǎn)坐標(biāo)代入解析式成立,這樣能求出k,解析式也就確定了.
    (2)要判斷a、b是否在這條函數(shù)圖象上,就是把a(bǔ)、b的坐標(biāo)代入函數(shù)解析式中,如能使解析式成立,則這個(gè)點(diǎn)就在函數(shù)圖象上.否則不在.
    (3)根據(jù)k的正負(fù)性,利用反比例函數(shù)的性質(zhì)來(lái)判定函數(shù)圖象所在的象限、y隨x的值的變化情況.
    【歸納結(jié)論】這種求解析式的方法叫做待定系數(shù)法求解析式.
    2.下圖是反比例函數(shù)y=的圖象,根據(jù)圖象,回答下列問(wèn)題:
    (1)k的取值范圍是k0還是k0?說(shuō)明理由;
    (2)如果點(diǎn)a(-3,y1),b(-2,y2)是該函數(shù)圖象上的兩點(diǎn),試比較y1,y2的大小.分析:
    (1)由圖象可知,反比例函數(shù)y=kx的圖象的兩支曲線分別位于第一、三象限內(nèi),在每個(gè)象限內(nèi),函數(shù)值y隨自變量x的增大而減小,因此,k0.
    (2)因?yàn)辄c(diǎn)a(-3,y1),b(-2,y2)是該函數(shù)圖象上的兩點(diǎn)且-30,-20.所以點(diǎn)a、b都位于第三象限,又因?yàn)?3-2,由反比例函數(shù)的圖像的性質(zhì)可知:y1y2.
    【教學(xué)說(shuō)明】通過(guò)觀察圖象,使學(xué)生掌握利用函數(shù)圖象比較函數(shù)值大小的方法.
    八年級(jí)數(shù)學(xué)因式分解教案篇九
    因式分解是第九章的難點(diǎn)。學(xué)生初學(xué)因式分解時(shí)往往要與乘法運(yùn)算混淆。原因主要是概念不清。
    在教學(xué)時(shí),因式分解與乘法的區(qū)別是通過(guò)把等號(hào)兩邊的式子互相轉(zhuǎn)換位置而直觀得出。對(duì)于因式分解的方法,學(xué)生可通過(guò)自己的一系列練習(xí)實(shí)踐去體會(huì)。故不需要在開(kāi)頭引入的地方多加鋪墊,浪費(fèi)了一定的時(shí)間。
    在因式分解的幾種方法中,提取公因式法師最基本的的方法,學(xué)生也很容易掌握。但在一些綜合運(yùn)用的題目中,學(xué)生總會(huì)易忘記先觀察是否有公因式,而直接想著運(yùn)用公式法分解。這樣直接導(dǎo)致有些題目分解錯(cuò)誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強(qiáng)。其實(shí)公式法分解因式。學(xué)生比較會(huì)將平方差和完全平方式混淆。這是對(duì)公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進(jìn)行區(qū)分。如果是兩項(xiàng)的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項(xiàng)則優(yōu)先考慮完全平方式進(jìn)行因式分解。
    在復(fù)習(xí)課上以上存在的一些問(wèn)題還要重點(diǎn)突出講解。幫助學(xué)生跟深刻的去認(rèn)識(shí)因式分解。
    八年級(jí)數(shù)學(xué)因式分解教案篇十
    1.了解算術(shù)平方根的概念,會(huì)用根號(hào)表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。
    2.了解開(kāi)方與乘方互為逆運(yùn)算,會(huì)用平方運(yùn)算求某些非負(fù)數(shù)的算術(shù)平方根。
    算術(shù)平方根的概念。
    根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。
    這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.
    1、提出問(wèn)題:(書(shū)p68頁(yè)的問(wèn)題)
    你是怎樣算出畫(huà)框的邊長(zhǎng)等于5dm的呢?(學(xué)生思考并交流解法)
    這個(gè)問(wèn)題相當(dāng)于在等式擴(kuò)=25中求出正數(shù)x的值.
    一般地,如果一個(gè)正數(shù)x的平方等于a,即=a,那么這個(gè)正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為,讀作根號(hào)a,a叫做被開(kāi)方數(shù).規(guī)定:0的算術(shù)平方根是0.
    也就是,在等式=a (x0)中,規(guī)定x = .
    2、試一試:你能根據(jù)等式:=144說(shuō)出144的算術(shù)平方根是多少嗎?并用等式表示出來(lái).
    3、想一想:下列式子表示什么意思?你能求出它們的值嗎?
    建議:求值時(shí),要按照算術(shù)平方根的意義,寫(xiě)出應(yīng)該滿(mǎn)足的關(guān)系式,然后按照算術(shù)平方根的記法寫(xiě)出對(duì)應(yīng)的值.例如表示25的算術(shù)平方根。
    4、例1求下列各數(shù)的算術(shù)平方根:
    (1)100;(2)1;(3) ;(4)0.0001
    p69練習(xí)1、2
    怎樣用兩個(gè)面積為1的小正方形拼成一個(gè)面積為2的大正方形?
    方法1:課本中的方法,略;
    方法2:
    可還有其他方法,鼓勵(lì)學(xué)生探究。
    問(wèn)題:這個(gè)大正方形的邊長(zhǎng)應(yīng)該是多少呢?
    大正方形的邊長(zhǎng)是,表示2的算術(shù)平方根,它到底是個(gè)多大的數(shù)?你能求出它的值嗎?
    建議學(xué)生觀察圖形感受的大小.小正方形的對(duì)角線的長(zhǎng)是多少呢?(用刻度尺測(cè)量它與大正方形的邊長(zhǎng)的大小)它的近似值我們將在下節(jié)課探究.
    1、這節(jié)課學(xué)習(xí)了什么呢?
    2、算術(shù)平方根的具體意義是怎么樣的?
    3、怎樣求一個(gè)正數(shù)的算術(shù)平方根
    p75習(xí)題13.1活動(dòng)第1、2、3題
    八年級(jí)數(shù)學(xué)因式分解教案篇十一
    原式變形后,利用完全平方公式變形,計(jì)算即可得到結(jié)果.
    此題考查了因式分解的應(yīng)用,熟練掌握平方差公式及完全平方公式是解本題的關(guān)鍵.
    22.已知等式配方后,利用非負(fù)數(shù)的性質(zhì)求出a與b的值,即可確定出三角形周長(zhǎng).
    此題考查了因式分解的應(yīng)用,熟練掌握完全平方公式是解本題的關(guān)鍵.
    23.原式利用平方差公式分解得到結(jié)果,即可做出判斷.
    此題考查了因式分解的應(yīng)用,熟練掌握平方差公式是解本題的關(guān)鍵.
    24.本題考查了分式的化簡(jiǎn)求值,解答此題的關(guān)鍵是把分式化到最簡(jiǎn),然后代值計(jì)算.先將分式的分母分解因式,再約分,然后將已知變形為代入原式即可求解.
    八年級(jí)數(shù)學(xué)因式分解教案篇十二
    1.經(jīng)歷分式方程的概念,能將實(shí)際問(wèn)題中的等量關(guān)系用分式方程 表示,體會(huì)分式方程的模型作用.
    2.經(jīng)歷實(shí)際問(wèn)題-分式方程方程模型的過(guò)程,發(fā)展學(xué)生分析問(wèn)題、解決問(wèn)題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識(shí)。
    3.在活動(dòng)中培養(yǎng)學(xué)生樂(lè)于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問(wèn)題的進(jìn)取心,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值.
    將實(shí)際問(wèn)題中的等量 關(guān)系用分式方程表示
    找實(shí)際問(wèn)題中的等量關(guān)系
    有兩塊面積相同的小麥試驗(yàn)田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗(yàn)田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗(yàn)田每 公頃 的產(chǎn)量。你能找出這一問(wèn)題中的所有等量關(guān)系嗎?(分組交流)
    如果設(shè)第一塊試驗(yàn)田 每公頃的產(chǎn)量為 kg,那么第二塊試驗(yàn)田每公頃的產(chǎn)量是________kg。
    根據(jù)題意,可得方程___________________
    從甲地到乙地有兩條公路:一條是全長(zhǎng)600 km的普通 公路,另一條是全長(zhǎng)480 km的高速公路。某客 車(chē)在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時(shí)間 是由普通公路從甲地到乙地所需時(shí)間的一半。求該客車(chē)由高速公路從 甲地到乙地所需的時(shí)間。
    這 一問(wèn)題中有哪些等量關(guān)系?
    如果設(shè)客車(chē)由高速公路從甲地到乙地 所需的時(shí)間為 h,那么它由普通公路從甲地到乙地所需的時(shí)間為_(kāi)________h。
    根據(jù)題意,可得方程_ _____________________。
    學(xué)生分組探討、交流,列出方程.
    上面所得到的方程有什么共同特點(diǎn)?
    分母中含有未知數(shù)的方程叫做分式方程
    分式方程與整式方程有什么區(qū)別?
    (3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰(shuí)編得好
    本節(jié)課你學(xué)到了哪些知識(shí)?有什么感想?
    八年級(jí)數(shù)學(xué)因式分解教案篇十三
    2、使學(xué)生掌握用平方差公式分解因式。
    重點(diǎn):掌握運(yùn)用平方差公式分解因式。
    難點(diǎn):將單項(xiàng)式化為平方形式,再用平方差公式分解因式。
    學(xué)習(xí)方法:歸納、概括、總結(jié)。
    創(chuàng)設(shè)問(wèn)題情境,引入新課。
    在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成幾個(gè)因式乘積的形式。
    如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過(guò)程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來(lái)學(xué)習(xí)另外的`一種因式分解的方法——公式法。
    1、請(qǐng)看乘法公式。
    利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式。
    a2—b2=(a+b)(a—b)。
    2、公式講解。
    如x2—16。
    =(x)2—42。
    =(x+4)(x—4)。
    9m2—4n2。
    =(3m)2—(2n)2。
    =(3m+2n)(3m—2n)。
    例1、把下列各式分解因式:
    (1)25—16x2;(2)9a2—b2。
    例2、把下列各式分解因式:
    (1)9(m+n)2—(m—n)2;(2)2x3—8x。
    補(bǔ)充例題:判斷下列分解因式是否正確。
    (1)(a+b)2—c2=a2+2ab+b2—c2。
    (2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
    教科書(shū)練習(xí)。
    1、教科書(shū)習(xí)題。
    2、分解因式:x4—16x3—4x4x2—(y—z)2。
    3、若x2—y2=30,x—y=—5求x+y。
    八年級(jí)數(shù)學(xué)因式分解教案篇十四
    《基礎(chǔ)教育課程改革綱要(試行)》指出:“大力推進(jìn)多媒體信息技術(shù)在教學(xué)過(guò)程中的普遍應(yīng)用,促進(jìn)信息技術(shù)與學(xué)科課程的整合,逐步實(shí)現(xiàn)教學(xué)內(nèi)容的呈現(xiàn)方式、學(xué)生的學(xué)習(xí)方式、教師的教學(xué)方式和師生互動(dòng)方式的變革,充分發(fā)揮信息技術(shù)的優(yōu)勢(shì),為學(xué)生的學(xué)習(xí)和發(fā)展提供豐富多彩的教育環(huán)境和有力的學(xué)習(xí)工具?!苯處熯\(yùn)用現(xiàn)代多媒體信息技術(shù)對(duì)教學(xué)活動(dòng)進(jìn)行創(chuàng)造性設(shè)計(jì),發(fā)揮計(jì)算機(jī)輔助教學(xué)的特有功能,把信息技術(shù)和數(shù)學(xué)教學(xué)的學(xué)科特點(diǎn)結(jié)合起來(lái),可以使教學(xué)的表現(xiàn)形式更加形象化、多樣化、視覺(jué)化,有利于充分揭示數(shù)學(xué)概念的形成與發(fā)展,數(shù)學(xué)思維的過(guò)程和實(shí)質(zhì),展示數(shù)學(xué)思維的形成過(guò)程,使數(shù)學(xué)課堂教學(xué)收到事半功倍的效果。
    本節(jié)課內(nèi)容是學(xué)生在小學(xué)階段初步了解特殊四邊形以及學(xué)過(guò)《三角形》這章的基礎(chǔ)上進(jìn)行的,在知識(shí)結(jié)構(gòu)上打破了教材的編寫(xiě)順序,從整體的角度探究特殊四邊形性質(zhì)。運(yùn)用多媒體教學(xué)體現(xiàn)出直觀、課容量大、容易接受的特點(diǎn),為進(jìn)一步的理論證明及應(yīng)用起著提供數(shù)據(jù)和宏觀指導(dǎo)作用,使學(xué)生學(xué)習(xí)本章具體內(nèi)容時(shí)知道身在何處,使知識(shí)體系更加系統(tǒng)。本節(jié)課內(nèi)容是四邊形這章的理論基礎(chǔ),在該章占有非常重要的地位。
    本班經(jīng)歷了一年多課改實(shí)踐,學(xué)生對(duì)運(yùn)用現(xiàn)代多媒體信息技術(shù)的教學(xué)方式有濃厚的興趣,能運(yùn)用《幾何畫(huà)板》這一工具進(jìn)行簡(jiǎn)單的操作,形成自主探索和合作交流的學(xué)風(fēng),從而樂(lè)于在教師的指導(dǎo)下主動(dòng)與同學(xué)探索、發(fā)現(xiàn)、歸納、經(jīng)歷數(shù)學(xué)知識(shí)于實(shí)踐的過(guò)程。
    本節(jié)課充分利用現(xiàn)有的先進(jìn)教學(xué)設(shè)備(兩名學(xué)生一臺(tái)電腦),利用筆者自制,借助《幾何畫(huà)板》把學(xué)生帶入數(shù)學(xué)模擬實(shí)驗(yàn)室,以研究電動(dòng)門(mén)的機(jī)械原理為切入點(diǎn),從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識(shí)的形成并進(jìn)行解釋與應(yīng)用過(guò)程。組員相互配合分別測(cè)量、搜集、分析、整理特殊四邊形的邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度等數(shù)據(jù),并總結(jié)其性質(zhì),通過(guò)人機(jī)對(duì)話(huà)方式把靜態(tài)、抽象的幾何圖形變?yōu)閯?dòng)態(tài)、直觀地演示出來(lái)。在此過(guò)程中教師當(dāng)好課堂教學(xué)的組織者、決策者、創(chuàng)造者和參與者,教給學(xué)生自覺(jué)主動(dòng)地探究新知識(shí)的方法,激發(fā)學(xué)生的思維,培養(yǎng)學(xué)生的科學(xué)精神和創(chuàng)新思維習(xí)慣,使學(xué)生獲得對(duì)數(shù)學(xué)理解的同時(shí),在思維能力、情感態(tài)度與價(jià)值觀等多方面得到發(fā)展。
    1、初步理解特殊四邊形性質(zhì);
    2、培養(yǎng)學(xué)生自主收集、描述和分析數(shù)據(jù)的能力;
    1、了解特殊四邊形性質(zhì)的形成過(guò)程;
    2、初步了解探究新知識(shí)的一些方法;
    1、了解特殊四邊形在日常生活中的應(yīng)用;
    2、學(xué)生在觀察、歸納、類(lèi)比及實(shí)驗(yàn)教學(xué)活動(dòng)中,體會(huì)成功后的喜悅;
    3、初步具有感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義思想。
    教學(xué)環(huán)境:
    多媒體計(jì)算機(jī)網(wǎng)絡(luò)教室。
    教學(xué)課型:
    試驗(yàn)探究式。
    教學(xué)重點(diǎn):
    特殊四邊形性質(zhì)。
    教學(xué)難點(diǎn):
    特殊四邊形性質(zhì)的發(fā)現(xiàn)。
    一、設(shè)置情景,提出問(wèn)題。
    提出問(wèn)題:
    1、電動(dòng)門(mén)的網(wǎng)格和結(jié)點(diǎn)能組成哪些四邊形?
    2、在開(kāi)(關(guān))門(mén)過(guò)程中這些四邊形是如何變化的?
    3、你還發(fā)現(xiàn)了什么?
    解決問(wèn)題:
    學(xué)生猜想:包括平行四邊形、矩形、菱形、等腰梯形、直角梯形……;
    當(dāng)我們學(xué)習(xí)完本節(jié)知識(shí)后,其他問(wèn)題就容易解決了。
    (意圖:用《幾何畫(huà)板》的動(dòng)態(tài)演示生活事例,充分展示了數(shù)學(xué)的美妙,可以使學(xué)生容易進(jìn)入情境和保持積極學(xué)習(xí)狀態(tài),激起學(xué)生探究解決問(wèn)題的求知欲望。)。
    二、整體了解,形成系統(tǒng)。
    本節(jié)課從整體角度研究特殊四邊形性質(zhì),為今后的個(gè)體研究打下良好的基礎(chǔ)。我們先研究四邊形中的特殊與一般的關(guān)系。
    提出問(wèn)題:
    1、本章主要研究哪些特殊四邊形?
    2、從哪幾方面研究這些特殊四邊形?
    解決問(wèn)題:
    學(xué)生操作電腦(用幾何畫(huà)板),了解本章研究的主要圖形;教師個(gè)別指導(dǎo)。
    1、包括:平行四邊形、矩形、菱形、梯形、等腰梯形、直角梯形。
    3、等腰梯形和直角梯形后面應(yīng)該是矩形,但不符合梯形定義,所以沒(méi)有圖形。
    (意圖:學(xué)生自主觀察、分組討論了解本章知識(shí)結(jié)構(gòu),從而形成系統(tǒng);通過(guò)假設(shè)、猜想、推理、論證、否定假設(shè)獲得新知識(shí))。
    三、個(gè)體研究、總結(jié)性質(zhì)。
    1、平行四邊形性質(zhì)。
    提出問(wèn)題:
    在平行四邊形的形狀、位置、大小變化過(guò)程中,請(qǐng)觀察數(shù)據(jù)并找出邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度相對(duì)不變的性質(zhì)。
    解決問(wèn)題:
    教師引導(dǎo)學(xué)生拖動(dòng)b點(diǎn)(學(xué)生操作電腦),改變平行四邊形的形狀、位置、大小,并觀察數(shù)據(jù)的變化,從中找出相對(duì)不變的要素。
    在圖形變化過(guò)程中,
    (1)對(duì)邊相等;
    (2)對(duì)角相等;
    (3)通過(guò)ao=co、bo=do,可得對(duì)角線互相平分;
    (4)通過(guò)鄰角互補(bǔ),可得對(duì)邊平行;
    (5)內(nèi)外角和都等于360度;
    (6)鄰角互補(bǔ);
    ……。
    指導(dǎo)學(xué)生填表:
    平行四邊形性質(zhì)矩形性質(zhì)正方形性質(zhì)。
    菱形性質(zhì)。
    梯形性質(zhì)等腰梯形性質(zhì)。
    直角梯形性質(zhì)。
    (既屬于平行四邊形性質(zhì)又屬于矩形性質(zhì)可以畫(huà)箭頭)。
    按照平行四邊形性質(zhì)的探索思路,分別研究:
    2、矩形性質(zhì);
    3、菱形性質(zhì);
    4、正方形性質(zhì);
    5、梯形性質(zhì);
    6、等腰梯形性質(zhì);
    7、直角梯形的性質(zhì)。
    (意圖:學(xué)生運(yùn)用電腦自主收集、描述、分析數(shù)據(jù),把抽象的性質(zhì)變?yōu)橹庇^化、形象化,培養(yǎng)獨(dú)立探究,自主自信,使學(xué)生體驗(yàn)到科學(xué)探索的樂(lè)趣。)。
    教師總結(jié):
    (意圖:掌握畫(huà)箭頭的方法,使學(xué)生了解事物個(gè)體既有該事物一般性質(zhì),又有自己的特點(diǎn)。既清楚地表達(dá),又節(jié)省時(shí)間。)。
    四、聯(lián)系生活,解決問(wèn)題。
    解決問(wèn)題:
    學(xué)生操作電腦,觀察圖形、分組討論,教師個(gè)別指導(dǎo)。
    學(xué)生在分別演示開(kāi)(關(guān))門(mén)過(guò)程中,觀察數(shù)據(jù)并總結(jié):邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度的變化引起四邊形的形狀、大小、位置的變化。
    四邊形具有不穩(wěn)定性,而三角形沒(méi)有這個(gè)特點(diǎn)……。
    (意圖:使學(xué)生體會(huì)到數(shù)學(xué)于生活、又服務(wù)于生活,更重要的是培養(yǎng)學(xué)生應(yīng)用知識(shí)解決實(shí)際問(wèn)題的能力,體會(huì)成功后的喜悅。)。
    五、小結(jié)。
    1.研究問(wèn)題從整體到局部的方法;
    2.主要從邊長(zhǎng)、角度、對(duì)角線長(zhǎng)度三方面研究特殊四邊形性質(zhì)。
    六、作業(yè)。
    1.平行四邊形內(nèi)角中,既有兩個(gè)相鄰的角相等,又有一組鄰邊相等,試判斷它是什么圖形。
    2.觀察實(shí)際生活中的電動(dòng)門(mén),在開(kāi)(關(guān))門(mén)過(guò)程中特殊四邊形的變化。
    針對(duì)教學(xué)內(nèi)容、學(xué)生特點(diǎn)及設(shè)計(jì)方案,預(yù)計(jì)下列學(xué)習(xí)效果:
    利用多媒體信息技術(shù)圖文并茂、形象直觀的特點(diǎn),通過(guò)學(xué)生自主測(cè)量、分析、整理數(shù)據(jù)并總結(jié)其性質(zhì),培養(yǎng)學(xué)生收集、描述和分析數(shù)據(jù)的能力,并達(dá)到初步理解特殊四邊形性質(zhì)的目標(biāo)。
    在問(wèn)題引入、了解整體、測(cè)量個(gè)體、總結(jié)性質(zhì)的過(guò)程中,符合事物的認(rèn)識(shí)規(guī)律及探究新知識(shí)的一般方法,初步形成感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的辯證唯物主義思想。
    由于個(gè)體差異,針對(duì)教學(xué)目標(biāo)難以達(dá)到的個(gè)別學(xué)生,根據(jù)教學(xué)的進(jìn)展,通過(guò)師生之間、學(xué)生之間的對(duì)話(huà)交流及時(shí)指導(dǎo),使教學(xué)目標(biāo)得以實(shí)現(xiàn)。
    八年級(jí)數(shù)學(xué)因式分解教案篇十五
    多媒體投影一組圖片,讓同學(xué)們從中抽象出平面圖形,從而引出課題。
    二、自主學(xué)習(xí),指向目標(biāo)。
    學(xué)習(xí)至此:請(qǐng)完成《學(xué)生用書(shū)》相應(yīng)部分。
    三、合作探究,達(dá)成目標(biāo)。
    多邊形的定義及有關(guān)概念。
    活動(dòng)一:閱讀教材p19。
    小組討論:結(jié)合具體圖形說(shuō)出多邊形的邊、內(nèi)角、外角?
    反思小結(jié):多邊形的定義及相關(guān)概念。
    針對(duì)訓(xùn)練:見(jiàn)《學(xué)生用書(shū)》相應(yīng)部分。
    多邊形的對(duì)角線。
    活動(dòng)二:(1)十邊形的對(duì)角線有35條。
    (2)如果經(jīng)過(guò)多邊形的一個(gè)頂點(diǎn)有36條對(duì)角線,這個(gè)多邊形是39邊形。
    反思小結(jié):當(dāng)n為已知時(shí),可以直接代入求得對(duì)角線的條數(shù),當(dāng)對(duì)角線條數(shù)已知時(shí),可以化為方程來(lái)求多邊形的邊數(shù)。
    小組討論:如何靈活運(yùn)用多邊形對(duì)角線條數(shù)的規(guī)律解題?
    針對(duì)訓(xùn)練:見(jiàn)《學(xué)生用書(shū)》相應(yīng)部分。
    正多邊形的有關(guān)概念。
    活動(dòng)二:閱讀教材p20。
    小組討論:判斷一個(gè)多邊形是否是正多邊形的條件?
    反思小結(jié):由正多邊形的概念知:滿(mǎn)足各邊、各角分別相等的多邊形是正多邊形。
    針對(duì)訓(xùn)練:見(jiàn)《學(xué)生用書(shū)》相應(yīng)部分。
    四、總結(jié)梳理,內(nèi)化目標(biāo)。
    本節(jié)學(xué)習(xí)的數(shù)學(xué)知識(shí)是:
    1、多邊形、多邊形的外角,多邊形的對(duì)角線。
    2、凸凹多邊形的概念。
    五、達(dá)標(biāo)檢測(cè),反思目標(biāo)。
    1、下列敘述正確的是(d)。
    a、每條邊都相等的多邊形是正多邊形。
    c、每個(gè)角都相等的多邊形叫正多邊形。
    d、每條邊、每個(gè)角都相等的多邊形叫正多邊形。
    2、小學(xué)學(xué)過(guò)的下列圖形中不可能是正多邊形的是(d)。
    a、三角形b。正方形c。四邊形d。梯形。
    3、多邊形的內(nèi)角是指多邊形相鄰兩邊組成的角;多邊形的外角是指多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角;多邊形的內(nèi)角和它相鄰的外角是鄰補(bǔ)角關(guān)系。
    4、已知一個(gè)四邊形的四個(gè)內(nèi)角的比為1∶2∶3∶4,求這個(gè)四邊形的各個(gè)內(nèi)角的度數(shù)。
    八年級(jí)數(shù)學(xué)因式分解教案篇十六
    教學(xué)目標(biāo):
    1、知道一次函數(shù)與正比例函數(shù)的意義.
    2、能寫(xiě)出實(shí)際問(wèn)題中正比例關(guān)系與一次函數(shù)關(guān)系的解析式.
    3、滲透數(shù)學(xué)建模的思想,使學(xué)生體會(huì)到數(shù)學(xué)的抽象性和廣泛的應(yīng)用性.
    4、激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.
    教學(xué)重點(diǎn):對(duì)于一次函數(shù)與正比例函數(shù)概念的理解.
    教學(xué)難點(diǎn):根據(jù)具體條件求一次函數(shù)與正比例函數(shù)的解析式.
    教學(xué)方法:結(jié)構(gòu)教學(xué)法、以學(xué)生“再創(chuàng)造”為主的教學(xué)方法。
    教學(xué)過(guò)程:
    1、復(fù)習(xí)舊課。
    前面我們學(xué)習(xí)了函數(shù)的相關(guān)知識(shí),(教師在黑板上畫(huà)出本章結(jié)構(gòu)并讓學(xué)生說(shuō)出前三。
    2、引入新課。
    就象以前我們學(xué)習(xí)方程、一元一次方程;不等式、一元一次不等式的內(nèi)容時(shí)一樣,我們?cè)趯W(xué)習(xí)了函數(shù)這個(gè)概念以后,要學(xué)習(xí)一些具體的函數(shù),今天我們要學(xué)習(xí)的是一次函數(shù).顧名思義,誰(shuí)能根據(jù)一次函數(shù)這個(gè)名字,類(lèi)比一元一次方程、一元一次不等式的概念能舉出一些一次函數(shù)的例子?(學(xué)生完全具備這種類(lèi)比的能力,所以要快、不要耽誤太多時(shí)間叫幾個(gè)同學(xué)回答就可以了.教師將學(xué)生的正確的例子寫(xiě)在黑板上)。
    這些函數(shù)有什么共同特點(diǎn)呢?(注意根據(jù)學(xué)生情況適當(dāng)引導(dǎo),看能否歸納出一般結(jié)果.)不難看出函數(shù)都是用自變量的一次式表示的,可以寫(xiě)成()的形式.一般地,如果(是常數(shù),)(括號(hào)內(nèi)用紅字強(qiáng)調(diào))那么y叫做x的一次函數(shù).特別地,當(dāng)b=0時(shí),一次函數(shù)就成為(是常數(shù),)。
    3、例題講解。
    例1、某油管因地震破裂,導(dǎo)致每分鐘漏出原油30公升。
    (1)如果x分鐘共漏出y公升,寫(xiě)出y與x之間的函數(shù)關(guān)系式。
    (2)破裂3.5小時(shí)后,共漏出原油多少公升。
    分析:y與x成正比例。
    解:(1)(2)(升)。
    例2、小丸子的存折上已經(jīng)有500元存款了,從現(xiàn)在開(kāi)始她每個(gè)月可以得到150元的零用錢(qián),小丸子計(jì)劃每月將零用錢(qián)的60%存入銀行,用以購(gòu)買(mǎi)她期盼已久的cd隨身聽(tīng)(價(jià)值1680元)。
    (1)列出小丸子的銀行存款(不計(jì)利息)y與月數(shù)x的函數(shù)關(guān)系式;。
    (2)多長(zhǎng)時(shí)間以后,小丸子的銀行存款才能買(mǎi)隨身聽(tīng)?
    分析:銀行存款數(shù)由兩部分構(gòu)成:原有的存款500元,后存入的零用錢(qián)。
    例3、已知函數(shù)是正比例函數(shù),求的值。
    分析:本題考察的是正比例函數(shù)的概念。
    解:
    4、小結(jié)。
    由學(xué)生對(duì)本節(jié)課知識(shí)進(jìn)行總結(jié),教師板書(shū)即可.
    5、布置作業(yè)。
    書(shū)面作業(yè):1、書(shū)后習(xí)題2、自己寫(xiě)出一個(gè)實(shí)際中的一次函數(shù)的例子并進(jìn)行討論。
    八年級(jí)數(shù)學(xué)因式分解教案篇十七
    1.理解分式的基本性質(zhì).
    2.會(huì)用分式的基本性質(zhì)將分式變形.
    二、重點(diǎn)、難點(diǎn)。
    1.重點(diǎn):理解分式的基本性質(zhì).
    2.難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形.
    3.認(rèn)知難點(diǎn)與突破方法。
    教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過(guò)復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類(lèi)比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。
    三、例、習(xí)題的意圖分析。
    1.p7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變。
    2.p9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡(jiǎn)分式;通分是要正確地確定各個(gè)分母的最簡(jiǎn)公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。
    教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解。
    3.p11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).這一類(lèi)題教材里沒(méi)有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。
    “不改變分式的值,使分式的分子和分母都不含‘-’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。
    四、課堂引入。
    1.請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?
    2.說(shuō)出與之間變形的過(guò)程,與之間變形的過(guò)程,并說(shuō)出變形依據(jù)?
    3.提問(wèn)分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類(lèi)比猜想出分式的基本性質(zhì).
    五、例題講解。
    p7例2.填空:
    [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變.
    p11例3.約分:
    [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式.
    p11例4.通分:
    [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母.
    (補(bǔ)充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).
    [分析]每個(gè)分式的分子、分母和分式本身都有自己的符號(hào),其中兩個(gè)符號(hào)同時(shí)改變,分式的值不變.
    解:=,=,=,=,=。
    六、隨堂練習(xí)。
    1.填空:
    (1)=(2)=。
    (3)=(4)=。
    2.約分:
    3.通分:
    (1)和(2)和。
    (3)和(4)和。
    4.不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).
    七、課后練習(xí)。
    1.判斷下列約分是否正確:
    (1)=(2)=。
    (3)=0。
    2.通分:
    (1)和(2)和。
    3.不改變分式的值,使分子第一項(xiàng)系數(shù)為正,分式本身不帶“-”號(hào).
    八、答案:
    六、1.(1)2x(2)4b(3)bn+n(4)x+y。
    2.(1)(2)(3)(4)-2(x-y)2。
    3.通分:
    (1)=,=。
    (2)=,=。
    (3)==。
    (4)==。
    八年級(jí)數(shù)學(xué)因式分解教案篇十八
    1、理解極差的定義,知道極差是用來(lái)反映數(shù)據(jù)波動(dòng)范圍的一個(gè)量.
    2、會(huì)求一組數(shù)據(jù)的極差.
    1、重點(diǎn):會(huì)求一組數(shù)據(jù)的極差.
    2、難點(diǎn):本節(jié)課內(nèi)容較容易接受,不存在難點(diǎn)、
    從表中你能得到哪些信息?
    比較兩段時(shí)間氣溫的高低,求平均氣溫是一種常用的方法、
    這是不是說(shuō),兩個(gè)時(shí)段的氣溫情況沒(méi)有什么差異呢?
    根據(jù)兩段時(shí)間的氣溫情況可繪成的折線圖、
    觀察一下,它們有區(qū)別嗎?說(shuō)說(shuō)你觀察得到的結(jié)果、
    本節(jié)課在教材中沒(méi)有相應(yīng)的例題,教材p152習(xí)題分析。
    問(wèn)題1可由極差計(jì)算公式直接得出,由于差值較大,結(jié)合本題背景可以說(shuō)明該村貧富差距較大、問(wèn)題2涉及前一個(gè)學(xué)期統(tǒng)計(jì)知識(shí)首先應(yīng)回憶復(fù)習(xí)已學(xué)知識(shí)、問(wèn)題3答案并不唯一,合理即可。
    八年級(jí)數(shù)學(xué)因式分解教案篇十九
    調(diào)查中,所要考察對(duì)象的全體稱(chēng)為總體,而組成總體的每一個(gè)考察對(duì)象稱(chēng)為個(gè)體。
    例如,某班10名女生的考試成績(jī)是總體,每一名女生的考試成績(jī)是個(gè)體。
    從總體中抽取部分個(gè)體進(jìn)行調(diào)查,這種調(diào)查稱(chēng)為抽樣調(diào)查,其中從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本。
    例如,要調(diào)查全縣農(nóng)村中學(xué)生學(xué)生平均每周每人的零花錢(qián)數(shù),由于人數(shù)較多(一般涉及幾萬(wàn)人),我們從中抽取500名學(xué)生進(jìn)行調(diào)查,就是抽樣調(diào)查,這500名學(xué)生平均每周每人的零花錢(qián)數(shù),就是總體的一個(gè)樣本。
    將一組數(shù)據(jù)按照由小到大(或由大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)稱(chēng)為這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)稱(chēng)為這組數(shù)據(jù)的中位數(shù)。
    一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)。
    例如:求一組數(shù)據(jù)3,2,3,5,3,1的眾數(shù)。
    解:這組數(shù)據(jù)中3出現(xiàn)3次,2,5,1均出現(xiàn)1次。所以3是這組數(shù)據(jù)的眾數(shù)。
    又如:求一組數(shù)據(jù)2,3,5,2,3,6的眾數(shù)。
    解:這組數(shù)據(jù)中2出現(xiàn)2次,3出現(xiàn)2次,5,6各出現(xiàn)1次。
    所以這組數(shù)據(jù)的眾數(shù)是2和3。
    【規(guī)律方法小結(jié)】。
    (1)平均數(shù)、中位數(shù)、眾數(shù)都是描述一組數(shù)據(jù)集中趨勢(shì)的量。
    (2)平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都有關(guān),是最為重要的量。
    (3)中位數(shù)不受個(gè)別偏大或偏小數(shù)據(jù)的影響,當(dāng)一組數(shù)據(jù)中的個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),一般用它來(lái)描述集中趨勢(shì)。
    (4)眾數(shù)只與數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個(gè)別數(shù)據(jù)影響,有時(shí)是我們最為關(guān)心的統(tǒng)計(jì)數(shù)據(jù)。
    探究交流。
    1、一組數(shù)據(jù)的中位數(shù)一定是這組數(shù)據(jù)中的一個(gè),這句話(huà)對(duì)嗎?為什么?
    解析:不對(duì),一組數(shù)據(jù)的中位數(shù)不一定是這組數(shù)據(jù)中的一個(gè),當(dāng)這組數(shù)據(jù)有偶數(shù)個(gè)時(shí),中位數(shù)由中間兩個(gè)數(shù)的平均數(shù)決定,若中間兩數(shù)相等,則這組數(shù)據(jù)的中位數(shù)在這組數(shù)據(jù)之中,反之,中位數(shù)不在這組數(shù)據(jù)之中。
    總結(jié):
    (1)中位數(shù)在一組數(shù)據(jù)中是唯一的,可能是這組數(shù)據(jù)中的一個(gè),也可能不是這組數(shù)據(jù)中的數(shù)據(jù)。
    (2)求中位數(shù)時(shí),先將數(shù)據(jù)按由小到大的順序排列(或按由大到小的順序排列)。若這組數(shù)據(jù)是奇數(shù)個(gè),則最中間的數(shù)據(jù)是中位數(shù);若這組數(shù)據(jù)是偶數(shù)個(gè),則最中間的兩個(gè)數(shù)據(jù)的平均數(shù)是中位數(shù)。
    (3)中位數(shù)的單位與數(shù)據(jù)的單位相同。
    (4)中位數(shù)與數(shù)據(jù)排序有關(guān)。當(dāng)一組數(shù)據(jù)中的個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),可用中位數(shù)來(lái)描述這組數(shù)據(jù)的集中趨勢(shì)。
    課堂檢測(cè)。
    基本概念題。
    1、填空題。
    (1)數(shù)據(jù)15,23,17,18,22的平均數(shù)是;
    (4)為了考察某公園一年中每天進(jìn)園的人數(shù),在其中的30天里,對(duì)進(jìn)園的人數(shù)進(jìn)行了統(tǒng)計(jì),這個(gè)問(wèn)題中的總體是________,樣本是________,個(gè)體是________。
    基礎(chǔ)知識(shí)應(yīng)用題。
    2、某公交線路總站設(shè)在一居民小區(qū)附近,為了了解高峰時(shí)段從總站乘車(chē)出行的人數(shù),隨機(jī)抽查了10個(gè)班次的乘車(chē)人數(shù),結(jié)果如下:20,23,26,25,29,28,30,25,21,23。
    (1)計(jì)算這10個(gè)班次乘車(chē)人數(shù)的平均數(shù);
    (2)如果在高峰時(shí)段從總站共發(fā)車(chē)60個(gè)班次,根據(jù)前面的計(jì)算結(jié)果,估計(jì)在高峰時(shí)段從總站乘該路車(chē)出行的乘客共有多少。
    八年級(jí)數(shù)學(xué)因式分解教案篇二十
    本周上午我聽(tīng)了史老師一節(jié)關(guān)于《運(yùn)用平方差公式進(jìn)行因式分解》的公開(kāi)課,史老師以自己扎實(shí)的數(shù)學(xué)基本功,細(xì)致嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)解題思路,靈活輕松的師生互動(dòng),為我們獻(xiàn)上了一節(jié)優(yōu)質(zhì)的數(shù)學(xué)課。
    史老師針對(duì)本章內(nèi)容所要用上了前面的知識(shí)做了細(xì)致的復(fù)習(xí)。實(shí)現(xiàn)了本章節(jié)知識(shí)點(diǎn)的聯(lián)系與復(fù)習(xí)回顧,對(duì)接下去的`學(xué)習(xí)做了很好的鋪墊。
    史老師通過(guò)求長(zhǎng)方形的面積來(lái)引導(dǎo)學(xué)生探索、總結(jié)出運(yùn)用平方差公式進(jìn)行因式分解的法則,利用數(shù)形結(jié)合,讓學(xué)生對(duì)這個(gè)法則的理解更深入,同時(shí)突破了難點(diǎn),體現(xiàn)了以教師為主導(dǎo)、學(xué)生自主探究、討論、合作交流的新課改理念。
    史老師通過(guò)練習(xí),讓學(xué)生觀察步驟,并做出總結(jié)。使學(xué)生加深了對(duì)知識(shí)的理解,學(xué)會(huì)觀察,發(fā)現(xiàn),總結(jié)知識(shí)。最后史老師還給學(xué)生編了個(gè)解題的順口溜,既方便讓學(xué)生記憶,又能鞏固知識(shí)。
    (1)整節(jié)課老師講得多,學(xué)生個(gè)別回答較少。
    (2)學(xué)生的討論與合作學(xué)習(xí)還需加強(qiáng),討論問(wèn)題還不夠深入,應(yīng)讓學(xué)生從合作學(xué)習(xí)中有所提高,從與它人的交流中碰撞出思維的火花。
    (3)還需加強(qiáng)的對(duì)知識(shí)點(diǎn)的認(rèn)識(shí),比如為什么要學(xué)升降冪,是為了結(jié)果的有序,數(shù)學(xué)的結(jié)果需要簡(jiǎn)潔有序。這樣讓學(xué)生很清楚,有目的的學(xué)習(xí)效果總是比較好的。
    八年級(jí)數(shù)學(xué)因式分解教案篇二十一
    (一)、知識(shí)與技能:
    (1)使學(xué)生了解因式分解的意義,理解因式分解的概念。
    (2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。
    (二)、過(guò)程與方法:
    (1)由學(xué)生自主探索解題途徑,在此過(guò)程中,通過(guò)觀察、類(lèi)比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類(lèi)比思想。
    (2)由整式乘法的逆運(yùn)算過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
    (3)通過(guò)對(duì)分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問(wèn)題能力與綜合應(yīng)用能力。
    (三)、情感態(tài)度與價(jià)值觀:讓學(xué)生初步感受對(duì)立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。
    二、教學(xué)重點(diǎn)和難點(diǎn)。
    重點(diǎn):因式分解的概念及提公因式法。
    難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
    三、教學(xué)過(guò)程。
    教學(xué)環(huán)節(jié):
    活動(dòng)1:復(fù)習(xí)引入。
    看誰(shuí)算得快:用簡(jiǎn)便方法計(jì)算:
    (1)7/9×13-7/9×6+7/9×2=;
    (2)-2.67×132+25×2.67+7×2.67=;
    (3)992–1=。
    設(shè)計(jì)意圖:
    注意事項(xiàng):學(xué)生對(duì)于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對(duì)于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級(jí)所學(xué)過(guò)的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。
    活動(dòng)2:導(dǎo)入課題。
    p165的探究(略);
    2.看誰(shuí)想得快:993–99能被哪些數(shù)整除?你是怎么得出來(lái)的?
    設(shè)計(jì)意圖:
    引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對(duì)因數(shù)分解的理解,為學(xué)生類(lèi)比因式分解提供必要的精神準(zhǔn)備。
    活動(dòng)3:探究新知。
    看誰(shuí)算得準(zhǔn):
    計(jì)算下列式子:
    (1)3x(x-1)=;
    (2)(a+b+c)=;
    (3)(+4)(-4)=;
    (4)(-3)2=;
    (5)a(a+1)(a-1)=;
    根據(jù)上面的算式填空:
    (1)a+b+c=;
    (2)3x2-3x=;
    (3)2-16=;
    (4)a3-a=;
    (5)2-6+9=。
    在第一組的整式乘法的計(jì)算上,學(xué)生通過(guò)對(duì)第一組式子的觀察得出第二組式子的結(jié)果,然后通過(guò)對(duì)這兩組式子的結(jié)果的比較,使學(xué)生對(duì)因式分解有一個(gè)初步的意識(shí),由整式乘法的逆運(yùn)算逐步過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
    活動(dòng)4:歸納、得出新知。
    比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:
    a(a+1)(a-1)=a3-a。
    a3-a=a(a+1)(a-1)。
    在第三環(huán)節(jié)的運(yùn)算中還有其它類(lèi)似的例子嗎?除此之外,你還能找到類(lèi)似的例子嗎?
    八年級(jí)數(shù)學(xué)因式分解教案篇二十二
    王老師上課時(shí)通過(guò)學(xué)生自己的試算、觀察、發(fā)現(xiàn)、總結(jié)、歸納,得出用平方差公式進(jìn)行因式分解,這樣得出平方差公式后,并且把乘法公式進(jìn)行對(duì)比,通過(guò)例題、練習(xí)與小結(jié),教會(huì)學(xué)生如何正確應(yīng)用平方差公式.這里特別要求學(xué)生注意公式的結(jié)構(gòu),教師可以用對(duì)應(yīng)思想來(lái)加強(qiáng)對(duì)公式結(jié)構(gòu)的理解和訓(xùn)練。王老師放手讓學(xué)生探索,促進(jìn)學(xué)生主動(dòng)發(fā)展的教學(xué)方法貫穿于這節(jié)課的始終。
    從學(xué)生的練習(xí)情況來(lái)看,許多同學(xué)都掌握了這節(jié)課的知識(shí),整個(gè)課堂中,以學(xué)生練為主,王老師能敢于創(chuàng)新、敢于探索,整節(jié)課的學(xué)習(xí),教師始終是學(xué)生學(xué)習(xí)活動(dòng)的組織者、指導(dǎo)者和合作者,而學(xué)生始終都是一個(gè)發(fā)現(xiàn)者、探索者,充分發(fā)揮他們的學(xué)習(xí)主體作用。這樣大大提高了這節(jié)課的效率。
    教師講課語(yǔ)言簡(jiǎn)捷、清晰,有較強(qiáng)的表達(dá)和應(yīng)變能力,課堂教學(xué)基本功好。乘法公式的引入由兩種形式的'引入,又形象直觀地理解了乘法公式的內(nèi)在實(shí)質(zhì)。做到以點(diǎn)撥為主的教學(xué)。對(duì)于公式的牲能?chē)?yán)格要求學(xué)生理解,并能讓學(xué)生自己舉例符合公式形狀的例子,課堂內(nèi)的練習(xí)量、內(nèi)容及安排上恰當(dāng)好處,有基本運(yùn)用公式,有變式運(yùn)用公式,也有適當(dāng)?shù)募由顟?yīng)用,滿(mǎn)足了不同層次的學(xué)生的學(xué)習(xí)。效果是比較顯著的。
    八年級(jí)數(shù)學(xué)因式分解教案篇二十三
    1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來(lái)判定平行四邊形的方法.
    2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題。
    平行四邊形的判定方法及應(yīng)用。
    閱讀教材p44至p45。
    利用手中的學(xué)具——硬紙板條,通過(guò)觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:
    (1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?
    (2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?
    (3)你能說(shuō)出你的做法及其道理嗎?
    (5)你還能找出其他方法嗎?
    平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
    平行四邊形判定方法2對(duì)角線互相平分的四邊形是平行四邊形。
    平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
    證明:(畫(huà)出圖形)。
    平行四邊形判定方法2一組對(duì)邊平行且相等的四邊形是平行四邊形。